101
|
Star BS, van der Slikke EC, van Buiten A, Henning RH, Bouma HR. The Novel Compound SUL-138 Counteracts Endothelial Cell and Kidney Dysfunction in Sepsis by Preserving Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24076330. [PMID: 37047303 PMCID: PMC10094718 DOI: 10.3390/ijms24076330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Sepsis is defined as a dysregulated host response leading to organ dysfunction, which may ultimately result in the patient’s death. Mitochondrial dysfunction plays a key role in developing organ dysfunction in sepsis. In this study, we explored the efficacy of the novel mitochondrial protective compound, SUL-138, in sepsis models in HUVECs and mice. In LPS-challenged HUVECs, SUL-138 preserved mitochondrial membrane potential and oxygen consumption and limited mitochondrial oxidative stress, resulting in increased survival at 48 h. Further, SUL-138 dampened the LPS-induced expression of IL-1β, but not of NLRP3, and IL-18 in HUVECs. Sepsis in mice induced by cecal ligation and puncture (CLP) led to a lower mitochondrial membrane potential and increased levels of mitochondrial oxidative stress in the kidney, which SUL-138 limited. In addition, SUL-138 mitigated the CLP-induced increase in kidney dysfunction markers NGAL and urea. It dampened the rise in kidney expression of IL-6, IL-1β, and ICAM-1, but not TNF-α and E-selectin. Yet, SUL-138 limited the increase in plasma levels of IL-6 and TNF-α of CLP mice. These results demonstrate that SUL-138 supports mitochondrial function, resulting in a limitation of systemic inflammation and preservation of kidney function.
Collapse
|
102
|
Stašek J, Keller F, Kočí V, Klučka J, Klabusayová E, Wiewiorka O, Strašilová Z, Beňovská M, Škardová M, Maláska J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030568. [PMID: 36978435 PMCID: PMC10044408 DOI: 10.3390/antibiotics12030568] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Beta-lactam antibiotics remain one of the most preferred groups of antibiotics in critical care due to their excellent safety profiles and their activity against a wide spectrum of pathogens. The cornerstone of appropriate therapy with beta-lactams is to achieve an adequate plasmatic concentration of a given antibiotic, which is derived primarily from the minimum inhibitory concentration (MIC) of the specific pathogen. In a critically ill patient, the plasmatic levels of drugs could be affected by many significant changes in the patient’s physiology, such as hypoalbuminemia, endothelial dysfunction with the leakage of intravascular fluid into interstitial space and acute kidney injury. Predicting antibiotic concentration from models based on non-critically ill populations may be misleading. Therapeutic drug monitoring (TDM) has been shown to be effective in achieving adequate concentrations of many drugs, including beta-lactam antibiotics. Reliable methods, such as high-performance liquid chromatography, provide the accurate testing of a wide range of beta-lactam antibiotics. Long turnaround times remain the main drawback limiting their widespread use, although progress has been made recently in the implementation of different novel methods of antibiotic testing. However, whether the TDM approach can effectively improve clinically relevant patient outcomes must be proved in future clinical trials.
Collapse
Affiliation(s)
- Jan Stašek
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Keller
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Kočí
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Jozef Klučka
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Eva Klabusayová
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Ondřej Wiewiorka
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Zuzana Strašilová
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Miroslava Beňovská
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Markéta Škardová
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Maláska
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- 2nd Department of Anaesthesiology University Hospital Brno, 620 00 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
103
|
Cánovas-Cervera I, Nacher-Sendra E, Osca-Verdegal R, Dolz-Andrés E, Beltrán-García J, Rodríguez-Gimillo M, Ferrando-Sánchez C, Carbonell N, García-Giménez JL. The Intricate Role of Non-Coding RNAs in Sepsis-Associated Disseminated Intravascular Coagulation. Int J Mol Sci 2023; 24:ijms24032582. [PMID: 36768905 PMCID: PMC9916911 DOI: 10.3390/ijms24032582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Disseminated Intravascular Coagulation (DIC) is a type of tissue and organ dysregulation in sepsis, due mainly to the effect of the inflammation on the coagulation system. Unfortunately, the underlying molecular mechanisms that lead to this disorder are not fully understood. Moreover, current biomarkers for DIC, including biological and clinical parameters, generally provide a poor diagnosis and prognosis. In recent years, non-coding RNAs have been studied as promising and robust biomarkers for a variety of diseases. Thus, their potential in the diagnosis and prognosis of DIC should be further studied. Specifically, the relationship between the coagulation cascade and non-coding RNAs should be established. In this review, microRNAs, long non-coding RNAs, and circular RNAs are studied in relation to DIC. Specifically, the axis between these non-coding RNAs and the corresponding affected pathway has been identified, including inflammation, alteration of the coagulation cascade, and endothelial damage. The main affected pathway identified is PI3K/AKT/mTOR axis, where several ncRNAs participate in its regulation, including miR-122-5p which is sponged by circ_0005963, ciRS-122, and circPTN, and miR-19a-3p which is modulated by circ_0000096 and circ_0063425. Additionally, both miR-223 and miR-24 were found to affect the PI3K/AKT pathway and were regulated by lncGAS5 and lncKCNQ1OT1, respectively. Thus, this work provides a useful pipeline of inter-connected ncRNAs that future research on their impact on DIC can further explore.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Elena Nacher-Sendra
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| | - Enric Dolz-Andrés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - María Rodríguez-Gimillo
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ferrando-Sánchez
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Nieves Carbonell
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-864-646
| |
Collapse
|
104
|
Liu X, Chen L, Zhang C, Dong W, Liu H, Xiao Z, Wang K, Zhang Y, Tang Y, Hong G, Lu Z, Zhao G. Ginkgolic acid promotes inflammation and macrophage apoptosis via SUMOylation and NF-κB pathways in sepsis. Front Med (Lausanne) 2023; 9:1108882. [PMID: 36743669 PMCID: PMC9892062 DOI: 10.3389/fmed.2022.1108882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background Excessive inflammation and increased apoptosis of macrophages contribute to organ damage and poor prognosis of sepsis. Ginkgolic acid (GA) is a natural constituent extracted from the leaves of Ginkgo biloba, that can regulate inflammation and apoptosis. The present study aims to investigate the potential effect of GA in treating sepsis and its possible mechanisms. Materials and methods Here, a classic septic mice model and a lipopolysaccharide (LPS)-induced RAW 264.7 inflammation model were established. Cytokines in serum and culture supernatant were detected by ELISA, and the mRNA levels of them were examined by PCR. Hematoxylin and eosin (H&E) staining was performed to determine histopathological changes in liver, lung and kidney. Bacterial burden in the blood, peritoneal lavage fluids (PLFs) and organs were observed on Luria-Bertani agar medium. Flow cytometry and western blotting was used to detect apoptosis and the expression level of apoptosis related molecules, respectively. Moreover, the levels of SUMOylation were detected by western blotting. The activity of NF-κB p65 was assessed by immunofluorescence staining and western blotting. Results The result showed that GA promoted inflammatory responses, reduced bacterial clearance, aggravated organ damage, and increased mortality in septic mice. GA increased apoptosis in peritoneal macrophages (PMs) and RAW 264.7 cells. Meanwhile, GA inhibited SUMOylation and increased the nuclear translocation of NF-κB p65 as well as its phosphorylation level. Conclusion Collectively, GA promotes inflammation and macrophage apoptosis in sepsis, which may be mediated by inhibiting the SUMOylation process and increasing NF-κB p65 activity.
Collapse
Affiliation(s)
- Xinyong Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Longwang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Chen Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Wei Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hongbing Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Zhong Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Kang Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Yaolu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Yahui Tang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China,*Correspondence: Zhongqiu Lu,
| | - Guangju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China,Guangju Zhao,
| |
Collapse
|
105
|
Nešković N, Drenjančević D, Kvolik S, Škiljić S, Budrovac D, Drenjančević IH. Predictive role of selected biomarkers in differentiating gram-positive from gram-negative sepsis in surgical patients: a retrospective study. Anaesthesiol Intensive Ther 2023; 55:319-325. [PMID: 38282497 PMCID: PMC10801538 DOI: 10.5114/ait.2023.134214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/09/2023] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Patients after major surgery are at high risk of developing sepsis, which is accompanied by elevated serum levels of C-reactive protein (CRP) and procalcitonin (PCT). This study aimed to examine the differences in serum biomarker levels concerning the causative agent of sepsis in surgical patients. MATERIAL AND METHODS A retrospective study was carried out in the surgical intensive care unit (ICU) and included 81 septic patients admitted from January 2019 to May 2022, who had positive blood cultures (BC). Serum levels of PCT, CRP, white blood cells (WBC) and platelet counts were recorded on the day of the positive BC and over the following 3 days. RESULTS Patients with gram(-) sepsis had significantly higher PCT levels, and lower platelet count compared to patients with gram(+) sepsis. High PCT and low platelets levels in all measurements were a significant predictor of gram(-) isolate with the highest predictive value on the third day after BC sampling, with AUROC 0.821 (95% CI: 0.692-0.950), P = 0.001, and AUROC 0.676 (95% CI: 0.541-0.811), P = 0.02, respectively. In multivariate logistic regression, platelets the day after BC sampling and PCT on the third day made a significant contribution in distinguishing gam(+) from gram(-) BC. Age and high serum CRP levels were significant predictors of poor outcomes. CONCLUSIONS PCT and platelets may be useful biomarkers for predicting the causative agent of sepsis in surgical patients.
Collapse
Affiliation(s)
- Nenad Nešković
- Department of Anaesthesiology, Resuscitation, and Intensive Care, Osijek University Hospital, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer Osijek, Croatia
| | - Domagoj Drenjančević
- Faculty of Medicine, University Josip Juraj Strossmayer Osijek, Croatia
- Department of Clinical Microbiology and Hospital Infections, Osijek University Hospital, Croatia
| | - Slavica Kvolik
- Department of Anaesthesiology, Resuscitation, and Intensive Care, Osijek University Hospital, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer Osijek, Croatia
| | - Sonja Škiljić
- Department of Anaesthesiology, Resuscitation, and Intensive Care, Osijek University Hospital, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer Osijek, Croatia
| | - Dino Budrovac
- Department of Anaesthesiology, Resuscitation, and Intensive Care, Osijek University Hospital, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer Osijek, Croatia
| | - Ivana Haršanji Drenjančević
- Department of Anaesthesiology, Resuscitation, and Intensive Care, Osijek University Hospital, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer Osijek, Croatia
| |
Collapse
|
106
|
Histone Citrullination Mediates a Protective Role in Endothelium and Modulates Inflammation. Cells 2022; 11:cells11244070. [PMID: 36552833 PMCID: PMC9777278 DOI: 10.3390/cells11244070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
NETosis is a key host immune process against a pathogenic infection during innate immune activation, consisting of a neutrophil "explosion" and, consequently, NET formation, containing mainly DNA, histones, and other nuclear proteins. During sepsis, an exacerbated immune host response to an infection occurs, activating the innate immunity and NETosis events, which requires histone H3 citrullination. Our group compared the circulating histone levels with those citrullinated H3 levels in plasma samples of septic patients. In addition, we demonstrated that citrullinated histones were less cytotoxic for endothelial cells than histones without this post-translational modification. Citrullinated histones did not affect cell viability and did not activate oxidative stress. Nevertheless, citrullinated histones induced an inflammatory response, as well as regulatory endothelial mechanisms. Furthermore, septic patients showed elevated levels of circulating citrullinated histone H3, indicating that the histone citrullination is produced during the first stages of sepsis, probably due to the NETosis process.
Collapse
|
107
|
Potential Antioxidant Multitherapy against Complications Occurring in Sepsis. Biomedicines 2022; 10:biomedicines10123088. [PMID: 36551843 PMCID: PMC9775396 DOI: 10.3390/biomedicines10123088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Septic shock currently represents one of the main causes of mortality in critical patient units with an increase in its incidence in recent years, and it is also associated with a high burden of morbidity in surviving patients. Within the pathogenesis of sepsis, oxidative stress plays an important role. The excessive formation of reactive oxygen species (ROS) leads to mitochondrial damage and vasomotor dysfunction that characterizes those patients who fall into septic shock. Currently, despite numerous studies carried out in patients with septic shock of different causes, effective therapies have not yet been developed to reduce the morbidity and mortality associated with this pathology. Despite the contribution of ROS in the pathophysiology of sepsis and septic shock, most studies performed in humans, with antioxidant monotherapies, have not resulted in promising data. Nevertheless, some interventions with compounds such as ascorbate, N-acetylcysteine, and selenium would have a positive effect in reducing the morbidity and mortality associated with this pathology. However, more studies are required to demonstrate the efficacy of these therapies. Taking into account the multifactorial features of the pathophysiology of sepsis, we put forward the hypothesis that a supplementation based on the association of more than one antioxidant compound should result in a synergistic or additive effect, thus improving the beneficial effects of each of them alone, potentially serving as a pharmacological adjunct resource to standard therapy to reduce sepsis complications. Therefore, in this review, it is proposed that the use of combined antioxidant therapies could lead to a better clinical outcome of patients with sepsis or septic shock, given the relevance of oxidative stress in the pathogenesis of this multi-organ dysfunction.
Collapse
|
108
|
Spirina LV, Masunov VN, Dyakov DA, Akbasheva OE, Kebekbayeva AY, Shuvalov IY, Masunova NV, Kovaleva IV, Dagbaeva Y. Sars-Cov2 Induced Biochemical Mechanisms in Liver Damage and Intestinal Lesions. Indian J Clin Biochem 2022; 38:1-10. [PMID: 36407686 PMCID: PMC9652586 DOI: 10.1007/s12291-022-01089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022]
Abstract
Multiple pathogenic mechanisms are found in SARS-CoV2 systemic inflammation. Oxidative stress, altered proteolysis, hypercoagulation, and metabolic disorders are significant in virus-induced lesions. The study aimed to investigate the biochemical mechanism of virus-induced disorders and determine the biochemical features in SARS-CoV2-associated liver damage and intestine lesions. A retrospective case series of ninety-two patients diagnosed with COVID-19 pnemonia. The ACE, α1-proteinase inhibitor, trypsin-like proteinase, and elastase activity were measured. Nitrites level was detected in reaction with Griess reagent. The ELISA kit measured Troponin, C-peptide, leptin, adiponectin, PAR4, and neuropilin level. It was obtained an increase in ACE activity and nitrites ions content in SARS-CoV2 associated patients. The hyperglycemia and an increase in adipose tissue-derived hormones guided the virus-induced metabolic disorders. Proteolysis activation was revealed in SARS-CoV2 pneumonia patients. The found molecular event was accompanied by hyperglycemia induction. Multiorgan lesions manifest in in cardiac failure, which was detected in patients with ARDS. Moreover, high arterial blood pressure in patients with COVID-19 was associated with the hyperglycemia and increased ACE activity and NO ions level. Liver damage was specific for COVID-19-associated patients with severe ARDS and heart failure. Proteolysis overactivation resulting in vasoactive substances imbalance was detected in patients with the intestinal lesions. The obtained data shows the the neuropilin-dependent axis in damage prevalence in the intestine. Metabolic disorders resulting in the growth of adipose-derived tissue hormones, nitrites, and neuropilin levels was triggered by prolonged inflammation. So, the impaired metabolism and SARS-CoV2 associated hyperglycemia influence on SARS-CoV2 multiple mechanisms. Gastrointestinal manifestations in SARS-CoV2 infection was found to be related to various biochemical and molecular tools. ACE2 receptors axis is prevalent for liver damage, but NRP-1 protein (neuropilin), NO derivatives, and adipose tissue-derived hormones are essential for intestinal lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01089-x.
Collapse
Affiliation(s)
- Liudmila V. Spirina
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | | | | | | | | | | | - Irina V. Kovaleva
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | |
Collapse
|
109
|
Neutrophils: As a Key Bridge between Inflammation and Thrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1151910. [PMID: 36408343 PMCID: PMC9668459 DOI: 10.1155/2022/1151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
Immunothrombosis is a mechanism of defense of the organism against pathogenic microorganisms that increases their recognition, limitation, and clearance and is part of the innate immune defense. Physiological immunothrombosis is beneficial to the body against the invasion of pathogenic microorganisms, but when immunothrombosis is out of control, it is easy to cause thrombotic diseases, thus, causing unpredictable consequences to the body. Neutrophils play a pivotal role in this process. Understanding the mechanism of neutrophils in immune thrombosis and out-of-control is particularly important for the treatment of related thrombotic diseases. In this review, we studied the role of neutrophils in immune thrombosis and each link out of control (including endothelial cell dysfunction; activation of platelets; activation of coagulation factor; inhibition of the anticoagulation system; and inhibition of the fibrinolysis system).
Collapse
|
110
|
Madokoro Y, Kamikokuryo C, Niiyama S, Ito T, Hara S, Ichinose H, Kakihana Y. Early ascorbic acid administration prevents vascular endothelial cell damage in septic mice. Front Pharmacol 2022; 13:929448. [PMID: 36278212 PMCID: PMC9582851 DOI: 10.3389/fphar.2022.929448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidation of BH4, a cofactor of nitric oxide synthase (NOS), produces reactive oxygen species (ROS) through uncoupling of NOS and affects vascular endothelial dysfunction. Ascorbic acid (AsA) inhibits the oxidation of BH4 and reduces ROS. However, the kinetic changes of BH4 in sepsis and its effect on the kinetic changes in AsA administration therapy, as well as the appropriate timing of AsA administration for AsA therapy to be effective, are unclear. Mice with sepsis, induced by cecal ligation and puncture (CLP), were examined for the effect of AsA administration (200 mg/kg) on vascular endothelial cell dysfunction at two administration timings: early group (AsA administered immediately after CLP) and late group (AsA administered 12 h after CLP). Survival rates were compared between the early and late administration groups, and vascular endothelial cell damage, indicated by the dihydrobiopterin/tetrahydrobiopterin ratio, serum syndecan-1, and endothelial nitric oxide synthase, as well as liver damage, were examined. The early group showed significantly improved survival compared to the non-treatment group (p < 0.05), while the late group showed no improved survival compared to the non-treatment group. Compared to the non-treated group, the early AsA group showed less oxidation of BH4 in sepsis. Syndecan1, a marker of vascular endothelial cell damage, was less elevated and organ damage was reduced in the early AsA-treated group. In septic mice, early AsA administration immediately after CLP may protect vascular endothelial cells by inhibiting BH4 oxidation, thereby reducing organ dysfunction and improving survival.
Collapse
Affiliation(s)
- Yutaro Madokoro
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chinatsu Kamikokuryo
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuhei Niiyama
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Yasuyuki Kakihana,
| |
Collapse
|
111
|
Destro TRDS, Biazon TMPDC, Pott-Junior H, Caruso FCR, Andaku DK, Garcia NM, Bonjorno-Junior JC, Borghi-Silva A, Kawakami DMDO, Castello-Simões V, Mendes RG. Early passive mobilization increases vascular reactivity response in critical patients with sepsis: a quasi-experimental study. Rev Bras Ter Intensiva 2022; 34:461-468. [PMID: 36888826 PMCID: PMC9987000 DOI: 10.5935/0103-507x.20220132-pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To investigate the influence of a passive mobilization session on endothelial function in patients with sepsis. METHODS This was a quasi-experimental double-blind and single-arm study with a pre- and postintervention design. Twenty-five patients with a diagnosis of sepsis who were hospitalized in the intensive care unit were included. Endothelial function was assessed at baseline (preintervention) and immediately postintervention by brachial artery ultrasonography. Flow mediated dilatation, peak blood flow velocity and peak shear rate were obtained. Passive mobilization consisted of bilateral mobilization (ankles, knees, hips, wrists, elbows and shoulders), with three sets of ten repetitions each, totaling 15 minutes. RESULTS After mobilization, we found increased vascular reactivity function compared to preintervention: absolute flow-mediated dilatation (0.57mm ± 0.22 versus 0.17mm ± 0.31; p < 0.001) and relative flow-mediated dilatation (17.1% ± 8.25 versus 5.08% ± 9.16; p < 0.001). Reactive hyperemia peak flow (71.8cm/s ± 29.3 versus 95.3cm/s ± 32.2; p < 0.001) and shear rate (211s ± 113 versus 288s ± 144; p < 0.001) were also increased. CONCLUSION A passive mobilization session increases endothelial function in critical patients with sepsis. Future studies should investigate whether a mobilization program can be applied as a beneficial intervention for clinical improvement of endothelial function in patients hospitalized due to sepsis.
Collapse
Affiliation(s)
| | | | - Henrique Pott-Junior
- Department of Medicine, Universidade Federal de São Carlos - São
Carlos (SP), Brazil
| | | | | | - Naiara Molina Garcia
- Department of Physical Therapy, Universidade Federal de São Carlos
- São Carlos (SP), Brazil
| | | | - Audrey Borghi-Silva
- Department of Physical Therapy, Universidade Federal de São Carlos
- São Carlos (SP), Brazil
| | | | - Viviane Castello-Simões
- Department of Physical Therapy, Universidade Federal de São Carlos
- São Carlos (SP), Brazil
| | - Renata Gonçalves Mendes
- Department of Physical Therapy, Universidade Federal de São Carlos
- São Carlos (SP), Brazil
| |
Collapse
|
112
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
113
|
Huang H, Zhu J, Gu L, Hu J, Feng X, Huang W, Wang S, Yang Y, Cui P, Lin SH, Suen A, Shimada BK, Williams B, Kane MA, Ke Y, Zhang CO, Birukova AA, Birukov KG, Chao W, Zou L. TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular miR-146a. Am J Respir Cell Mol Biol 2022; 67:375-388. [PMID: 35679261 PMCID: PMC9447138 DOI: 10.1165/rcmb.2021-0551oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
TLR7 (Toll-like receptor 7), the sensor for single-stranded RNA, contributes to systemic inflammation and mortality in murine polymicrobial sepsis. Recent studies show that extracellular miR-146a-5p serves as a TLR7 ligand and plays an important role in regulating host innate immunity. However, the role of miR-146a-5p and TLR7 signaling in pulmonary inflammation, endothelial activation, and sepsis-associated acute respiratory distress syndrome remains unclear. Here, we show that intratracheal administration of exogenous miR-146a-5p in mice evokes lung inflammation, activates endothelium, and increases endothelial permeability via TLR7-dependent mechanisms. TLR7 deficiency attenuates pulmonary barrier dysfunction and reduces lung inflammatory response in a murine sepsis model. Moreover, the impact of miR-146a-5p-TLR7 signaling on endothelial activation appears to be a secondary effect because TLR7 is undetectable in the human pulmonary artery and microvascular endothelial cells (ECs), which show no response to direct miR-146a-5p treatment in vitro. Both conditioned media of miR-146a-5p-treated macrophages (Mϕ) and septic sera of wild-type mice induce a marked EC barrier disruption in vitro, whereas Mϕ conditioned media or septic sera of TLR7-/- mice do not exhibit such effect. Cytokine array and pathway enrichment analysis of the Mϕ conditioned media and septic sera identify TNFα (tumor necrosis factor α) as the main downstream effector of miR-146a-5p-TLR7 signaling responsible for the EC barrier dysfunction, which is further supported by neutralizing anti-TNFα antibody intervention. Together, these data demonstrate that TLR7 activation elicits pulmonary inflammation and endothelial barrier disruption by sensing extracellular miR-146a-5p and contributes to sepsis-associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Huang Huang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Jing Zhu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Lili Gu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Jiang Hu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Xiujing Feng
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Sheng Wang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Yang Yang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Ping Cui
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Shao-Hsuan Lin
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Andrew Suen
- Center for Shock, Trauma, and Anesthesiology Research and
| | | | | | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Yunbo Ke
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Chen-ou Zhang
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Konstantin G. Birukov
- Center for Shock, Trauma, and Anesthesiology Research and
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Wei Chao
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Lin Zou
- Center for Shock, Trauma, and Anesthesiology Research and
| |
Collapse
|
114
|
Tomášková V, Mýtniková A, Hortová Kohoutková M, Mrkva O, Skotáková M, Šitina M, Helánová K, Frič J, Pařenica J, Šrámek V, Helán M. Prognostic value of soluble endoglin in patients with septic shock and severe COVID-19. Front Med (Lausanne) 2022; 9:972040. [PMID: 36117974 PMCID: PMC9470754 DOI: 10.3389/fmed.2022.972040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated response to infection. It represents a leading cause of mortality in ICU patients worldwide. Although sepsis is in the point of interest of research for several decades, its clinical management and patient survival are improving slowly. Monitoring of the biomarkers and their combinations could help in early diagnosis, estimation of prognosis and patient's stratification and response to the treatment. Circulating soluble endoglin (sEng) is the cleaved extracellular part of transmembrane glycoprotein endoglin. As a biomarker, sEng has been tested in several pathologic conditions where its elevation was associated with endothelial dysfunction. In this study we have tested the ability of sEng to predict mortality and its correlation with other clinical characteristics in the cohort of septic shock patients (n = 37) and patients with severe COVID-19 (n = 40). In patients with COVID-19 sEng did not predict mortality or correlate with markers of organ dysfunction. In contrast, in septic shock the level of sEng was significantly higher in patients with early mortality (p = 0.019; AUC = 0.801). Moreover, sEng levels correlated with signs of circulatory failure (required dose of noradrenalin and lactate levels; p = 0.002 and 0.016, respectively). The predominant clinical problem in patients with COVID-19 was ARDS, and although they often showed signs of other organ dysfunction, circulatory failure was exceptional. This potentially explains the difference between sEng levels in COVID-19 and septic shock. In conclusion, we have confirmed that sEng may reflect the extent of the circulatory failure in septic shock patients and thus could be potentially used for the early identification of patients with the highest degree of endothelial dysfunction who would benefit from endothelium-targeted individualized therapy.
Collapse
Affiliation(s)
- Veronika Tomášková
- Department of Anesthesiology and Intensive Care, St. Anne's University Hospital, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alexandra Mýtniková
- Faculty of Medicine, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | | | - Ondřej Mrkva
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Monika Skotáková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Michal Šitina
- Department of Anesthesiology and Intensive Care, St. Anne's University Hospital, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Kateřina Helánová
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Cardiology, University Hospital Brno, Brno, Czechia
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
- Department of Modern Immunotherapy Research, Institute of Hematology and Blood Transfusion, Prague, Czechia
| | - Jiří Pařenica
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Cardiology, University Hospital Brno, Brno, Czechia
| | - Vladimír Šrámek
- Department of Anesthesiology and Intensive Care, St. Anne's University Hospital, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Helán
- Department of Anesthesiology and Intensive Care, St. Anne's University Hospital, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
- *Correspondence: Martin Helán
| |
Collapse
|
115
|
Yu M, Hong K, Adili R, Mei L, Liu L, He H, Guo Y, Chen YE, Holinstat M, Schwendeman A. Development of activated endothelial targeted high-density lipoprotein nanoparticles. Front Pharmacol 2022; 13:902269. [PMID: 36105190 PMCID: PMC9464908 DOI: 10.3389/fphar.2022.902269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
Endothelial inflammation is an important pathophysiological driving force in various acute and chronic inflammatory diseases. High-density lipoproteins (HDLs) play critical roles in regulating endothelial functions and resolving endothelial inflammation. In the present study, we developed synthetic HDLs (sHDLs) which actively target inflamed endothelium through conjugating vascular cell adhesion protein 1 (VCAM-1) specific VHPK peptide. The active targeting of VHPK-sHDLs was confirmed in vitro on TNF-α activated endothelial cells. VHPK-sHDLs presented potent anti-inflammatory efficacies in vitro through the reduction of proinflammatory cytokine production and inhibition of leukocyte adhesion to activated endothelium. VHPK-sHDLs showed increased binding on inflamed vessels and alleviated LPS-induced lung inflammation in vivo. The activated endothelium-targeted sHDLs may be further optimized to resolve endothelial inflammation in various inflammatory diseases.
Collapse
Affiliation(s)
- Minzhi Yu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kristen Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Lisha Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongliang He
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
116
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
117
|
Molecular Framework of Mouse Endothelial Cell Dysfunction during Inflammation: A Proteomics Approach. Int J Mol Sci 2022; 23:ijms23158399. [PMID: 35955534 PMCID: PMC9369400 DOI: 10.3390/ijms23158399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
A key aspect of cytokine-induced changes as observed in sepsis is the dysregulated activation of endothelial cells (ECs), initiating a cascade of inflammatory signaling leading to leukocyte adhesion/migration and organ damage. The therapeutic targeting of ECs has been hampered by concerns regarding organ-specific EC heterogeneity and their response to inflammation. Using in vitro and in silico analysis, we present a comprehensive analysis of the proteomic changes in mouse lung, liver and kidney ECs following exposure to a clinically relevant cocktail of proinflammatory cytokines. Mouse lung, liver and kidney ECs were incubated with TNF-α/IL-1β/IFN-γ for 4 or 24 h to model the cytokine-induced changes. Quantitative label-free global proteomics and bioinformatic analysis performed on the ECs provide a molecular framework for the EC response to inflammatory stimuli over time and organ-specific differences. Gene Ontology and PANTHER analysis suggest why some organs are more susceptible to inflammation early on, and show that, as inflammation progresses, some protein expression patterns become more uniform while additional organ-specific proteins are expressed. These findings provide an in-depth understanding of the molecular changes involved in the EC response to inflammation and can support the development of drugs targeting ECs within different organs. Data are available via ProteomeXchange (identifier PXD031804).
Collapse
|
118
|
Li Y, Zhang H, Chen C, Qiao K, Li Z, Han J, Han X, Li K, Lai K, Liu N, Li A, Xiao N, Zhang Y, Zhao X, Gao W, Zhang Y, Liu H, Sun T. Biomimetic Immunosuppressive Exosomes that Inhibit Cytokine Storms Contribute to the Alleviation of Sepsis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108476. [PMID: 35267211 DOI: 10.1002/adma.202108476] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Sepsis is a disease characterized by multiple organ failure caused by immune hyperactivation and cytokine storms. Studies have shown that the incidence of sepsis in melanoma patients is substantially lower compared to the general population. It is also observed that experimental tumor-bearing animals have high survival rates after sepsis induction, suggesting that tumors may suppress sepsis-associated immune overactivation, thereby alleviating sepsis. Based on the above-described findings, this work assesses whether tumor cells play an antisepsis role in mice through the secretion of exosomes. Analysis of exosome activity reveals that the induced exosomes (iExo) secreted by tumor cells following lipopolysaccharide (LPS) treatment improve sepsis to a greater extent than normal secretory exosomes. Further analysis reveals that iExo exert their protective effects mainly through seven key miRNAs. In vitro bionic simulation of exosomes is carried out using exosome mimics generated by loading the aforementioned microRNAs into hyaluronic acid-polyethylenimine nanoparticles. Exosome mimics at specific miRNA ratios alleviate sepsis in mice and cynomolgus monkeys, indicating that biomimetic simulation of tumor-suppressive exosomes may represent a promising therapeutic method for the treatment of sepsis and cytokine-storm-related conditions.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhiyang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Kun Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Keguan Lai
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xiangshuai Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Yang Zhang
- Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin, 300142, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| |
Collapse
|
119
|
Roy TK, Secomb TW. Functional implications of microvascular heterogeneity for oxygen uptake and utilization. Physiol Rep 2022; 10:e15303. [PMID: 35581743 PMCID: PMC9114652 DOI: 10.14814/phy2.15303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023] Open
Abstract
In the vascular system, an extensive network structure provides convective and diffusive transport of oxygen to tissue. In the microcirculation, parameters describing network structure, blood flow, and oxygen transport are highly heterogeneous. This heterogeneity can strongly affect oxygen supply and organ function, including reduced oxygen uptake in the lung and decreased oxygen delivery to tissue. The causes of heterogeneity can be classified as extrinsic or intrinsic. Extrinsic heterogeneity refers to variations in oxygen demand in the systemic circulation or oxygen supply in the lungs. Intrinsic heterogeneity refers to structural heterogeneity due to stochastic growth of blood vessels and variability in flow pathways due to geometric constraints, and resulting variations in blood flow and hematocrit. Mechanisms have evolved to compensate for heterogeneity and thereby improve oxygen uptake in the lung and delivery to tissue. These mechanisms, which involve long-term structural adaptation and short-term flow regulation, depend on upstream responses conducted along vessel walls, and work to redistribute flow and maintain blood and tissue oxygenation. Mathematically, the variance of a functional quantity such as oxygen delivery that depends on two or more heterogeneous variables can be reduced if one of the underlying variables is controlled by an appropriate compensatory mechanism. Ineffective regulatory mechanisms can result in poor oxygen delivery even in the presence of adequate overall tissue perfusion. Restoration of endothelial function, and specifically conducted responses, should be considered when addressing tissue hypoxemia and organ failure in clinical settings.
Collapse
Affiliation(s)
- Tuhin K. Roy
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
120
|
Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, Macrì R, Nucera S, Bosco F, Oppedisano F, Ruga S, Coppoletta AR, Guarnieri L, Cardamone A, Bava I, Musolino V, Paone S, Palma E, Mollace V. The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans. Int J Mol Sci 2022; 23:ijms23073698. [PMID: 35409057 PMCID: PMC8999124 DOI: 10.3390/ijms23073698] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
- Correspondence: (J.M.); (M.G.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Correspondence: (J.M.); (M.G.)
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Irene Bava
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
| | - Sara Paone
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
121
|
Khamissi FZ, Ning L, Kefaloyianni E, Dun H, Arthanarisami A, Keller A, Atkinson JJ, Li W, Wong B, Dietmann S, Lavine K, Kreisel D, Herrlich A. Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure. SCIENCE ADVANCES 2022; 8:eabm5900. [PMID: 35213222 PMCID: PMC8880785 DOI: 10.1126/sciadv.abm5900] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 05/08/2023]
Abstract
Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemic wt kidneys caused AKI-ALI, but not of ischemic OPN-global knockout kidneys, identifying kidney-released OPN as necessary interorgan signal to cause AKI-ALI. We show that OPN serum levels are elevated in patients with AKI and correlate with kidney injury. Our results demonstrate feasibility of using ligand-receptor analysis across organs to identify interorgan cross-talk mediators and may have important therapeutic implications in human AKI-ALI and multiorgan failure.
Collapse
Affiliation(s)
| | | | | | - Hao Dun
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Amy Keller
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey J. Atkinson
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Li
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Brian Wong
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Kory Lavine
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel Kreisel
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
122
|
Abstract
ABSTRACT Fluid resuscitation is an essential intervention in critically ill patients, and its ultimate goal is to restore tissue perfusion. Critical illnesses are often accompanied by glycocalyx degradation caused by inflammatory reactions, hypoperfusion, shock, and so forth, leading to disturbed microcirculatory perfusion and organ dysfunction. Therefore, maintaining or even restoring the glycocalyx integrity may be of high priority in the therapeutic strategy. Like drugs, however, different resuscitation fluids may have beneficial or harmful effects on the integrity of the glycocalyx. The purpose of this article is to review the effects of different resuscitation fluids on the glycocalyx. Many animal studies have shown that normal saline might be associated with glycocalyx degradation, but clinical studies have not confirmed this finding. Hydroxyethyl starch (HES), rather than other synthetic colloids, may restore the glycocalyx. However, the use of HES also leads to serious adverse events such as acute kidney injury and bleeding tendencies. Some studies have suggested that albumin may restore the glycocalyx, whereas others have suggested that balanced crystalloids might aggravate glycocalyx degradation. Notably, most studies did not correct the effects of the infusion rate or fluid volume; therefore, the results of using balanced crystalloids remain unclear. Moreover, mainly animal studies have suggested that plasma may protect and restore glycocalyx integrity, and this still requires confirmation by high-quality clinical studies.
Collapse
|
123
|
Yen CC, Wang CK, Chaou CH, Chen SY, Lin JP, Ng CJ. Anticoagulant Therapy Is Associated With Decreased Long-Term Mortality in Splenic Infarction Patients: A Multicenter Study. Front Med (Lausanne) 2021; 8:778198. [PMID: 34912831 PMCID: PMC8666632 DOI: 10.3389/fmed.2021.778198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Patients with splenic infarction (SI) are associated with a prothrombotic state and are vulnerable to subsequent thromboembolic complications. However, due to its rarity, there is no established treatment modality in this population. We aimed to examine the effect of anticoagulant therapy in SI patients. Methods: We performed a multicenter retrospective cohort study of 86 SI patients. Patients were categorized as anticoagulant users and anticoagulant non-users. The associations between anticoagulant therapy, all-cause mortality, thromboembolic events and bleeding events were evaluated. Results: Forty-five patients (52.3%) received anticoagulant therapy during the follow-up periods. The all-cause mortality rate was 6.86 per 100 patient-years. Anticoagulant therapy was associated with 94% improved survival (HR = 0.06; Cl 0.007–0.48; p = 0.008), while the risk factors for all-cause mortality were prior stroke (HR = 13.15; Cl 2.39–72.27; p = 0.003) and liver cirrhosis (HR = 8.71; Cl 1.29–59.01; p = 0.027). Patients with anticoagulant therapy had a higher event-free survival curve for thromboembolic complications (p = 0.03) but did not achieve a significant difference after adjustment using the Cox regression model as a time-dependent covariate (HR = 0.57; Cl 0.13–2.45; p = 0.446). There was no significant difference in the risk of bleeding events between the groups (p = 0.728). Conclusions: Anticoagulant therapy in patients with SI was associated with better survival and was not related to an increased bleeding risk.
Collapse
Affiliation(s)
- Chieh-Ching Yen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chih-Kai Wang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Hsien Chaou
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Medical Education Research Center, Taoyuan, Taiwan
| | - Shou-Yen Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Medical Education Research Center, Taoyuan, Taiwan
| | - Jhe-Ping Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chip-Jin Ng
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
124
|
Merdji H, Schini-Kerth V, Meziani F, Toti F. Long-term cardiovascular complications following sepsis: is senescence the missing link? Ann Intensive Care 2021; 11:166. [PMID: 34851467 PMCID: PMC8636544 DOI: 10.1186/s13613-021-00937-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Among the long-term consequences of sepsis (also termed “post-sepsis syndrome”) the increased risk of unexplained cardiovascular complications, such as myocardial infarction, acute heart failure or stroke, is one of the emerging specific health concerns. The vascular accelerated ageing also named premature senescence is a potential mechanism contributing to atherothrombosis, consequently leading to cardiovascular events. Indeed, vascular senescence-associated major adverse cardiovascular events (MACE) are a potential feature in sepsis survivors and of the elderly at cardiovascular risk. In these patients, accelerated vascular senescence could be one of the potential facilitating mechanisms. This review will focus on premature senescence in sepsis regardless of age. It will highlight and refine the potential relationships between sepsis and accelerated vascular senescence. In particular, key cellular mechanisms contributing to cardiovascular events in post-sepsis syndrome will be highlighted, and potential therapeutic strategies to reduce the cardiovascular risk will be further discussed. With improved management of patients, sepsis survivors are increasing each year. Early cardiovascular complications, of yet undeciphered mechanisms, are an emerging health issue in post-sepsis syndrome. Premature senescence of endothelium and vascular tissue is proven an accelerated process of atherogenesis in young septic rats. An increasing body of clinical evidence point at endothelial senescence in the initiation and development of atherosclerosis. Prevention of premature senescence by senotherapy and cardiological follow-up could improve long-term septic patients’ outcomes.
Collapse
Affiliation(s)
- Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Department of Intensive Care (Service de Médecine Intensive-Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France. .,Department of Intensive Care (Service de Médecine Intensive-Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France.
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
125
|
Vincent JL, Ince C, Pickkers P. Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets 2021; 25:733-748. [PMID: 34602020 DOI: 10.1080/14728222.2021.1988928] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Endothelial cells maintain vascular integrity, tone, and patency and have important roles in hemostasis and inflammatory responses. Although some degree of endothelial dysfunction with increased vascular permeability may be necessary to control local infection, excessive dysfunction plays a central role in the pathogenesis of sepsis-related organ dysfunction and failure as it results in dysregulated inflammation, vascular leakage, and abnormal coagulation. The vascular endothelium has thus been proposed as a potential target for therapeutic intervention in patients with sepsis. AREAS COVERED Different mechanisms underlying sepsis-related dysfunction of the vascular endothelium are discussed, including glycocalyx shedding, nitrosative stress, and coagulation factors. Potential therapeutic implications of each mechanism are mentioned. EXPERT OPINION Multiple targets to protect or restore endothelial function have been suggested, but endothelium-driven treatments remain a future potential at present. As some endothelial dysfunction and permeability may be necessary to remove infection and repair damaged tissue, targeting the endothelium may be a particular challenge. Ideally, therapies should be guided by biomarkers related to that specific pathway to ensure they are given only to patients most likely to respond. This enrichment based on biological plausibility and theragnostics will increase the likelihood of a beneficial response in individual patients and enable more personalized treatment.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Dept of Intensive Care, Erasme Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Pickkers
- Dept of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
126
|
Merdji H, Kassem M, Chomel L, Clere-Jehl R, Helms J, Kurihara K, Chaker AB, Auger C, Schini-Kerth V, Toti F, Meziani F. Septic shock as a trigger of arterial stress-induced premature senescence: A new pathway involved in the post sepsis long-term cardiovascular complications. Vascul Pharmacol 2021; 141:106922. [PMID: 34592427 DOI: 10.1016/j.vph.2021.106922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major adverse cardiovascular events among sepsis survivors is an emerging health issue. Because endothelial senescence leads to vascular dysfunction and atherothrombosis, sepsis could be associated to vascular stress-induced premature senescence and thus with long-term cardiovascular events. MATERIALS & METHODS Adult Wistar male rats were submitted to cecal ligation and puncture, or a SHAM operation. Markers of inflammation, oxidative stress and endothelial senescence were assessed at 3, 7 and 90 days (D), and vascular reactivity was assessed in conductance and resistance vessels at D90. Expression of proteins involved in senescence and inflammation was assessed by Western blot analysis and confocal microscopy, oxidative stress by dihydroethidium probing. RESULTS Pro-inflammatory endothelial ICAM-1 and VCAM-1 were up-regulated by three-fold in CLP vs. SHAM at D7 and remained elevated at D90. Oxidative stress followed a similar pattern but was detected in the whole vascular wall. Sepsis accelerated premature senescence in aorta vascular tissue as shown by the significant up-regulation of p53 and down-stream p21 and p16 senescent markers at D7, values peaking at D90 whereas the absence of significant variation in activated caspase-3 confirmed p53 as a prime inducer of senescence. In addition, p53 was mainly expressed in the endothelium. Sepsis-induced long-term vascular dysfunction was confirmed in aorta and main mesenteric artery, with a major alteration of the endothelial-dependent nitric oxide pathway. CONCLUSIONS Septic shock-induced long-term vascular dysfunction is associated with endothelial and vascular senescence. Our model could prove useful for investigating senotherapies aiming at reducing long-term cardiovascular consequences of septic shock.
Collapse
Affiliation(s)
- Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Louise Chomel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Raphaël Clere-Jehl
- Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Julie Helms
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Kei Kurihara
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Aichi Medical University, Department of Transplantation and Regenerative Medicine, Fujita Health University, School of Medicine, Aichi, Japan
| | - Ahmed Bey Chaker
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France; Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France.
| |
Collapse
|
127
|
Moriyama K, Nishida O. Targeting Cytokines, Pathogen-Associated Molecular Patterns, and Damage-Associated Molecular Patterns in Sepsis via Blood Purification. Int J Mol Sci 2021; 22:8882. [PMID: 34445610 PMCID: PMC8396222 DOI: 10.3390/ijms22168882] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Sepsis is characterized by a dysregulated immune response to infections that causes life-threatening organ dysfunction and even death. When infections occur, bacterial cell wall components (endotoxin or lipopolysaccharide), known as pathogen-associated molecular patterns, bind to pattern recognition receptors, such as toll-like receptors, to initiate an inflammatory response for pathogen elimination. However, strong activation of the immune system leads to cellular dysfunction and ultimately organ failure. Damage-associated molecular patterns (DAMPs), which are released by injured host cells, are well-recognized triggers that result in the elevation of inflammatory cytokine levels. A cytokine storm is thus amplified and sustained in this vicious cycle. Interestingly, during sepsis, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. Thus, the concept of blood purification has evolved to include inflammatory cells and mediators. In this review, we summarize recent advances in knowledge regarding the role of lipopolysaccharides, cytokines, DAMPs, and neutrophils in the pathogenesis of sepsis. Additionally, we discuss the potential of blood purification, especially the adsorption technology, for removing immune cells and molecular mediators, thereby serving as a therapeutic strategy against sepsis. Finally, we describe the concept of our immune-modulating blood purification system.
Collapse
Affiliation(s)
- Kazuhiro Moriyama
- Laboratory for Immune Response and Regulatory Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan;
| |
Collapse
|
128
|
Kaur S, Hussain S, Kolhe K, Kumar G, Tripathi DM, Tomar A, Kale P, Narayanan A, Bihari C, Bajpai M, Maiwall R, Gupta E, Sarin SK. Elevated plasma ICAM1 levels predict 28-day mortality in cirrhotic patients with COVID-19 or bacterial sepsis. JHEP Rep 2021; 3:100303. [PMID: 33997748 PMCID: PMC8106200 DOI: 10.1016/j.jhepr.2021.100303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Endothelial injury and dysfunction play a detrimental role in the pathogenesis of infections. Endothelium-related molecules have been reported as potential diagnostic and/or prognostic biomarkers of infection. The prognostic value of these biomarkers in patients with cirrhosis and infections remains elusive. METHODS In this study, we investigated the performance of key soluble endothelial injury biomarkers, including intercellular adhesion molecule 1 (ICAM1), von Willebrand factor (vWF), vascular endothelial growth factor receptor 1 (VEGFR1), and angiopoietin 1 and 2 (Ang1, 2) as mortality predictors in patients with cirrhosis and severe COVID-19 or bacterial sepsis. RESULTS A total of 66 hospitalized patients (admitted to the COVID-19 ward or liver intensive care unit [ICU]) were included. Twenty-two patients had COVID-19 alone, while 20 patients had cirrhosis plus COVID-19. Twenty-four patients had cirrhosis plus bacterial sepsis. Among patients with cirrhosis, the most common aetiology of liver disease was alcohol. ICAM1 was increased (p = 0.003) while VEGFR1 (p <0.0001) and Ang1 (p <0.0001) were reduced in patients with COVID-19 and cirrhosis, compared to patients with COVID-19 alone. Endothelial biomarker levels did not differ significantly between patients with cirrhosis and severe COVID-19 or bacterial sepsis in the ICU. In these patients, ICAM1 levels significantly and independently predicted mortality (hazard ratio 3.24; 95% CI 1.19-8.86) along with model for end-stage liver disease (MELD) score, renal and coagulation failures. The AUC for ICAM1 was 0.74, MELD was 0.60 and combined ICAM1 and MELD was 0.70. ICAM1 also positively correlated with the composite organ failure scores recorded 3-5 days post ICU admission (CLIF-OF and SOFA) in this subgroup of patients. CONCLUSION The study indicates that in patients with cirrhosis, elevated plasma ICAM1 serves as an independent predictor of severe COVID-19- or sepsis-associated 28-day mortality. LAY SUMMARY Bacterial sepsis and COVID-19 lead to increased mortality in patients with cirrhosis. In this study, we demonstrate that high plasma levels of ICAM1, an endothelial injury biomarker, is one of the important factors predicting mortality in critically ill cirrhotic patients with severe COVID-19 or bacterial sepsis.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- AST, aspartate aminotransferase
- Ang1, angiopoietin 1
- Ang2, angiopoietin 2
- Biomarkers
- CCI, Charlson comorbidity index
- COVID-19
- Endothelial Injury
- HR, hazard ratio
- ICAM1, intercellular adhesion molecule 1
- ICU, intensive care unit
- LDH, lactate dehydrogenase
- Liver Cirrhosis
- MELD, model for end-stage liver disease
- NLR, neutrophil to lymphocyte ratio
- PCT, procalcitonin
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SOFA, sequential organ failure assessment
- Sepsis
- VEGFR1, vascular endothelial growth factor receptor 1
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of liver and biliary Sciences, New Delhi, India
| | - Sadam Hussain
- Department of Molecular and Cellular Medicine, Institute of liver and biliary Sciences, New Delhi, India
| | - Kailash Kolhe
- Department of Molecular and Cellular Medicine, Institute of liver and biliary Sciences, New Delhi, India
- Department of Gastroenterology, Lokmanya Tilak Municipal Medical College and General Hospital, Sion, Mumbai, India
| | - Guresh Kumar
- Department of Molecular and Cellular Medicine, Institute of liver and biliary Sciences, New Delhi, India
- Department of Research and Biostatistics, Institute of liver and biliary Sciences, New Delhi, India
| | - Dinesh M. Tripathi
- Department of Molecular and Cellular Medicine, Institute of liver and biliary Sciences, New Delhi, India
| | - Arvind Tomar
- Department of Pulmonary Medicine, Institute of liver and biliary Sciences, New Delhi, India
| | - Pratibha Kale
- Department of Microbiology, Institute of liver and biliary Sciences, New Delhi, India
| | - Ashad Narayanan
- Department of Emergency, Institute of liver and biliary Sciences, New Delhi, India
| | - Chaggan Bihari
- Department of Pathology, Institute of liver and biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of liver and biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of liver and biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Virology, Institute of liver and biliary Sciences, New Delhi, India
| | - Shiv K. Sarin
- Department of Hepatology, Institute of liver and biliary Sciences, New Delhi, India
| |
Collapse
|
129
|
Pravda J. Sepsis: Evidence-based pathogenesis and treatment. World J Crit Care Med 2021; 10:66-80. [PMID: 34316443 PMCID: PMC8291008 DOI: 10.5492/wjccm.v10.i4.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis can develop during the body’s response to a critical illness leading to multiple organ failure, irreversible shock, and death. Sepsis has been vexing health care providers for centuries due to its insidious onset, generalized metabolic dysfunction, and lack of specific therapy. A common factor underlying sepsis is the characteristic hypermetabolic response as the body ramps up every physiological system in its fight against the underlying critical illness. A hypermetabolic response requires supraphysiological amounts of energy, which is mostly supplied via oxidative phosphorylation generated ATP. A by-product of oxidative phosphorylation is hydrogen peroxide (H2O2), a toxic, membrane-permeable oxidizing agent that is produced in far greater amounts during a hypermetabolic state. Continued production of mitochondrial H2O2 can overwhelm cellular reductive (antioxidant) capacity leading to a build-up within cells and eventual diffusion into the bloodstream. H2O2 is a metabolic poison that can inhibit enzyme systems leading to organ failure, microangiopathic dysfunction, and irreversible septic shock. The toxic effects of H2O2 mirror the clinical and laboratory abnormalities observed in sepsis, and toxic levels of blood H2O2 have been reported in patients with septic shock. This review provides evidence to support a causal role for H2O2 in the pathogenesis of sepsis, and an evidence-based therapeutic intervention to reduce H2O2 levels in the body and restore redox homeostasis, which is necessary for normal organ function and vascular responsiveness.
Collapse
Affiliation(s)
- Jay Pravda
- Inflammatory Disease Research Centre, Therashock LLC, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
130
|
You L, Zhang D, Geng H, Sun F, Lei M. Salidroside protects endothelial cells against LPS-induced inflammatory injury by inhibiting NLRP3 and enhancing autophagy. BMC Complement Med Ther 2021; 21:146. [PMID: 34011327 PMCID: PMC8136193 DOI: 10.1186/s12906-021-03307-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salidroside (SAL) is a bioactive compound extracted from Rhodiola rosea with various biological properties. This study was designed to explore the functions of SAL on the endothelial damage induced by lipopolysaccharide (LPS) and its related mechanisms. METHODS Human umbilical vein endothelial cells (HUVECs) were pretreated with SAL (0, 10, 25, 50, 100 μM), and then incubated with LPS (10 μg/mL). Cell viability was evaluated by MTT assay, cell injury by lactate dehydrogenase (LDH) release, and inflammatory cytokines release by ELISA assay. Oxidative stress was evaluated by malondialdehyde (MDA) and superoxide dismutase (SOD) in cell lysate. Apoptosis was detected by flow cytometry and caspase-3 activity. Western blot were performed to determine expression levels of autophagy and NOD-like receptor protein 3 (NLRP3) related proteins. RESULTS SAL at 50 μM concentration showed no toxicity on HUVECs, but attenuated LPS-induced injury, as evidenced by increased cell viability, reduction in LDH level and inflammatory cytokines in culture media. SAL also reduced MDA level and increased SOD activity in HUVECs, and inhibited apoptosis rate and caspase-3 activity. (P < 0.05). Moreover, LPS enhanced HUVECs autophagy, and SAL pretreatment further enhanced autophagy, with increased Beclin-1 protein and decreased P62 protein. SAL also attenuated LPS-induced activation of NLRP3 inflammasome, reduced the protein expression of NLRP3-related proteins, including ASC and caspase-1. Autophagy inhibition by 3-MA markedly reversed SAL-modulated changes in cell viability and NLRP3 expression in LPS-stimulated HUVECs. CONCLUSION SAL protects endothelial cells against LPS-induced injury through inhibition of NLRP3 pathways and enhancing autophagy.
Collapse
Affiliation(s)
- Lijiao You
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Di Zhang
- Department of Rehabilitation Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, P.R. China
| | - Huan Geng
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Fangyuan Sun
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of TCM, No.358 Datong Road, Gaoqiao Town, Pudong New District, Shanghai, 200137, China.
| |
Collapse
|
131
|
Laudanski K. Humanized Mice as a Tool to Study Sepsis-More Than Meets the Eye. Int J Mol Sci 2021; 22:2403. [PMID: 33673691 PMCID: PMC7957591 DOI: 10.3390/ijms22052403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background. Repetitive animal studies that have disappointed upon translation into clinical therapies have led to an increased appreciation of humanized mice as a remedy to the shortcomings of rodent-based models. However, their limitations have to be understood in depth. (2) Methods. This is a narrative, comprehensive review of humanized mice and sepsis literature to understand the model's benefits and shortcomings. (3) Results: Studies involving humanized models of sepsis include bacterial, viral, and protozoan etiology. Humanized mice provided several unique insights into the etiology and natural history of sepsis and are particularly useful in studying Ebola, and certain viral and protozoan infections. However, studies are relatively sparse and based on several different models of sepsis and humanized animals. (4) Conclusions. The utilization of humanized mice as a model for sepsis presents complex limitations that, once surpassed, hold some potential for the advancement of sepsis etiology and treatment.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, Department of Neurology, Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19194, USA
| |
Collapse
|
132
|
Albumin replacement therapy in immunocompromised patients with sepsis - Secondary analysis of the ALBIOS trial. J Crit Care 2021; 63:83-91. [PMID: 33636427 DOI: 10.1016/j.jcrc.2021.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The best fluid replacement strategy and the role of albumin in immunocompromised patients with sepsis is unclear. METHODS We performed a secondary analysis of immunocompromised patients enrolled in the ALBIOS trial which randomized patients with severe sepsis or septic shock to receive either 20% albumin (target 30 g per liter or more) and crystalloid or crystalloid alone during ICU stay. RESULTS Of 1818 patients originally enrolled, 304 (16.4%) were immunocompromised. One-hundred-thirty-nine (45.7%) patients were randomized in the albumin while 165 (54.2%) in the crystalloid group. At 90 days, 69 (49.6%) in the albumin group and 89 (53.9%) in the crystalloids group died (hazard ratio - HR - 0.94; 95% CI 0.69-1.29). No differences were observed with regards to 28-day mortality, SOFA score (and sub-scores), length of stay in the ICU and in the hospital, proportion of patients who had developed acute kidney injury or received renal replacement therapy, duration of mechanical ventilation. Albumin was not independently associated with a higher or lower 90-day mortality (HR 0.979, 95% CI 0.709-1.352) as compared to crystalloid. CONCLUSION Albumin replacement during the ICU stay, as compared with crystalloids alone, did not affect clinical outcomes in a cohort of immunocompromised patients with sepsis.
Collapse
|
133
|
Elyaspour Z, Zibaeenezhad MJ, Razmkhah M, Razeghian-Jahromi I. Is It All About Endothelial Dysfunction and Thrombosis Formation? The Secret of COVID-19. Clin Appl Thromb Hemost 2021; 27:10760296211042940. [PMID: 34693754 PMCID: PMC8543709 DOI: 10.1177/10760296211042940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
The world is in a hard battle against COVID-19. Endothelial cells are among the most critical targets of SARS-CoV-2. Dysfunction of endothelium leads to vascular injury following by coagulopathies and thrombotic conditions in the vital organs increasing the risk of life-threatening events. Growing evidences revealed that endothelial dysfunction and consequent thrombotic conditions are associated with the severity of outcomes. It is not yet fully clear that these devastating sequels originate directly from the virus or a side effect of virus-induced cytokine storm. Due to endothelial dysfunction, plasma levels of some biomarkers are changed and relevant clinical manifestations appear as well. Stabilization of endothelial integrity and supporting its function are among the promising therapeutic strategies. Other than respiratory, COVID-19 could be called a systemic vascular disease and this aspect should be scrutinized in more detail in order to reduce related mortality. In the present investigation, the effects of COVID-19 on endothelial function and thrombosis formation are discussed. In this regard, critical players, laboratory findings, clinical manifestation, and suggestive therapies are presented.
Collapse
Affiliation(s)
- Zahra Elyaspour
- Cardiovascular Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
134
|
Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, Limami Y, Zaid N, Sadki K, Ben El Haj R, Mahir W, Belayachi L, Belefquih B, Benouda A, Cheikh A, Langlois MA, Cherrah Y, Flamand L, Guessous F, Boilard E. Platelets Can Associate with SARS-Cov-2 RNA and Are Hyperactivated in COVID-19. Circ Res 2020; 127:1404-1418. [PMID: 32938299 PMCID: PMC7641188 DOI: 10.1161/circresaha.120.317703] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Rationale: In addition to the overwhelming lung inflammation that prevails in COVID-19, hypercoagulation and thrombosis contribute to the lethality of subjects infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Platelets are chiefly implicated in thrombosis. Moreover, they can interact with viruses and are an important source of inflammatory mediators. While a lower platelet count is associated with severity and mortality, little is known about platelet function during COVID-19. Objective: To evaluate the contribution of platelets to inflammation and thrombosis in COVID-19 patients. Methods and Results: Blood was collected from 115 consecutive COVID-19 patients presenting non-severe (n=71) and severe (n=44) respiratory symptoms. We document the presence of SARS-CoV-2 RNA associated with platelets of COVID-19 patients. Exhaustive assessment of cytokines in plasma and in platelets revealed the modulation of platelet-associated cytokine levels in both non-severe and severe COVID-19 patients, pointing to a direct contribution of platelets to the plasmatic cytokine load. Moreover, we demonstrate that platelets release their alpha- and dense-granule contents in both non-severe and severe forms of COVID-19. In comparison to concentrations measured in healthy volunteers, phosphatidylserine-exposing platelet extracellular vesicles were increased in non-severe, but not in severe cases of COVID-19. Levels of D-dimers, a marker of thrombosis, failed to correlate with any measured indicators of platelet activation. Functionally, platelets were hyperactivated in COVID-19 subjects presenting non-severe and severe symptoms, with aggregation occurring at suboptimal thrombin concentrations. Furthermore, platelets adhered more efficiently onto collagen-coated surfaces under flow conditions. Conclusions: Taken together, the data suggest that platelets are at the frontline of COVID-19 pathogenesis, as they release various sets of molecules through the different stages of the disease. Platelets may thus have the potential to contribute to the overwhelming thrombo-inflammation in COVID-19, and the inhibition of pathways related to platelet activation may improve the outcomes during COVID-19.
Collapse
Affiliation(s)
- Younes Zaid
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Florian Puhm
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Abdallah Naya
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Mounia Oudghiri
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Loubna Khalki
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco (L.K., F.G.)
| | - Youness Limami
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Nabil Zaid
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
| | - Khalid Sadki
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
| | - Rafiqua Ben El Haj
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Wissal Mahir
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Lamiae Belayachi
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Bouchra Belefquih
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Amina Benouda
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Amine Cheikh
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Marc-André Langlois
- Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada (M.-A.L.)
| | - Yahia Cherrah
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Fadila Guessous
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco (L.K., F.G.)
- Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville (F.G.)
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| |
Collapse
|
135
|
Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol 2020; 99:1701-1707. [PMID: 32583086 PMCID: PMC7312112 DOI: 10.1007/s00277-020-04138-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemia is a major health emergency causing hundreds of deaths worldwide. The high reported morbidity has been related to hypoxia and inflammation leading to endothelial dysfunction and aberrant coagulation in small and large vessels. This review addresses some of the pathways leading to endothelial derangement, such as complement, HIF-1α, and ABL tyrosine kinases. This review also highlights potential targets for prevention and therapy of COVID-19-related organ damage and discusses the role of marketed drugs, such as eculizumab and imatinib, as suitable candidates for clinical trials.
Collapse
Affiliation(s)
- Monia Marchetti
- Hematology Department, Az Osp SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| |
Collapse
|