101
|
Mehta SR, Yen EF. Microbiota-based Therapies Clostridioides difficile infection that is refractory to antibiotic therapy. Transl Res 2021; 230:197-207. [PMID: 33278650 DOI: 10.1016/j.trsl.2020.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022]
Abstract
Clostridioides difficile infection (CDI) has had a devastating impact worldwide with significant rates of mortality, especially among the elderly. Despite effective antibiotics, the incidence of recurrent CDI (rCDI) is increasing and more difficult to treat with antibiotics alone. Fecal Microbiota Transplantation (FMT) has emerged as a consistently effective treatment for rCDI. Mechanisms for FMT are not entirely understood, but remain an area of active investigation. There have been recent safety reports with the use of FMT regarding transmission of pathogens in a few patients that have led to serious illness. With appropriate screening, FMT can be safely administered and continue to have a significant impact on eradication of rCDI and improve the lives of patients suffering from this disease. In this review, we summarize current treatments for CDI with a focus on microbiota-based therapies used for antibiotic refractory disease.
Collapse
Affiliation(s)
- Shama R Mehta
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201
| | - Eugene F Yen
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201.
| |
Collapse
|
102
|
Du C, Luo Y, Walsh S, Grinspan A. Oral Fecal Microbiota Transplant Capsules Are Safe and Effective for Recurrent Clostridioides difficile Infection: A Systematic Review and Meta-Analysis. J Clin Gastroenterol 2021; 55:300-308. [PMID: 33471490 DOI: 10.1097/mcg.0000000000001495] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GOALS We performed a systematic review with meta-analysis to examine the efficacy and safety of oral fecal microbiota transplantation (FMT) capsules for recurrent Clostridioides difficile infection (rCDI). BACKGROUND FMT through colonoscopy is established as effective and safe in treating multiple recurrences of CDI, but consensus has not been established on delivery through oral capsules. STUDY A systematic literature search was performed with multiple databases including MEDLINE and EMBASE to identify original studies including at least 10 patients that investigated the role of oral FMT capsules to treat rCDI. Cure rates were pooled by a random effects model and publication bias was assessed with the Egger test. Secondary analyses assessed for differences between capsule preparation (frozen vs. lyophilized stool) and delivery modality (capsule vs. colonoscopy). RESULTS Fifteen studies (12 case series and 3 randomized controlled trials) encompassing 763 patients were identified for inclusion. Significant variability existed in baseline patient characteristics and protocols. Meta-analysis of proportions showed efficacy of oral FMT capsules to be 0.821 (95% confidence interval: 0.762-0.874). No evidence for publication bias was found (P=0.51). Secondary analyses did not find significant differences in efficacy. Fourteen adverse events leading to death or hospitalization were noted, none of which were attributed to FMT. CONCLUSIONS Oral FMT capsules for rCDI are promising because of ease of administration and noninvasive delivery. We found an overall efficacy of 82.1% with a low rate of serious adverse events. Further studies are needed to optimize protocols and outcomes.
Collapse
Affiliation(s)
| | | | - Samantha Walsh
- Levy Library, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place
| | - Ari Grinspan
- The Henry D. Janowitz Division of Gastroenterology, The Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
103
|
Kazemian N, Kao D, Pakpour S. Fecal Microbiota Transplantation during and Post-COVID-19 Pandemic. Int J Mol Sci 2021; 22:3004. [PMID: 33809421 PMCID: PMC7998826 DOI: 10.3390/ijms22063004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
COVID-19 is a major pandemic facing the world today, which has implications on current microbiome-based treatments such as fecal microbiota transplantation (FMT) used for recurrent Clostridioides difficile infections. The bidirectional relationship between the inhabitants of our gut, the gut microbiota, and COVID-19 pathogenesis, as well as the underlying mechanism involved, must be elucidated in order to increase FMT safety and efficacy. In this perspective, we discuss the crucial cross-talk between the gut microbiota and the lungs, known as the gut-lung axis, during COVID-19 infection, as well as the putative effect of these microorganisms and their functional activity (i.e., short chain fatty acids and bile acids) on FMT treatment. In addition, we highlight the urgent need to investigate the possible impact of COVID-19 on FMT safety and efficacy, as well as instilling stringent screening protocols of donors and recipients during COVID-19 and post-COVID-19 pandemic to produce a cohesive and optimized FMT treatment plan across all centers and in all countries across the globe.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| |
Collapse
|
104
|
Lamousé-Smith E, Kelly D, De Cremoux I. Designing bugs as drugs: exploiting the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G295-G303. [PMID: 33264062 PMCID: PMC8609565 DOI: 10.1152/ajpgi.00381.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extensive investigation of the human microbiome and the accumulating evidence regarding its critical relationship to human health and disease has advanced recognition of its potential as the next frontier of drug development. The rapid development of technologies, directed at understanding the compositional and functional dynamics of the human microbiome, and the ability to mine for novel therapeutic targets and biomarkers are leading innovative efforts to develop microbe-derived drugs that can prevent and treat autoimmune, metabolic, and infectious diseases. Increasingly, academics, biotechs, investors, and large pharmaceutical companies are partnering to collectively advance various therapeutic modalities ranging from live bacteria to small molecules. We review the leading platforms in current development focusing on live microbial consortia, engineered microbes, and microbial-derived metabolites. We will also touch on how the field is addressing and challenging the traditional definitions of pharmacokinetics and pharmacodynamics, dosing, toxicity, and safety to advance the development of these novel and cutting-edge therapeutics into the clinic.
Collapse
|
105
|
Lower endoscopic delivery of freeze-dried intestinal microbiota results in more rapid and efficient engraftment than oral administration. Sci Rep 2021; 11:4519. [PMID: 33633264 PMCID: PMC7907225 DOI: 10.1038/s41598-021-84152-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a highly effective treatment for recurrent Clostridioides difficile infection (rCDI). However, standardization of FMT products is essential for its broad implementation into clinical practice. We have developed an oral preparation of freeze-dried, encapsulated microbiota, which is ~ 80% clinically effective, but results in delayed engraftment of donor bacteria relative to administration via colonoscopy. Our objective was to measure the engraftment potential of freeze-dried microbiota without the complexity of variables associated with oral administration. We compared engraftment of identical preparations and doses of freeze-dried microbiota following colonoscopic (9 patients) versus oral administration (18 patients). Microbiota were characterized by sequencing of the 16S rRNA gene, and engraftment was determined using the SourceTracker algorithm. Oligotyping analysis was done to provide high-resolution patterns of microbiota engraftment. Colonoscopic FMT was associated with greater levels of donor engraftment within days following the procedure (ANOVA P = 0.035) and specific increases in the relative abundances of donor Lachnospiraceae, Bacteroidaceae, and Porphyromonadaceae (P ≤ 0.033). Lower relative abundances of Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae families were associated with clinical failures. These results suggest that further optimization of oral capsule FMT may improve its engraftment efficiency and clinical efficacy.
Collapse
|
106
|
The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial. Lancet Gastroenterol Hepatol 2021; 6:282-291. [PMID: 33631102 DOI: 10.1016/s2468-1253(21)00007-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is highly effective for recurrent Clostridioides difficile infection but has inherent risks. Microbial Ecosystem Therapeutic 2 (MET-2) is an oral encapsulated formulation of 40 lyophilised bacterial species initially isolated from stool of a healthy donor, but subsequently manufactured independently of donors, eliminating potential risks introduced by changes in donor health. The aim of this study was to determine MET-2 activity, safety, and tolerability. METHODS This phase 1, open-label, single-group feasibility study was done in Alberta, Canada. The main inclusion criteria were mild to moderate C difficile infection and at least one episode of C difficile infection recurrence (ie, two episodes of C difficile infection) within 12 months. Initial daily treatment was ten oral capsules for 2 days, then three capsules for 8 days. If C difficile infection recurred, a higher dose was offered: 20 capsules for 2 days, then three capsules for 8 days. Patients were followed for adverse events and C difficile infection recurrence up to day 130. The primary outcome was absence of C difficile infection recurrence (fewer than three unformed bowel movements in 24 h persisting for at least 2 days) at day 40 by intention-to-treat analysis. Secondary outcomes were mortality or hospitalisation due to C difficile infection, infections attributed to treatment, nausea, abdominal pain, vomiting, or diarrhoea during treatment, quality of life (C difficile Health Related Quality of Life Questionnaire) before and after treatment, and engrafted MET-2 bacteria in patient stool. Absence of C difficile infection recurrence at day 130 was an exploratory outcome. This study is registered with ClinicalTrials.gov, NCT02865616 FINDINGS: Between Sept 19, 2018, and Feb 28, 2020, we enrolled 19 adult patients with at least two episodes of mild to moderate C difficile infection (median age 65 years [IQR 56-67]; 12 women [63%], seven men [37%]). Recurrent C difficile infection was absent at day 40 in 15 (79%) of 19 patients after initial treatment, increasing to 18 (95%) 40 days after retreatment. No mortality associated with C difficile infection, infections associated with MET-2 treatment, or other serious adverse events were observed. The most common self-limited, mild to moderate symptoms reported during treatment were diarrhoea in 12 (63%) of 19 patients and abdominal cramps in 12 (63%). After MET-2 treatment, quality of life improved significantly, as did alpha diversity in stool microbial composition (p=1·93×10-6). MET-2 associated taxa were found in greater abundance in most patients after treatment compared with baseline. 16 (84%) of 19 patients did not have recurrence of C difficile infection by day 130. INTERPRETATION MET-2 appears to be safe, efficacious, and well tolerated among patients with recurrent C difficile infection. Results must be validated in controlled studies. FUNDING NuBiyota.
Collapse
|
107
|
Qiu K, Anselmo AC. Batch Culture Formulation of Live Biotherapeutic Products. ADVANCED THERAPEUTICS 2021; 4:2000226. [PMID: 33709021 PMCID: PMC7942761 DOI: 10.1002/adtp.202000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/31/2022]
Abstract
Live biotherapeutic products (LBPs) are an emerging therapeutic modality that are clinically investigated for treating pathogenic infections and inflammatory diseases. A major class of LBPs are feces derived microbial consortiums which require numerous process development steps (e.g. separation, purification, blending) to facilitate LBP formulation into oral dosage forms. A subset of these LBPs circumvent the need for continuous fecal processing by batch culture for individual strains of microbes that are rationally defined and combined in the final LBP formulation. Separately, delivery formulations (e.g. polymer encapsulation) are being developed for LBPs to improve storage and intestinal engraftment; however, formulation requires additional manufacturing processes distinct from fecal processing or batch culture. Here, a streamlined approach termed batch culture formulation (BCF) is developed to combine the individual batch culture and formulation processes into a single-step process. Based on a previously described polymeric film formulation that encapsulates LBPs, BCF is shown to reduce the number of required processes to formulate LBP-films without altering LBP phenotype, function, or storage profiles compared to the standard LBP-film formulation approach. Additionally, it is demonstrated that BCF facilitates scaled-fabrication from the milligram to gram scale with predictable loading, highlighting the potential that BCF has for clinical translation.
Collapse
Affiliation(s)
- Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
108
|
Henn MR, O'Brien EJ, Diao L, Feagan BG, Sandborn WJ, Huttenhower C, Wortman JR, McGovern BH, Wang-Weigand S, Lichter DI, Chafee M, Ford CB, Bernardo P, Zhao P, Simmons S, Tomlinson AD, Cook DN, Pomerantz RJ, Misra BK, Auninš JG, Trucksis M. A Phase 1b Safety Study of SER-287, a Spore-Based Microbiome Therapeutic, for Active Mild to Moderate Ulcerative Colitis. Gastroenterology 2021; 160:115-127.e30. [PMID: 32763240 PMCID: PMC7402096 DOI: 10.1053/j.gastro.2020.07.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Firmicutes bacteria produce metabolites that maintain the intestinal barrier and mucosal immunity. Firmicutes are reduced in the intestinal microbiota of patients with ulcerative colitis (UC). In a phase 1b trial of patients with UC, we evaluated the safety and efficacy of SER-287, an oral formulation of Firmicutes spores, and the effects of vancomycin preconditioning on expansion (engraftment) of SER-287 species in the colon. METHODS We conducted a double-blind trial of SER-287 in 58 adults with active mild-to-moderate UC (modified Mayo scores 4-10, endoscopic subscores ≥1). Participants received 6 days of preconditioning with oral vancomycin (125 mg, 4 times daily) or placebo followed by 8 weeks of oral SER-287 or placebo. Patients were randomly assigned (2:3:3:3) to groups that received placebo followed by either placebo or SER-287 once weekly, or vancomycin followed by SER-287 once weekly, or SER-287 once daily. Clinical end points included safety and clinical remission (modified Mayo score ≤2; endoscopic subscores 0 or 1). Microbiome end points included SER-287 engraftment (dose species detected in stool after but not before SER-287 administration). Engraftment of SER-287 and changes in microbiome composition and associated metabolites were measured by analyses of stool specimens collected at baseline, after preconditioning, and during and 4 weeks after administration of SER-287 or placebo. RESULTS Proportions of patients with adverse events did not differ significantly among groups. A higher proportion of patients in the vancomycin/SER-287 daily group (40%) achieved clinical remission at week 8 than patients in the placebo/placebo group (0%), placebo/SER-287 weekly group (13.3%), or vancomycin/SER-287 weekly group (17.7%) (P = .024 for vancomycin/SER-287 daily vs placebo/placebo). By day 7, higher numbers of SER-287 dose species were detected in stool samples from all SER-287 groups compared with the placebo group (P < .05), but this difference was not maintained beyond day 7 in the placebo/SER-287 weekly group. In the vancomycin groups, a greater number of dose species were detected in stool collected on day 10 and all subsequent time points through 4 weeks post dosing compared with the placebo group (P < .05). A higher number of SER-287 dose species were detected in stool samples on days 7 and 10 from subjects who received daily vs weekly SER-287 doses (P < .05). Changes in fecal microbiome composition and metabolites were associated with both vancomycin/SER-287 groups. CONCLUSIONS In this small phase 1b trial of limited duration, the safety and tolerability of SER-287 were similar to placebo. SER-287 after vancomycin was significantly more effective than placebo for induction of remission in patients with active mild to moderate UC. Engraftment of dose species was facilitated by vancomycin preconditioning and daily dosing of SER-287. ClinicalTrials.gov ID NCT02618187.
Collapse
Affiliation(s)
| | | | - Liyang Diao
- Seres Therapeutics, Cambridge, Massachusetts
| | | | | | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts; (5)Borland Groover Clinic, Jacksonville, FL
| | | | | | | | | | | | | | | | - Peng Zhao
- Seres Therapeutics, Cambridge, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Giovanni MY, Schneider JS, Calder T, Fauci AS. Refocusing Human Microbiota Research in Infectious and Immune-mediated Diseases: Advancing to the Next Stage. J Infect Dis 2020; 224:5-8. [PMID: 33188418 DOI: 10.1093/infdis/jiaa706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Changes in the microbiota are associated with disease susceptibility, immune system development, and responses to treatment. Refocusing research to elucidate the causal links between the human microbiota and infectious and immune-mediated diseases will be critical to harnessing its power to prevent, diagnose, and treat such diseases.
Collapse
Affiliation(s)
- Maria Y Giovanni
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Johanna S Schneider
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Calder
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
110
|
Gulati M, Singh SK, Corrie L, Chandwani L, Singh A, Kapoor B, Kumar R, Pandey NK, Kumar B, Awasthi A, Khursheed R. Fecal Microbiota Transplant: Latest Addition to Arsenal Against Recurrent Clostridium Difficile Infection. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2020; 16:PRI-EPUB-110215. [PMID: 32981509 DOI: 10.2174/1574891x15666200925092354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
An infectious disease of colon, recurrent Clostridium difficile infection (RCDI) is hitherto considered insurmountable leading to significant morbidity and mortality. Gut dysbiosis, generally resulting from frequent use of antibiotics is considered to be responsible for the etiopathogenesis of rCDI. Ironically, the conventional treatment strategies for the disease also include the use of anti-infective drugs such as metronidazole, vancomycin and fidaxomycin. As a result of the efforts to overcome the limitations of these treatment options to control recurrence of disease, Fecal Microbiota Transplant (FMT) has emerged as an effective and safe alternative. It is pertinent to add here that FMT is defined as the process of engraftment of fecal suspension from the healthy person into the gastrointestinal tract of the diseased individual aiming at the restoration of gut microbiota. FMT has proved to be quite successful in the treatment of recurrent and resistant Clostridium difficile infections (RCDI). In last three decades a lot of information has been generated on the use of FMT for RCDI. A number of clinical trials have been reported with generally very high success rates. However, very small number of patents could be found in the area indicating that there still exists lacuna in the knowledge about FMT with respect to its preparation, regulation, mode of delivery and safety. The current review attempts to dive deeper to discuss the patents available in the area while supporting the information contained therein with the non-patent literature.
Collapse
Affiliation(s)
- Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Lipika Chandwani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Apoorva Singh
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh-160012. India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Narendra K Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411. India
| |
Collapse
|
111
|
Khanna S, Pardi DS, Jones C, Shannon WD, Gonzalez C, Blount K. RBX7455, a Non-frozen, Orally Administered Investigational Live Biotherapeutic, Is Safe, Effective, and Shifts Patients' Microbiomes in a Phase 1 Study for Recurrent Clostridioides difficile Infections. Clin Infect Dis 2020; 73:e1613-e1620. [PMID: 32966574 PMCID: PMC8492147 DOI: 10.1093/cid/ciaa1430] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Recurrent Clostridioides difficile infections (rCDI) are a global public health threat. To reduce rCDI, microbiota-restoring therapies are needed, particularly standardized, easy-to-administer formulations. Methods This phase I open-label trial assessed the safety, efficacy in preventing rCDI recurrence, and intestinal microbiome effects of RBX7455, a room temperature-stable, orally administered investigational live biotherapeutic. Adult participants with 1 or more prior episodes of rCDI received: 4 RBX7455 capsules twice daily for 4 days (group 1); 4 RBX7455 capsules twice daily for 2 days (group 2); or 2 RBX7455 capsules twice daily for 2 days (group 3). For all groups, the first dose was administered in clinic, with remaining doses self-administered at home. Adverse events were monitored during and for 6 months after treatment. Treatment success was defined as rCDI prevention through 8 weeks after treatment. Participants’ microbiome composition was assessed prior to and for 6 months after treatment. Results Nine of 10 group 1 patients (90%), 8 of 10 group 2 patients (80%), and 10 of 10 group 3 patients (100%) were recurrence-free at the 8-week endpoint with durability to 6 months. Seventy-five treatment-emergent adverse events were observed in 27 participants with no serious investigational product-related events. Prior to treatment, participants’ microbiomes were dissimilar from the RBX7455 composition with decreased Bacteroidia- and Clostridia-class bacteria, whereas after treatment, responders’ microbiomes showed increased Bacteroidia and Clostridia. Conclusions Three dosing regimens of RBX7455 were safe and effective at preventing rCDI. Responders’ microbiomes converged toward the composition of RBX7455. These results support its continued clinical evaluation. Clinical Trials Registration NCT02981316.
Collapse
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Darrell S Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Courtney Jones
- Rebiotix Inc, a Ferring Company, Roseville, Minnesota, USA
| | | | | | - Ken Blount
- Rebiotix Inc, a Ferring Company, Roseville, Minnesota, USA
| |
Collapse
|
112
|
Segal JP, Mullish BH, Quraishi MN, Iqbal T, Marchesi JR, Sokol H. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap Adv Gastroenterol 2020; 13:1756284820946904. [PMID: 32952613 PMCID: PMC7475788 DOI: 10.1177/1756284820946904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023] Open
Abstract
Faecal microbiota transplantation (FMT) is currently a recommended therapy for recurrent/refractory Clostridioides difficile infection (CDI). The success of FMT for CDI has led to interest in its therapeutic potential in many other disorders. The mechanisms that underpin the efficacy of FMT are not fully understood. Importantly, FMT remains a crucial treatment in managing CDI and understanding the mechanisms that underpin its success will be critical to improve its clinical efficacy, safety and usability. Furthermore, a deeper understanding of this may allow us to expose FMT's full potential as a therapeutic tool for other disease states. This review will explore the current understanding of the mechanisms underlying the efficacy of FMT across a variety of diseases.
Collapse
Affiliation(s)
- Jonathan P. Segal
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, South Wharf Rd, London W2 1NY, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Benjamin H. Mullish
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, UK
| | - Mohammed N. Quraishi
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq Iqbal
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, CRSA, AP-HP, Sorbonne Université, Saint Antoine Hospital, Paris, France
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
113
|
Khanna S. Fecal transplant clinical trials for Clostridioides difficile: an interview with Sahil Khanna. Future Microbiol 2020; 15:709-712. [PMID: 32677453 DOI: 10.2217/fmb-2020-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This interview was conducted by Atiya Henry, Commissioning Editor of Future Microbiology. Sahil Khanna is an Associate Professor of Medicine in the Division of Gastroenterology and Hepatology at Mayo Clinic, Rochester (MN, USA). He currently directs the Comprehensive Gastroenterology Interest group, Clostridioides difficile clinic, Fecal Microbiota Transplantation program and C. difficile related clinical trials at Mayo Clinic. He completed Medical School at the All India Institute of Medical Sciences, New Delhi; followed by Post Doctoral Research at University of California, San Diego (CA, USA); residency in Internal Medicine and Fellowship in Gastroenterology and Hepatology at Mayo Clinic, before joining the Faculty. He also completed Masters in Clinical and Translational Sciences during his fellowship. His research and clinical interests include epidemiology, outcomes and emerging therapeutics for C. difficile infection, an arena in which he has had numerous publications and presentations. He has over 100 peer-reviewed publications, serves as reviewer, is on the editorial board of several journals and has won numerous awards.
Collapse
Affiliation(s)
- Sahil Khanna
- Associate Professor of Medicine, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
114
|
Wilcox MH, McGovern BH, Hecht GA. The Efficacy and Safety of Fecal Microbiota Transplant for Recurrent Clostridium difficile Infection: Current Understanding and Gap Analysis. Open Forum Infect Dis 2020; 7:ofaa114. [PMID: 32405509 PMCID: PMC7184446 DOI: 10.1093/ofid/ofaa114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
The leading risk factor for Clostridioides (Clostridium) difficile infection (CDI) is broad-spectrum antibiotics, which lead to low microbial diversity, or dysbiosis. Current therapeutic strategies for CDI are insufficient, as they do not address the key role of the microbiome in preventing C. difficile spore germination into toxin-producing vegetative bacteria, which leads to symptomatic disease. Fecal microbiota transplant (FMT) appears to reduce the risk of recurrent CDI through microbiome restoration. However, a wide range of efficacy rates have been reported, and few placebo-controlled trials have been conducted, limiting our understanding of FMT efficacy and safety. We discuss the current knowledge gaps driven by questions around the quality and consistency of clinical trial results, patient selection, diagnostic methodologies, use of suppressive antibiotic therapy, and methods for adverse event reporting. We provide specific recommendations for future trial designs of FMT to provide improved quality of the clinical evidence to better inform treatment guidelines.
Collapse
Affiliation(s)
- Mark H Wilcox
- Department of Microbiology, Old Medical School, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- University of Leeds, Leeds, UK
| | | | - Gail A Hecht
- Department of Medicine, Division of Gastroenterology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|