101
|
Brignola C, Pecoraro A, Danisi C, Iaccarino N, Di Porzio A, Romano F, Carotenuto P, Russo G, Russo A. uL3 Regulates Redox Metabolism and Ferroptosis Sensitivity of p53-Deleted Colorectal Cancer Cells. Antioxidants (Basel) 2024; 13:757. [PMID: 39061826 PMCID: PMC11274089 DOI: 10.3390/antiox13070757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advancements in therapeutic strategies, the development of drug resistance and metastasis remains a serious concern for the efficacy of chemotherapy against colorectal cancer (CRC). We have previously demonstrated that low expression of ribosomal protein uL3 positively correlates with chemoresistance in CRC patients. Here, we demonstrated that the loss of uL3 increased the metastatic capacity of CRC cells in chick embryos. Metabolomic analysis revealed large perturbations in amino acid and glutathione metabolism in resistant uL3-silenced CRC cells, indicating that uL3 silencing dramatically triggered redox metabolic reprogramming. RNA-Seq data revealed a notable dysregulation of 108 genes related to ferroptosis in CRC patients. Solute Carrier Family 7 Member 11 (SLC7A11) is one of the most dysregulated genes; its mRNA stability is negatively regulated by uL3, and its expression is inversely correlated with uL3 levels. Inhibition of SLC7A11 with erastin impaired resistant uL3-silenced CRC cell survival by inducing ferroptosis. Of interest, the combined treatment erastin plus uL3 enhanced the chemotherapeutic sensitivity of uL3-silenced CRC cells to erastin. The antimetastatic potential of the combined strategy was evaluated in chick embryos. Overall, our study sheds light on uL3-mediated chemoresistance and provides evidence of a novel therapeutic approach, erastin plus uL3, to induce ferroptosis, establishing individualized therapy by examining p53, uL3 and SLC7A11 profiles in tumors.
Collapse
Affiliation(s)
- Chiara Brignola
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Camilla Danisi
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Francesca Romano
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078 Naples, Italy;
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Corso Umberto I, 40, 80138 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| | - Annapina Russo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.B.); (A.P.); (C.D.); (N.I.); (A.D.P.); (F.R.); (G.R.)
| |
Collapse
|
102
|
Wang K, Yang C, Xie J, Zhang X, Wei T, Yan Z. Long non-coding RNAs in ferroptosis and cuproptosis impact on prognosis and treatment in hepatocellular carcinoma. Clin Exp Med 2024; 24:135. [PMID: 38907744 PMCID: PMC11193701 DOI: 10.1007/s10238-024-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/08/2024] [Indexed: 06/24/2024]
Abstract
Ferroptosis and cuproptosis are recently discovered forms of cell death that have gained interest as potential cancer treatments, particularly for hepatocellular carcinoma. Long non-coding RNAs (lncRNAs) influence cancer cell activity by interacting with various nucleic acids and proteins. However, the role of ferroptosis and cuproptosis-related lncRNAs (FCRLs) in cancer remains underexplored. Ferroptosis and cuproptosis scores for each sample were assessed using Gene Set Variation Analysis (GSVA). Weighted correlation network analysis identified the FCRLs most relevant to our study. A risk model based on FCRLs was developed to categorize patients into high-risk and low-risk groups. We then compared overall survival (OS), tumor immune microenvironment, and clinical characteristics between these groups. The IPS score and ImmuCellAI webpage were used to predict the association between FCRL-related signatures and immunotherapy response. Finally, we validated the accuracy of FCRLs in hepatocellular carcinoma cell lines using induction agents (elesclomol and erastin). Patients in different risk subgroups showed significant differences in OS, immune cell infiltration, pathway activity, and clinical characteristics. Cellular assays revealed significant changes in the expression of AC019080.5, AC145207.5, MIR210HG, and LINC01063 in HCC cell lines following the addition of ferroptosis and cuproptosis inducers. We created a signature of four FCRLs that accurately predicted survival in HCC patients, laid the foundation for basic research related to ferroptosis and cuproptosis in hepatocellular carcinoma, and provided therapeutic recommendations for HCC patients.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chunqian Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Cancer Hospital, Huai'an, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ting Wei
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Zhu Yan
- Emergency Medicine Department, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaian, China.
| |
Collapse
|
103
|
Hou HX, Pang L, Zhao L, Xing J. Ferroptosis-related gene MAPK3 is associated with the neurological outcome after cardiac arrest. PLoS One 2024; 19:e0301647. [PMID: 38885209 PMCID: PMC11182507 DOI: 10.1371/journal.pone.0301647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Neuronal ferroptosis is closely related to the disease of the nervous system, and the objective of the present study was to recognize and verify the potential ferroptosis-related genes to forecast the neurological outcome after cardiac arrest. METHODS Cardiac Arrest-related microarray datasets GSE29540 and GSE92696 were downloaded from GEO and batch normalization of the expression data was performed using "sva" of the R package. GSE29540 was analyzed to identify DEGs. Venn diagram was applied to recognize ferroptosis-related DEGs from the DEGs. Subsequently, The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed, and PPI network was applied to screen hub genes. Receiver operating characteristic (ROC) curves were adopted to determine the predictive value of the biomarkers, and the GSE92696 dataset was applied to further evaluate the diagnostic efficacy of the biomarkers. We explore transcription factors and miRNAs associated with hub genes. The "CIBERSORT" package of R was utilized to analyse the proportion infiltrating immune cells. Finally, validated by a series of experiments at the cellular level. RESULTS 112 overlapping ferroptosis-related DEGs were further obtained via intersecting these DEGs and ferroptosis-related genes. The GO and KEGG analysis demonstrate that ferroptosis-related DEGs are mainly involved in response to oxidative stress, ferroptosis, apoptosis, IL-17 signalling pathway, autophagy, toll-like receptor signalling pathway. The top 10 hub genes were selected, including HIF1A, MAPK3, PPARA, IL1B, PTGS2, RELA, TLR4, KEAP1, SREBF1, SIRT6. Only MAPK3 was upregulated in both GSE29540 and GAE92696. The AUC values of the MAPK3 are 0.654 and 0.850 in GSE29540 and GSE92696 respectively. The result of miRNAs associated with hub genes indicates that hsa-miR-214-3p and hsa-miR-483-5p can regulate the expression of MAPK3. MAPK3 was positively correlated with naive B cells, macrophages M0, activated dendritic cells and negatively correlated with activated CD4 memory T cells, CD8 T cells, and memory B cells. Compared to the OGD4/R24 group, the OGD4/R12 group had higher MAPK3 expression at both mRNA and protein levels and more severe ferroptosis. CONCLUSION In summary, the MAPK3 ferroptosis-related gene could be used as a biomarker to predict the neurological outcome after cardiac arrest. Potential biological pathways provide novel insights into the pathogenesis of cardiac arrest.
Collapse
Affiliation(s)
- Hong xiang Hou
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Li Pang
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhao
- Rehabilitation Department, The First Hospital of Jilin University, Changchun, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
104
|
Wang L, Wang Y, Xu H, Li W. Effect of dapagliflozin on ferroptosis through the gut microbiota metabolite TMAO during myocardial ischemia-reperfusion injury in diabetes mellitus rats. Sci Rep 2024; 14:13851. [PMID: 38879701 PMCID: PMC11180094 DOI: 10.1038/s41598-024-64909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 06/19/2024] Open
Abstract
Dapagliflozin (DAPA) demonstrates promise in the management of diabetic mellitus (DM) and cardiomyopathy. Trimethylamine N-oxide (TMAO) is synthesized by the gut microbiota through the metabolic conversion of choline and phosphatidylcholine. Ferroptosis may offer novel therapeutic avenues for the management of diabetes and myocardial ischemia-reperfusion injury (IRI). However, the precise mechanism underlying ferroptosis in cardiomyocytes and the specific role of TMAO generated by gut microbiota in the therapeutic approach for DM and myocardial IRI utilizing DAPA need to be further explored. Nine male SD rats with specific pathogen-free (SPF) status were randomly divided equally into the normal group, the DM + IRI (DIR) group, and the DAPA group. The diversity of the gut microbiota was analyzed using 16S rRNA gene sequencing. Additionally, the Wekell technique was employed to measure the levels of TMAO in the three groups. Application of network pharmacology to search for intersection targets of DAPA, DIR, and ferroptosis, and RT-PCR experimental verification. Ultimately, the overlapping targets that were acquired were subjected to molecular docking analysis with TMAO. The changes of Bacteroidetes and Firmicutes in the gut microbiota of DIR rats were most significantly affected by DAPA. Escherichia-Shigella and Prevotella_9 within the phylum Bacteroidetes could be identified as the primary effects of DAPA on DIR. Compared with the normal group, the TMAO content in the DIR group was significantly increased, while the TMAO content in the DAPA group was decreased compared to the DIR group. For the network pharmacology analysis, DAPA and DIR generated 43 intersecting target genes, and then further intersected with ferroptosis-related genes, resulting in 11 overlapping target genes. The mRNA expression of ALB, HMOX1, PPARG, CBS, LCN2, and PPARA decreased in the DIR group through reverse transcription polymerase chain reaction (RT-PCR) validation, while the opposite trend was observed in the DAPA group. The docking score between TMAO and DPP4 was - 5.44, and the MM-GBSA result of - 22.02 kcal/mol. It epitomizes the finest docking performance among all the target genes with the lowest score. DAPA could reduce the levels of metabolite TMAO produced by gut microbiota, thereby regulating related target genes to decrease ferroptosis in DIR cardiomyocytes.
Collapse
Affiliation(s)
- Lian Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Heng Xu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
105
|
Wei C, Li L, Qiao Y, Chen Y, Zhang C, Xie J, Fang J, Liang Z, Huang D, Wu D. Ferroptosis-related genes DUOX1 and HSD17B11 affect tumor microenvironment and predict overall survival of lung adenocarcinoma patients. Medicine (Baltimore) 2024; 103:e38322. [PMID: 39259123 PMCID: PMC11142834 DOI: 10.1097/md.0000000000038322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Recent studies have found that ferroptosis-related genes (FRGs) have broad applications in tumor therapy. However, the predictive potential of these genes in lung adenocarcinoma (LUAD) remains to be fully characterized. We aimed to investigate the FRGs that might be potential targets for LUAD. METHODS We screened the RNA sequencing samples from LUAD patients from the GEO database and analyzed the ferroptosis-related differentially expressed genes (DEGs). A functional analysis of DEGs was performed. The risk model was constructed to evaluation and validation FRGs. We explored the immune landscape of LUAD and controls. The value of FRGs in diagnosing LUAD was tested in the GSE30219, GSE37745, GSE0081 datasets, and qPCR was used to verify their diagnostic value in LUAD patients in our hospital. RESULTS A total of 1327 DEGs in quantitative proteomics were obtained, of which ferroptosis-related DEGs were 259. Enrichment analysis showed significant enrichment in the absorption and metabolism of fatty acids and arachidonic acid. The upregulated genes (GCLC, RRM2, AURKA, SLC7A5, and SLC2A1) and downregulated genes (ANGPTL7, ALOX15, ALOX15B, HSD17B11, IL33, TSC22D3, and DUOX1) were selected as core genes in tissue samples from 62 patients by qPCR. DUOX1 and HSD17B11 were obtained by bioinformatics analysis, both of which showed similar expression trends at the RNA and protein levels. The Kaplan-Meier method showed that DUOX1 and HSD17B11 were closely related to the overall survival (OS) of LUAD patients. CONCLUSION SUBSECTIONS Ferroptosis-related genes DUOX1 and HSD17B11 are of considerable value in the diagnosis of LUAD patients. Their low expression suggests an increased recurrence rate and leads to a decrease in the patient quality of life.
Collapse
Affiliation(s)
- Chunhui Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lixia Li
- Cancer Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Youping Qiao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujuan Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunfeng Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinye Xie
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiayan Fang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhu Liang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
106
|
Guo X, Feng X, Yang Y, An W, Bai L. Machine learning-based identification and immune characterization of ferroptosis-related molecular clusters in osteoarthritis and validation. Aging (Albany NY) 2024; 16:9437-9459. [PMID: 38814177 PMCID: PMC11210262 DOI: 10.18632/aging.205875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Osteoarthritis (OA), a degenerative joint disease, involves synovial inflammation, subchondral bone erosion, and cartilage degeneration. Ferroptosis, a regulated non-apoptotic programmed cell death, is associated with various diseases. This study investigates ferroptosis-related molecular subtypes in OA to comprehend underlying mechanisms. The Gene Expression Omnibus datasets GSE206848, GSE55457, GSE55235, GSE77298 and GSE82107 were used utilized. Unsupervised clustering identified the ferroptosis-related gene (FRG) subtypes, and their immune characteristics were assessed. FRG signatures were derived using LASSO and SVM-RFE algorithms, forming models to evaluate OA's ferroptosis-related immune features. Three FRG clusters were found to be immunologically heterogeneous, with cluster 1 displaying robust immune response. Models identified nine key signature genes via algorithms, demonstrating strong diagnostic and prognostic performance. Finally, qRT-PCR and Western blot validated these genes, offering consistent results. In addition, some of these genes may have implications as new therapeutic targets and can be used to guide clinical applications.
Collapse
Affiliation(s)
- Xiaocheng Guo
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyuan Feng
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenying An
- Department of Cadre Wards, Liaoning University of Traditional Chinese Medicine Affiliated Orthopedic Hospital, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
107
|
Liu X, Li D, Gao W, Chen P, Liu H, Zhao Y, Zhao W, Dong G. Molecular characterization, clinical value, and cancer-immune interactions of genes related to disulfidptosis and ferroptosis in colorectal cancer. Discov Oncol 2024; 15:183. [PMID: 38787520 PMCID: PMC11126553 DOI: 10.1007/s12672-024-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND This research strived to construct a new signature utilizing disulfidptosis-related ferroptosis (SRF) genes to anticipate response to immunotherapy, prognosis, and drug sensitivity in individuals with colorectal cancer (CRC). METHODS The data for RNA sequencing as well as corresponding clinical information of individuals with CRC, were extracted from The Cancer Genome Atlas (TCGA) dataset. SRF were constructed with the help of the random forest (RF), least absolute shrinkage and selection operator (LASSO), and stepwise regression algorithms. To validate the SRF model, we applied it to an external cohort, GSE38832. Prognosis, immunotherapy response, drug sensitivity, molecular functions of genes, and somatic mutations of genes were compared across the high- and low-risk groups (categories). Following this, all statistical analyses were conducted with the aid of the R (version 4.23) software and various packages of the Cytoscape (version 3.8.0) tool. RESULTS SRF was developed based on five genes (ATG7, USP7, MMD, PLIN4, and THDC2). Both univariate and multivariate Cox regression analyses established SRF as an independent, prognosis-related risk factor. Individuals from the high-risk category had a more unfavorable prognosis, elevated tumor mutational burden (TMB), and significant immunosuppressive status. Hence, they might have better outcomes post-immunotherapy and might benefit from the administration of pazopanib, lapatinib, and sunitinib. CONCLUSION In conclusion, SRF can act as a new biomarker for prognosis assessment. Moreover, it is also a good predictor of drug sensitivity and immunotherapy response in CRC but should undergo optimization before implementation in clinical settings.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
108
|
Chen H, Nie P, Li J, Wu Y, Yao B, Yang Y, Lash GE, Li P. Cyclophosphamide induces ovarian granulosa cell ferroptosis via a mechanism associated with HO-1 and ROS-mediated mitochondrial dysfunction. J Ovarian Res 2024; 17:107. [PMID: 38762721 PMCID: PMC11102268 DOI: 10.1186/s13048-024-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Ping Nie
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Jingling Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Bo Yao
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yabing Yang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, Jinan University School of Medicine, Guangzhou, 510317, China
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
109
|
Yu J, Li H, Huang C, Chen H. Identification and characterization of ferroptosis-related genes in therapy-resistant gastric cancer. Medicine (Baltimore) 2024; 103:e38193. [PMID: 38758860 PMCID: PMC11098190 DOI: 10.1097/md.0000000000038193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
Therapy resistance in gastric cancer poses ongoing challenges, necessitating the identification of ferroptosis-related genes linked to overall survival for potential therapeutic insights. The purpose of the study was to identify ferroptosis-related genes contributing to therapy resistance in gastric cancer and explore their associations with overall survival. Differentially expressed ferroptosis-related genes were identified in therapy-resistant versus therapy-responsive gastric cancer patients. Hub genes were selected from these genes. Enrichment analysis focused on oxidative stress and ROS metabolism. Validation was conducted in a TCGA stomach adenocarcinoma dataset. A hub gene-based risk model (DUSP1/TNF/NOX4/LONP1) was constructed and assessed for overall survival prediction. Associations with the tumor immune microenvironment were examined using the ESTIMATE algorithm and correlation analysis. Ten hub genes were identified, enriched in oxidative stress and ROS metabolism. Validation confirmed their aberrant expressions in the TCGA dataset. The hub gene-based risk model effectively predicted overall survival. High G6PD/TNF expression and low NOX4/SREBF1/MAPK3/DUSP1/KRAS/SIRT3/LONP1 expression correlated with stromal and immune scores. KRAS/TNF/MAPK3 expression positively correlated with immune-related SREBF1/NOX4 expression. DUSP1/NOX4/SREBF1/TNF/KRAS expression was associated with immune cell infiltration. The hub gene-based risk model (DUSP1/TNF/NOX4/LONP1) shows promise as an overall survival predictor in gastric cancer. Ferroptosis-related hub genes represent potential therapeutic targets for overcoming therapy resistance in gastric cancer treatment.
Collapse
Affiliation(s)
- Jieli Yu
- Department of Geriatric Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Hua Li
- Department of Oncology, Pengze County People’s Hospital, Jiujiang, China
| | - Can Huang
- Department of Geriatric Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Huoguo Chen
- Department of Geriatric Oncology, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
110
|
Li Y, Wang W, Kong C, Chen X, Li C, Lu S. Identifying the miRNA-gene networks contributes to exploring paravertebral muscle degeneration's underlying pathogenesis and therapy strategy. Heliyon 2024; 10:e30517. [PMID: 38765163 PMCID: PMC11098802 DOI: 10.1016/j.heliyon.2024.e30517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Low back pain (LBP) is a worldwide problem with public health. Paravertebral muscle degeneration (PMD) is believed to be associated with LBP. Increasing evidence has demonstrated that microRNA (miRNA)-mRNA signaling networks have been implicated in the pathophysiology of diseases. Research suggests that cell death, oxidative stress, inflammatory and immune response, and extracellular matrix (ECM) metabolism are the pathogenesis of PMD; however, the miRNA-mRNA mediated the pathological process of PMD remains elusive. RNA sequencing (RNA-seq) and single cell RNA-seq (scRNA-seq) are invaluable tools for uncovering the functional biology underlying these miRNA and gene expression changes. Using scRNA-seq, we show that multiple immunocytes are presented during PMD, revealing that they may have been implicated with PMD. Additionally, using RNA-seq, we identified 76 differentially expressed genes (DEGs) and 106 differentially expressed miRNAs (DEMs), among which IL-24 and CCDC63 were the top upregulated and downregulated genes in PMD. Comprehensive bioinformatics analyses, including Venn diagrams, differential expression, functional enrichment, and protein-protein interaction analysis, were then conducted to identify six ferroptosis-related DEGs, two oxidative stress-related DEGs, eleven immunity-related DEGs, five ECM-related DEGs, among which AKR1C2/AKR1C3/SIRT1/ALB/IL-24 belong to inflammatory genes. Furthermore, 67 DEMs were predicted to be upstream miRNAs of 25 key DEGs by merging RNA-seq, TargetScan, and mirDIP databases. Finally, a miRNA-gene network was constructed using Cytoscape software and an alluvial plot. ROC curve analysis unveiled multiple key DEGs with the high clinical diagnostic value, providing novel approaches for diagnosing and treating PMD diseases.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- Spine Center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17, Lujiang Road, Hefei, Anhui, 230001, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chaoyi Li
- Department of Joint Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| |
Collapse
|
111
|
Zhang Y, Gu X, Li Y, Li X, Huang Y, Ju S. Transfer RNA-derived fragment tRF-23-Q99P9P9NDD promotes progression of gastric cancer by targeting ACADSB. J Zhejiang Univ Sci B 2024; 25:438-450. [PMID: 38725342 PMCID: PMC11087185 DOI: 10.1631/jzus.b2300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/07/2023] [Indexed: 05/13/2024]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xun Li
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong 226001, China.
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China. ,
| |
Collapse
|
112
|
Wang L, Gong WH. Predictive model using four ferroptosis-related genes accurately predicts gastric cancer prognosis. World J Gastrointest Oncol 2024; 16:2018-2037. [PMID: 38764813 PMCID: PMC11099433 DOI: 10.4251/wjgo.v16.i5.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy of the digestive system. According to global 2018 cancer data, GC has the fifth-highest incidence and the third-highest fatality rate among malignant tumors. More than 60% of GC are linked to infection with Helicobacter pylori (H. pylori), a gram-negative, active, microaerophilic, and helical bacterium. This parasite induces GC by producing toxic factors, such as cytotoxin-related gene A, vacuolar cytotoxin A, and outer membrane proteins. Ferroptosis, or iron-dependent programmed cell death, has been linked to GC, although there has been little research on the link between H. pylori infection-related GC and ferroptosis. AIM To identify coregulated differentially expressed genes among ferroptosis-related genes (FRGs) in GC patients and develop a ferroptosis-related prognostic model with discrimination ability. METHODS Gene expression profiles of GC patients and those with H. pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. The FRGs were acquired from the FerrDb database. A ferroptosis-related gene prognostic index (FRGPI) was created using least absolute shrinkage and selection operator-Cox regression. The predictive ability of the FRGPI was validated in the GEO cohort. Finally, we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues. RESULTS Four hub genes were identified (NOX4, MTCH1, GABARAPL2, and SLC2A3) and shown to accurately predict GC and H. pylori-associated GC. The FRGPI based on the hub genes could independently predict GC patient survival; GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group. The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression. Moreover, the gene expression levels of common immune checkpoint proteins dramatically increased in the high-risk subgroup of the FRGPI cohort. The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane. The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner. CONCLUSION In this study, we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Hua Gong
- Department of Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
113
|
Zhou H, Zhou X, Zhu R, Zhao Z, Yang K, Shen Z, Sun H. A ferroptosis-related signature predicts the clinical diagnosis and prognosis, and associates with the immune microenvironment of lung cancer. Discov Oncol 2024; 15:163. [PMID: 38743344 PMCID: PMC11093956 DOI: 10.1007/s12672-024-01032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Targeting ferroptosis-related pathway is a potential strategy for treatment of lung cancer (LC). Consequently, exploration of ferroptosis-related markers is important for treating LC. We collected LC clinical data and mRNA expression profiles from TCGA and GEO database. Ferroptosis-related genes (FRGs) were obtained through FerrDB database. Expression analysis was performed to obtain differentially expressed FRGs. Diagnostic and prognostic models were constructed based on FRGs by LASSO regression, univariate, and multivariate Cox regression analysis, respectively. External verification cohorts GSE72094 and GSE157011 were used for validation. The interrelationship between prognostic risk scores based on FRGs and the tumor immune microenvironment was analyzed. Immunocytochemistry, Western blotting, and RT-qPCR detected the FRGs level. Eighteen FRGs were used for diagnostic models, 8 FRGs were used for prognostic models. The diagnostic model distinguished well between LC and normal samples in training and validation cohorts of TCGA. The prognostic models for TCGA, GSE72094, and GSE157011 cohorts significantly confirmed lower overall survival (OS) in high-risk group, which demonstrated excellent predictive properties of the survival model. Multivariate Cox regression analysis further confirmed risk score was an independent risk factor related with OS. Immunoassays revealed that in high-risk group, a significantly higher proportion of Macrophages_M0, Neutrophils, resting Natural killer cells and activated Mast cells and the level of B7H3, CD112, CD155, B7H5, and ICOSL were increased. In conclusion, diagnostic and prognostic models provided superior diagnostic and predictive power for LC and revealed a potential link between ferroptosis and TIME.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaoting Zhou
- Medical School, Kunming University of Science and Technology, Kunming, 650031, Yunnan, China
| | - Runying Zhu
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhongquan Zhao
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kang Yang
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Zhenghai Shen
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Hongwen Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, 650032, Yunnan, China.
| |
Collapse
|
114
|
Lu J, Li H, Yu Z, Cao C, Xu Z, Peng L, Zhang JH, Chen G. Cathepsin B as a key regulator of ferroptosis in microglia following intracerebral hemorrhage. Neurobiol Dis 2024; 194:106468. [PMID: 38460801 DOI: 10.1016/j.nbd.2024.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke marked by elevated mortality and disability rates. Recently, mounting evidence suggests a significant role of ferroptosis in the pathogenesis of ICH. Through a combination of bioinformatics analysis and basic experiments, our goal is to identify the primary cell types and key molecules implicated in ferroptosis post-ICH. This aims to propel the advancement of ferroptosis research, offering potential therapeutic targets for ICH treatment. Our study reveals pronounced ferroptosis in microglia and identifies the target gene, cathepsin B (Ctsb), by analyzing differentially expressed genes following ICH. Ctsb, a cysteine protease primarily located in lysosomes, becomes a focal point in our investigation. Utilizing in vitro and in vivo models, we explore the correlation between Ctsb and ferroptosis in microglia post-ICH. Results demonstrate that ICH and hemin-induced ferroptosis in microglia coincide with elevated levels and activity of Ctsb protein. Effective alleviation of ferroptosis in microglia after ICH is achieved through the inhibition of Ctsb protease activity and protein levels using inhibitors and shRNA. Additionally, a notable increase in m6A methylation levels of Ctsb mRNA post-ICH is observed, suggesting a pivotal role of m6A methylation in regulating Ctsb translation. These research insights deepen our comprehension of the molecular pathways involved in ferroptosis after ICH, underscoring the potential of Ctsb as a promising target for mitigating brain damage resulting from ICH.
Collapse
Affiliation(s)
- Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Lu Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - John H Zhang
- Departments of Neurosurgery, Anesthesiology, Physiology and Pharmacology, Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
115
|
Zhao ST, Qiu ZC, Zeng RY, Zou HX, Qiu RB, Peng HZ, Zhou LF, Xu ZQ, Lai SQ, Wan L. Exploring the molecular biology of ischemic cardiomyopathy based on ferroptosis‑related genes. Exp Ther Med 2024; 27:221. [PMID: 38590563 PMCID: PMC11000445 DOI: 10.3892/etm.2024.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Ischemic cardiomyopathy (ICM) is a serious cardiac disease with a very high mortality rate worldwide, which causes myocardial ischemia and hypoxia as the main damage. Further understanding of the underlying pathological processes of cardiomyocyte injury is key to the development of cardioprotective strategies. Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of lipid hydroperoxides to lethal levels, resulting in oxidative damage to the cell membrane. The current understanding of the role and regulation of ferroptosis in ICM is still limited, especially in the absence of evidence from large-scale transcriptomic data. Through comprehensive bioinformatics analysis of human ICM transcriptome data obtained from the Gene Expression Omnibus database, the present study identified differentially expressed ferroptosis-related genes (DEFRGs) in ICM. Subsequently, their potential biological mechanisms and cross-talk were analyzed, and hub genes were identified by constructing protein-protein interaction networks. Ferroptosis features such as reactive oxygen species generation, changes in ferroptosis marker proteins, iron ion aggregation and lipid oxidation, were identified in the H9c2 anoxic reoxygenation injury model. Finally, the diagnostic ability of Gap junction alpha-1 (GJA1), Solute carrier family 40 member 1 (SLC40A1), Alpha-synuclein (SNCA) were identified through receiver operating characteristic curves and the expression of DEFRGs was verified in an in vitro model. Furthermore, potential drugs (retinoic acid) that could regulate ICM ferroptosis were predicted based on key DEFRGs. The present article presents new insights into the role of ferroptosis in ICM, investigating the regulatory role of ferroptosis in the pathological process of ICM and advocating for ferroptosis as a potential novel therapeutic target for ICM based on evidence from the ICM transcriptome.
Collapse
Affiliation(s)
- Shi-Tao Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Cong Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rui-Yuan Zeng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua-Xi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospita, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330200, P.R. China
| | - Rong-Bin Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Han-Zhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lian-Fen Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Qiang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
116
|
Qiu L, Ji H, Wang K, Liu W, Huang Q, Pan X, Ye H, Li Z, Chen G, Xing X, Dong X, Tang R, Xu H, Liu J, Cai Z, Liu X. TLR3 activation enhances abscopal effect of radiotherapy in HCC by promoting tumor ferroptosis. EMBO Mol Med 2024; 16:1193-1219. [PMID: 38671318 PMCID: PMC11098818 DOI: 10.1038/s44321-024-00068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Radiotherapy (RT) has been reported to induce abscopal effect in advanced hepatocellular carcinoma (HCC), but such phenomenon was only observed in sporadic cases. Here, we demonstrated that subcutaneous administration of Toll-like receptor 3 (TLR3) agonist poly(I:C) could strengthen the abscopal effect during RT through activating tumor cell ferroptosis signals in bilateral HCC subcutaneous tumor mouse models, which could be significantly abolished by TLR3 knock-out or ferroptosis inhibitor ferrostatin-1. Moreover, poly(I:C) could promote the presentation of tumor neoantigens by dendritic cells to enhance the recruitment of activated CD8+ T cells into distant tumor tissues for inducing tumor cell ferroptosis during RT treatment. Finally, the safety and feasibility of combining poly(I:C) with RT for treating advanced HCC patients were further verified in a prospective clinical trial. Thus, enhancing TLR3 signaling activation during RT could provide a novel strategy for strengthening abscopal effect to improve the clinical benefits of advanced HCC patients.
Collapse
Affiliation(s)
- Liman Qiu
- College of Chemical Engineering, Fuzhou University, Fuzhou, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Hongbing Ji
- Radiotherapy Department, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Kai Wang
- Radiotherapy Department, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Wenhan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Qizhen Huang
- Radiotherapy Department, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Xinting Pan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Honghao Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Jingfeng Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China.
| | - Xiaolong Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou, P. R. China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China.
| |
Collapse
|
117
|
Vinik Y, Maimon A, Dubey V, Raj H, Abramovitch I, Malitsky S, Itkin M, Ma'ayan A, Westermann F, Gottlieb E, Ruppin E, Lev S. Programming a Ferroptosis-to-Apoptosis Transition Landscape Revealed Ferroptosis Biomarkers and Repressors for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307263. [PMID: 38441406 PMCID: PMC11077643 DOI: 10.1002/advs.202307263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/11/2024] [Indexed: 05/09/2024]
Abstract
Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.
Collapse
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Avi Maimon
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Vinay Dubey
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Harsha Raj
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Ifat Abramovitch
- The Ruth and Bruce RappaportFaculty of MedicineTechnion–Israel Institute of TechnologyHaifa3525433Israel
| | - Sergey Malitsky
- Metabolic Profiling UnitWeizmann Institute of ScienceRehovot76100Israel
| | - Maxim Itkin
- Metabolic Profiling UnitWeizmann Institute of ScienceRehovot76100Israel
| | - Avi Ma'ayan
- Department of Pharmacological SciencesMount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Frank Westermann
- Neuroblastoma GenomicsGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Eyal Gottlieb
- The Ruth and Bruce RappaportFaculty of MedicineTechnion–Israel Institute of TechnologyHaifa3525433Israel
| | - Eytan Ruppin
- Cancer Data Science LaboratoryNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Sima Lev
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
118
|
Chen Z, Wei S, Yuan Z, Chang R, Chen X, Fu Y, Wu W. Machine learning reveals ferroptosis features and a novel ferroptosis classifier in patients with sepsis. Immun Inflamm Dis 2024; 12:e1279. [PMID: 38780016 PMCID: PMC11112629 DOI: 10.1002/iid3.1279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Sepsis is an organ malfunction disease that may become fatal and is commonly accompanied by severe complications such as multiorgan dysfunction. Patients who are already hospitalized have a high risk of death due to sepsis. Even though early diagnosis is very important, the technology and clinical approaches that are now available are inadequate. Hence, there is an immediate necessity to investigate biological markers that are sensitive, specific, and reliable for the prompt detection of sepsis to reduce mortality and improve patient prognosis. Mounting research data indicate that ferroptosis contributes to the occurrence, development, and prevention of sepsis. However, the specific regulatory mechanism of ferroptosis remains to be elucidated. This research evaluated the expression profiles of ferroptosis-related genes (FRGs) and the diagnostic significance of the ferroptosis-related classifiers in sepsis. METHODS AND RESULTS We collected three peripheral blood data sets from septic patients, integrated the clinical examination data and mRNA expression profile of these patients, and identified 13 FRGs in sepsis through a co-expression network and differential analysis. Then, an optimal classifier tool for sepsis was constructed by integrating a variety of machine learning algorithms. Two key genes, ATG16L1 and SRC, were shown to be shared between the algorithms, and thus were identified as the FRG signature of classifier. The tool exhibited satisfactory diagnostic efficiency in the training data set (AUC = 0.711) and two external verification data sets (AUC = 0.961; AUC = 0.913). In the rat cecal ligation puncture sepsis model, in vivo experiments verified the involvement of ATG16L1 and SRC in the early sepsis process. CONCLUSION These findings confirm that FRGs may participate in the development of sepsis, the ferroptosis related classifiers can provide a basis for the development of new strategies for the early diagnosis of sepsis and the discovery of new potential therapeutic targets for life-threatening infections.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhize Yuan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Rui Chang
- Medical Department, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xue Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wei Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
119
|
Zhu L, Zhou J, Yu C, Gu L, Wang Q, Xu H, Zhu Y, Guo M, Hu M, Peng W, Fang H, Wang H. Unraveling the Molecular Regulation of Ferroptosis in Respiratory Diseases. J Inflamm Res 2024; 17:2531-2546. [PMID: 38689798 PMCID: PMC11059637 DOI: 10.2147/jir.s457092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 05/02/2024] Open
Abstract
Ferroptosis, a type of programmed cell death that relies on iron, is distinct in terms of its morphological, biochemical and genetic features. Unlike other forms of cell death, such as autophagy, apoptosis, necrosis, and pyroptosis, ferroptosis is primarily caused by lipid peroxidation. Cells that die due to iron can potentially trigger an immune response which intensifies inflammation and causes severe inflammatory reactions that eventually lead to multiple organ failure. In recent years, ferroptosis has been identified in an increasing number of medical fields, including neurological pathologies, chronic liver diseases and sepsis. Ferroptosis has the potential to cause an inflammatory tempest, with many of the catalysts and pathological indications of respiratory ailments being linked to inflammatory reactions. The growing investigation into ferroptosis in respiratory disorders has also garnered significant interest to better understand the mechanism of ferroptosis in these diseases. In this review, the recent progress in understanding the molecular control of ferroptosis and its mechanism in different respiratory disorders is examined. In addition, this review discusses current challenges and prospects for understanding the link between respiratory diseases and ferroptosis.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Chen Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lei Gu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hanglu Xu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Wei Peng
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Trauma Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Haizhen Wang
- Department of Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
120
|
Wang Y, Xu X, Shui X, Ren R, Liu Y. Molecular subtype identification of cerebral ischemic stroke based on ferroptosis-related genes. Sci Rep 2024; 14:9350. [PMID: 38653998 PMCID: PMC11039763 DOI: 10.1038/s41598-024-53327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Cerebral ischemic stroke (CIS) has the characteristics of a high incidence, disability, and mortality rate. Here, we aimed to explore the potential pathogenic mechanisms of ferroptosis-related genes (FRGs) in CIS. Three microarray datasets from the Gene Expression Omnibus (GEO) database were utilized to analyze differentially expressed genes (DEGs) between CIS and normal controls. FRGs were obtained from a literature report and the FerrDb database. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to screen hub genes. The receiver operating characteristic (ROC) curve was adopted to evaluate the diagnostic value of key genes in CIS, followed by analysis of immune microenvironment, transcription factor (TF) regulatory network, drug prediction, and molecular docking. In total, 128 CIS samples were divided into 2 subgroups after clustering analysis. Compared with cluster A, 1560 DEGs were identified in cluster B. After the construction of the WGCNA and PPI network, 5 hub genes, including MAPK3, WAS, DNAJC5, PRKCD, and GRB2, were identified for CIS. Interestingly, MAPK3 was a FRG that differentially expressed between cluster A and cluster B. The expression levels of 5 hub genes were all specifically highly in cluster A subtype. It is noted that neutrophils were the most positively correlated with all 5 real hub genes. PRKCD was one of the target genes of FASUDIL. In conclusion, five real hub genes were identified as potential diagnostic markers, which can distinguish the two subtypes well.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China.
| | - Xinjuan Xu
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Xinjun Shui
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Ruilin Ren
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Yu Liu
- Department of Surgical, Peking University First Hospital Taiyuan, Taiyuan, China
| |
Collapse
|
121
|
Zong K, Lin C, Luo K, Deng Y, Wang H, Hu J, Chen S, Li R. Ferroptosis-related lncRNA NRAV affects the prognosis of hepatocellular carcinoma via the miR-375-3P/SLC7A11 axis. BMC Cancer 2024; 24:496. [PMID: 38637761 PMCID: PMC11027313 DOI: 10.1186/s12885-024-12265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Ferroptosis has important value in cancer treatment. It is significant to explore the new ferroptosis-related lncRNAs prediction model in Hepatocellular carcinoma (HCC) and the potential molecular mechanism of ferroptosis-related lncRNAs. We constructed a prognostic multi-lncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HCC. qRT-PCR was applied to determine the expression of lncRNA in HCC cells. The biological roles of NRAV in vitro and in vivo were determined by performing a series of functional experiments. Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of NRAV with miR-375-3P. We identified 6 differently expressed lncRNAs associated with the prognosis of HCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HCC. Moreover, the AUC of the lncRNAs signature showed utility in predicting HCC prognosis. Further functional experiments show that the high expression of NRAV can strengthen the viciousness of HCC. Interestingly, we found that NRAV can enhance iron export and ferroptosis resistance. Further study showed that NRAV competitively binds to miR-375-3P and attenuates the inhibitory effect of miR-375-3P on SLC7A11, affecting the prognosis of patients with HCC. In conclusion, We developed a novel ferroptosis-related lncRNAs prognostic model with important predictive value for the prognosis of HCC. NRAV is important in ferroptosis induction through the miR-375-3P/SLC7A11 axis.
Collapse
Affiliation(s)
- Ke Zong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Caifeng Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
| | - Kai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yilei Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongfei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianfei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China.
| | - Renfeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
122
|
Zhao Z, Xing N, Guo H, Li J, Sun G. Identification of Lower Grade Glioma Antigens Based on Ferroptosis Status for mRNA Vaccine Development. Pharmgenomics Pers Med 2024; 17:105-123. [PMID: 38623558 PMCID: PMC11018127 DOI: 10.2147/pgpm.s449230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/16/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose mRNA vaccines represent a promising and innovative strategy within the realm of cancer immunotherapy. However, their efficacy in treating lower-grade glioma (LGG) requires evaluation. Ferroptosis exhibits close associations with the initiation, evolution, and suppression of cancer. In this study, we explored the landscape of the ferroptosis-associated tumor microenvironment to facilitate the development of mRNA vaccines for LGG patients. Patients and Methods Genomic and clinical data of the LGG patients was obtained from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Ferroptosis-related tumor antigens were identified based on differential expression, mutation status, correlation with antigen-presenting cells, and prognosis, relevance to immunogenic cell death (ICD). Antigen expression levels in LGG specimens and cell lines were validated using real time-polymerase chain reaction (RT-PCR). Consensus clustering was employed for patient classification. The immune landscapes of ferroptosis subtypes were further characterized, including immune responses, prognostic ability, tumor microenvironment, and tumor-related signatures. Results Five tumor antigens, namely, HOTAIR, IDO1, KIF20A, NR5A2, and RRM2 were identified in LGG. RT-PCR demonstrated higher expression of these genes in LGG compared to the control. Twelve gene modules and four ferroptosis subtypes (FS1-FS4) of LGG were defined. FS2 and FS4, characterized as "cold" tumors due to their decreased tumor mutation burden (TMB) and immune checkpoint proteins (ICPs), were deemed appropriate candidates for the mRNA vaccine. Conclusion HOTAIR, IDO1, KIF20A, NR5A2, and RRM2 were identified as promising candidate antigens for the development of an LGG mRNA vaccine, particularly offering potential benefits to FS2 and FS4 patients.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Hao Guo
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Jianfeng Li
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
123
|
Prosz A, Sahgal P, Huffman BM, Sztupinszki Z, Morris CX, Chen D, Börcsök J, Diossy M, Tisza V, Spisak S, Likasitwatanakul P, Rusz O, Csabai I, Cecchini M, Baca Y, Elliott A, Enzinger P, Singh H, Ubellaker J, Lazaro JB, Cleary JM, Szallasi Z, Sethi NS. Mutational signature-based identification of DNA repair deficient gastroesophageal adenocarcinomas for therapeutic targeting. NPJ Precis Oncol 2024; 8:87. [PMID: 38589664 PMCID: PMC11001913 DOI: 10.1038/s41698-024-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Homologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation. Using whole exome and genome sequencing data, we found that a significant subset of GEA, but very few colorectal adenocarcinomas, show evidence of HR deficiency by mutational signature analysis (HRD score). High HRD gastric cancer cell lines demonstrated functional HR deficiency by RAD51 foci assay and increased sensitivity to platinum chemotherapy and PARP inhibitors. Of clinical relevance, analysis of three different GEA patient cohorts demonstrated that platinum treated HR deficient cancers had better outcomes. A gastric cancer cell line with strong sensitivity to cisplatin showed HR proficiency but exhibited NER deficiency by two photoproduct repair assays. Single-cell RNA-sequencing revealed that, in addition to inducing apoptosis, cisplatin treatment triggered ferroptosis in a NER-deficient gastric cancer, validated by intracellular GSH assay. Overall, our study provides preclinical evidence that a subset of GEAs harbor genomic features of HR and NER deficiency and may therefore benefit from platinum chemotherapy and PARP inhibitors.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Brandon M Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Clare X Morris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Viktoria Tisza
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sandor Spisak
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Pornlada Likasitwatanakul
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Orsolya Rusz
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Michael Cecchini
- Department of Medical Oncology, Center for Gastrointestinal Cancers, Yale Medical Center, New Haven, CT, USA
| | | | | | - Peter Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessalyn Ubellaker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for DNA Damage and Repair (CDDR), Dana-Farber Cancer Institute, Boston, MA, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Bioinformatics and Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA.
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
124
|
Li Y, Fu Q, Fang J, Xu Z, Zhang C, Tan L, Liao X, Wu Y. Analysis of ceRNA Network and Identification of Potential Treatment Target and Biomarkers of Endothelial Cell Injury in Sepsis. Genet Test Mol Biomarkers 2024; 28:133-143. [PMID: 38501698 DOI: 10.1089/gtmb.2023.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background: Sepsis is a complex clinical syndrome caused by a dysregulated host immune response to infection. This study aimed to identify a competing endogenous RNA (ceRNA) network that can greatly contribute to understanding the pathophysiological process of sepsis and determining sepsis biomarkers. Methods: The GSE100159, GSE65682, GSE167363, and GSE94717 datasets were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene coexpression network analysis was performed to find modules possibly involved in sepsis. A long noncoding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network was constructed based on the findings. Single-cell analysis was performed. Human umbilical vein endothelial cells were treated with lipopolysaccharide (LPS) to create an in vitro model of sepsis for network verification. Reverse transcription-polymerase chain reaction, fluorescence in situ hybridization, and luciferase reporter genes were used to verify the bioinformatic analysis. Result: By integrating data from three GEO datasets, we successfully constructed a ceRNA network containing 18 lncRNAs, 7 miRNAs, and 94 mRNAs based on the ceRNA hypothesis. The lncRNA ZFAS1 was found to be highly expressed in LPS-stimulated endothelial cells and may thus play a role in endothelial cell injury. Univariate and multivariate Cox analyses showed that only SLC26A6 was an independent predictor of prognosis in sepsis. Overall, our findings indicated that the ZFAS1/hsa-miR-449c-5p/SLC26A6 ceRNA regulatory axis may play a role in the progression of sepsis. Conclusion: The sepsis ceRNA network, especially the ZFAS1/hsa-miR-449c-5p/SLC26A6 regulatory axis, is expected to reveal potential biomarkers and therapeutic targets for sepsis management.
Collapse
Affiliation(s)
- Yulin Li
- The Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qinghui Fu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Junjun Fang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhipeng Xu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chunhu Zhang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longwei Tan
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Liao
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yao Wu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
125
|
Akiyama H, Zhao R, Ostermann LB, Li Z, Tcheng M, Yazdani SJ, Moayed A, Pryor ML, Slngh S, Baran N, Ayoub E, Nishida Y, Mak PY, Ruvolo VR, Carter BZ, Schimmer AD, Andreeff M, Ishizawa J. Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia. Leukemia 2024; 38:729-740. [PMID: 38148395 PMCID: PMC11082873 DOI: 10.1038/s41375-023-02117-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Resistance to apoptosis in acute myeloid leukemia (AML) cells causes refractory or relapsed disease, associated with dismal clinical outcomes. Ferroptosis, a mode of non-apoptotic cell death triggered by iron-dependent lipid peroxidation, has been investigated as potential therapeutic modality against therapy-resistant cancers, but our knowledge of its role in AML is limited. We investigated ferroptosis in AML cells and identified its mitochondrial regulation as a therapeutic vulnerability. GPX4 knockdown induced ferroptosis in AML cells, accompanied with characteristic mitochondrial lipid peroxidation, exerting anti-AML effects in vitro and in vivo. Electron transport chains (ETC) are primary sources of coenzyme Q10 (CoQ) recycling for its function of anti-lipid peroxidation in mitochondria. We found that the mitochondria-specific CoQ potently inhibited GPX4 inhibition-mediated ferroptosis, suggesting that mitochondrial lipid redox regulates ferroptosis in AML cells. Consistently, Rho0 cells, which lack functional ETC, were more sensitive to GPX4 inhibition-mediated mitochondrial lipid peroxidation and ferroptosis than control cells. Furthermore, degradation of ETC through hyperactivation of a mitochondrial protease, caseinolytic protease P (ClpP), synergistically enhanced the anti-AML effects of GPX4 inhibition. Collectively, our findings indicate that in AML cells, GPX4 inhibition induces ferroptosis, which is regulated by mitochondrial lipid redox and ETC.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Zhao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren B Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Tcheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Samar J Yazdani
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arman Moayed
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malcolm L Pryor
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandeep Slngh
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Ayoub
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuki Nishida
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
126
|
Xiao W, Lai Y, Yang H, Que H. Predictive Role of a Novel Ferroptosis-Related lncRNA Pairs Model in the Prognosis of Papillary Thyroid Carcinoma. Biochem Genet 2024; 62:775-797. [PMID: 37436560 DOI: 10.1007/s10528-023-10447-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
This study aimed to evaluate the potential prognostic value of ferroptosis-related long non-coding RNAs (lncRNAs) in papillary thyroid carcinoma (PTC). Based on The TCGA database, lncRNAs and ferroptosis-related genes with differential expression levels in PTC tumors vs. normal tissues were screened. After the co-expression network construction, ferroptosis-related lncRNAs (FRLs) were screened. Kaplan-Meier analysis was conducted to compare the survival performance of patients with PTC in the high- and low-risk groups. Furthermore, a nomogram was created to enhance PTC prognosis. CIBERSORT was used to investigate the infiltration of various immune cells in high- and low-risk groups. In total, 10 lncRNA pairs with differential expression levels were obtained. There were significant differences in the histological subtype and pathological stage between the high- and low-risk groups, and age (P = 7.39E-13) and FRLM model status (P = 1.09E-04) were identified as independent prognostic factors. Subsequently, the nomogram survival model showed that the predicted one-, three-, and five-year survival rates were similar to the actual one- (c-index = 0.8475), three- (c-index = 0.7964), and five-year (c-index = 0.7555) survival rates. Subjects in the low-risk group had significantly more CD4 + memory T cells and resting myeloid dendritic cells, and subjects in the high-risk group had more plasma B cells and monocytes. The risk assessment model constructed using FRLs showed good predictive value for the prognosis of patients with PTC.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Traditional Chinese Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haojie Yang
- Department of Coloproctology, Yueyang Hospital of Integrated Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai, 200032, China.
| | - Huafa Que
- Department of Traditional Chinese Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
127
|
Zhou Y, Chen Z, Yang M, Chen F, Yin J, Zhang Y, Zhou X, Sun X, Ni Z, Chen L, Lv Q, Zhu F, Liu S. FERREG: ferroptosis-based regulation of disease occurrence, progression and therapeutic response. Brief Bioinform 2024; 25:bbae223. [PMID: 38742521 PMCID: PMC11091744 DOI: 10.1093/bib/bbae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengyun Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xuheng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lu Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qun Lv
- Department of Respiratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
128
|
Xiang S, Yan W, Ren X, Feng J, Zu X. Role of ferroptosis and ferroptosis-related long non'coding RNA in breast cancer. Cell Mol Biol Lett 2024; 29:40. [PMID: 38528461 DOI: 10.1186/s11658-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.
Collapse
Affiliation(s)
- Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xing Ren
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
129
|
Qi YC, Bai H, Hu SL, Li SJ, Li QZ. Coregulatory effects of multiple histone modifications in key ferroptosis-related genes for lung adenocarcinoma. Epigenomics 2024; 16:609-633. [PMID: 38511238 PMCID: PMC11160448 DOI: 10.2217/epi-2023-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Aim: The present study was designed to investigate the coregulatory effects of multiple histone modifications (HMs) on gene expression in lung adenocarcinoma (LUAD). Materials & methods: Ten histones for LUAD were analyzed using ChIP-seq and RNA-seq data. An innovative computational method is proposed to quantify the coregulatory effects of multiple HMs on gene expression to identify strong coregulatory genes and regions. This method was applied to explore the coregulatory mechanisms of key ferroptosis-related genes in LUAD. Results: Nine strong coregulatory regions were identified for six ferroptosis-related genes with diverse coregulatory patterns (CA9, PGD, CDKN2A, PML, OTUB1 and NFE2L2). Conclusion: This quantitative method could be used to identify important HM coregulatory genes and regions that may be epigenetic regulatory targets in cancers.
Collapse
Affiliation(s)
- Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Si-Le Hu
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Shu-Juan Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
- The State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
130
|
Wang H, Li Y, Liu X, Wu Y. Identification and validation of ferroptosis-related gene SLC2A1 as a novel prognostic biomarker in AKI. Aging (Albany NY) 2024; 16:5634-5650. [PMID: 38517368 PMCID: PMC11006501 DOI: 10.18632/aging.205669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Emerging evidence reveals the key role of ferroptosis in the pathophysiological process of acute kidney injury (AKI). Our study aimed to investigate the potential ferroptosis-related gene in AKI through bioinformatics and experimental validation. METHODS The AKI single-cell sequencing dataset was retrieved from the GEO database and ferroptosis-related genes were extracted from the GENECARD website. The potential differentially expressed ferroptosis-related genes of AKI were selected. Functional enrichment analysis was performed. Machine learning algorithms were used to identify key ferroptosis-related genes associated with AKI. A multi-factor Cox regression analysis was used to construct a risk score model. The accuracy of the risk score model was validated using receiver operating characteristic (ROC) curve analysis. We extensively explored the immune landscape of AKI using CIBERSORT tool. Finally, expressions of ferroptosis DEGs were validated in vivo and in vitro by Western blot, ICH and transfection experiments. RESULTS Three hub genes (BAP1, MDM4, SLC2A1) were identified and validated by constructing drug regulatory network and subsequent screening using experimentally determined interactions. The risk mode showed the low-risk group had significantly better prognosis compared to high-risk group. The risk score was independently associated with overall survival. The ROC curve analysis showed that the prognosis model had good predictive ability. Additionally, CIBERSORT immune infiltration analysis suggest that the hub gene may influence cell recruitment and infiltration in AKI. Validation experiments revealed that SLC2A1 functions by regulating ferroptosis. CONCLUSIONS In summary, our study not only identifies SLC2A1 as diagnostic biomarker for AKI, but also sheds light on the role of it in AKI progression, providing novel insights for the clinical diagnosis and treatment of AKI.
Collapse
Affiliation(s)
- Huaying Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China
| |
Collapse
|
131
|
Cao Y, Zhao W, Zhong Y, Jiang X, Mei H, Chang Y, Wu D, Dou J, Vasquez E, Shi X, Yang J, Jia Z, Tan X, Li Q, Dong Y, Xie R, Gao J, Wu Y, Liu Y. Effects of chronic low-level lead (Pb) exposure on cognitive function and hippocampal neuronal ferroptosis: An integrative approach using bioinformatics analysis, machine learning, and experimental validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170317. [PMID: 38301787 DOI: 10.1016/j.scitotenv.2024.170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Lead (Pb), a pervasive and ancient toxic heavy metal, continues to pose significant neurological health risks, particularly in regions such as Southeast Asia. While previous research has primarily focused on the adverse effects of acute, high-level lead exposure on neurological systems, studies on the impacts of chronic, low-level exposure are less extensive, especially regarding the precise mechanisms linking ferroptosis - a novel type of neuron cell death - with cognitive impairment. This study aims to explore the potential effects of chronic low-level lead exposure on cognitive function and hippocampal neuronal ferroptosis. This research represents the first comprehensive investigation into the impact of chronic low-level lead exposure on hippocampal neuronal ferroptosis, spanning clinical settings, bioinformatic analyses, and experimental validation. Our findings reveal significant alterations in the expression of genes associated with iron metabolism and Nrf2-dependent ferroptosis following lead exposure, as evidenced by comparing gene expression in the peripheral blood of lead-acid battery workers and workers without lead exposure. Furthermore, our in vitro and in vivo experimental results strongly suggest that lead exposure may precipitate cognitive dysfunction and induce hippocampal neuronal ferroptosis. In conclusion, our study indicates that chronic low-level lead exposure may activate microglia, leading to the promotion of ferroptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JianRui Dou
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Emely Vasquez
- School of Medicine, The City University of New York School of Medicine, New York, USA
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaochao Tan
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Li
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuying Dong
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ju Gao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
132
|
Yan T, Wang L. Discovering ferroptosis-associated tumor antigens and ferroptosis subtypes in pancreatic adenocarcinoma to facilitate mRNA vaccine development. Heliyon 2024; 10:e27194. [PMID: 38463885 PMCID: PMC10923709 DOI: 10.1016/j.heliyon.2024.e27194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is an aggressive, heterogeneous malignancy. We studied the potential of ferroptosis-related tumor vaccines for PAAD treatment. Ferroptosis-related genes, gene expression profiles, and clinical information were extracted from the FerrDB, UCSC Xena, and International Cancer Genome Consortium databases. Differential expression levels and prognostic indices were calculated, genetic alterations and correlations with immune-infiltrating cells were explored, and consensus clustering analysis was performed to identify ferroptosis subtypes and gene modules. Immune enrichment scores were calculated using gene set enrichment analysis, and gene modules were screened using weighted gene co-expression network analysis. The ferroptosis subtype distribution was visualized using graph learning-based dimensionality reduction analysis of the Monocle package with a Gaussian distribution. We identified four ferroptosis-related tumor antigens, AGPS, KDM5A, NRAS, and OSBPL9, which were associated with pancreatic cancer prognosis and antigen-presenting cell infiltration. We determined three minor ferroptosis subtypes, with different clinical prognosis and tumor immune status. Of the subtypes, FS3 may be more suitable for mRNA therapy. We constructed a PAAD ferroptosis landscape to identify the ferroptosis status of patients and predict their prognosis. Finally, we found that the eigengene of the green module was an independent prognostic factor, with a significantly better prognosis in the high-score group than in the low-score group. In conclusion, we identified four ferroptosis-related genes as targets for mRNA vaccines and three ferroptosis subtypes, providing a theoretical basis for the anti-PAAD mRNA vaccine and defining suitable patients for vaccination.
Collapse
Affiliation(s)
- Ting Yan
- Department of General Surgery, Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lingxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
133
|
Lv X, Jiang J, An Y. Investigating the Potential Mechanisms of Ferroptosis and Autophagy in the Pathogenesis of Gestational Diabetes. Cell Biochem Biophys 2024; 82:279-290. [PMID: 38214812 DOI: 10.1007/s12013-023-01196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024]
Abstract
Ferroptosis and autophagy are two different cellular processes that have recently been highlighted for their potential roles in the pathogenesis and progression of gestational diabetes (GD). This research sought to uncover the crucial genes tied to ferroptosis and autophagy in GD, further investigating their mechanisms. Differentially expressed genes (DEGs) linked to ferroptosis and autophagy in GD were identified using publicly available data. Pathway enrichment, protein interactions, correlation with immune cell infiltration, and diagnostic value of DEGs were analyzed. HTR-8/SVneo cells were subjected to varying glucose levels to evaluate cell viability and the expression of markers related to ferroptosis and proteins associated with autophagy. Crucial DEGs were validated in vitro. A total of 12 DEGs associated with ferroptosis and autophagy in GD were identified, enriched in the PI3K-AKT signaling pathway. These genes exhibited significant correlations with monocyte infiltration, resting CD4 memory T cells, and follicular helper T cells. They exhibited high diagnostic value for GD (AUC: 0.77-0.97). High glucose treatment inhibited cell viability, induced ferroptosis, and activated autophagy in HTR-8/SVneo cells. Validation confirmed altered expression of SNCA, MTDH, HMGB1, TLR4, SOX2, SESN2, and HMOX1 after glucose treatments. In conclusion, ferroptosis and autophagy may play a role in GD development through key genes (e.g., TLR4, SOX2, SNCA, HMOX1, HMGB1). These genes could serve as promising biomarkers for GD diagnosis.
Collapse
Affiliation(s)
- Xiaomei Lv
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jing Jiang
- Department of Obstetrics, The Fourth people's hospital of Jinan, Jinan, 250031, China
| | - Yujun An
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
134
|
Huang P, Ning X, Kang M, Wang R. Ferroptosis-Related Genes Are Associated with Radioresistance and Immune Suppression in Head and Neck Cancer. Genet Test Mol Biomarkers 2024; 28:100-113. [PMID: 38478802 PMCID: PMC10979683 DOI: 10.1089/gtmb.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Background: Ferroptosis is associated with tumor development; however, its contribution to radioresistant head and neck cancer (HNC) remains unclear. In this study, we used bioinformatics analysis and in vitro testing to explore ferroptosis-related genes associated with HNCs radiosensitivity. Materials and Methods: GSE9714, GSE90761, and The Cancer Genome Atlas (TCGA) datasets were searched to identify ferroptosis-related differentially expressed genes between radioresistant and radiosensitive HNCs or radiation-treated and nonradiation-treated HNCs. A protein-protein interaction analysis on identified hub genes was then performed. Receiver operating characteristic curves and Kaplan-Meier survival analysis were used to assess the diagnostic and prognostic potential of the hub genes. Cell counting kit-8, transwell assay, and flow cytometry were applied to examine the role of hub gene collagen type IV, alpha1 chain (COL4A1) on the proliferation, migration, invasion, and apoptosis of TU686 cells. Results: Hub genes MMP10, MMP1, COL4A1, IFI27, and INHBA showed diagnostic potential for HNC and were negatively correlated with overall survival and disease-free survival in the TCGA dataset. Also, IL-1B, IFI27, INHBA, and COL4A1 mRNA levels were significantly increased in TCGA patients with advanced clinical stages or receiving radiotherapy, whereas COL4A1, MMP10, and INHBA expressions were negatively correlated with immune infiltration. Furthermore, the knockdown of COL4A1 inhibited cell proliferation, migration, and invasion while promoting apoptosis in TU686 cells. Conclusion: Ferroptosis-related hub genes, such as COL4A1, are potential diagnostic and prognostic indicators as well as therapeutic targets for HNC.
Collapse
Affiliation(s)
- Ping Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Xuejian Ning
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - RenSheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
135
|
Li Y, Wang B, Sun W, Kong C, Ding J, Hu F, Li J, Chen X, Lu S. Construction of circ_0071922-miR-15a-5p-mRNA network in intervertebral disc degeneration by RNA-sequencing. JOR Spine 2024; 7:e1275. [PMID: 38222808 PMCID: PMC10782064 DOI: 10.1002/jsp2.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 01/16/2024] Open
Abstract
Background Low back pain (LBP) is the main factor of global disease burden. Intervertebral disc degeneration (IVDD) has long been known as the leading reason of LBP. Increasing studies have verified that circular RNAs (circRNAs)-microRNAs (miRNAs)-mRNAs network is widely involved in the pathological processes of IVDD. However, no study was made to demonstrate the circRNAs-mediated ferroptosis, oxidative stress, extracellular matrix metabolism, and immune response in IVDD. Methods We collected 3 normal and 3 degenerative nucleus pulposus tissues to conduct RNA-sequencing to identify the key circRNAs and miRNAs in IVDD. Bioinformatics analysis was then conducted to construct circRNAs-miRNAs-mRNAs interaction network associated with ferroptosis, oxidative stress, extracellular matrix metabolism, and immune response. We also performed animal experiments to validate the therapeutic effects of key circRNAs in IVDD. Results We found that circ_0015435 was most obviously upregulated and circ_0071922 was most obviously downregulated in IVDD using RNA-sequencing. Then we observed that hsa-miR-15a-5p was the key downstream of circ_0071922, and hsa-miR-15a-5p was the top upregulated miRNA in IVDD. Bioinformatics analysis was conducted to predict that 56 immunity-related genes, 29 ferroptosis-related genes, 23 oxidative stress-related genes and 8 ECM-related genes are the targets mRNAs of hsa-miR-15a-5p. Then we constructed a ceRNA network encompassing 24 circRNAs, 6 miRNAs, and 101 mRNAs. Additionally, we demonstrated that overexpression of circ_0071922 can alleviate IVDD progression in a rat model. Conclusions The findings of this study suggested that circ_0071922-miR-15a-5p-mRNA signaling network might affect IVDD by modulating the nucleus pulposus cells ferroptosis, oxidative stress, ECM metabolism, and immune response, which is an effective therapeutic targets of IVDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Baobao Wang
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wenzhi Sun
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chao Kong
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Junzhe Ding
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Feng Hu
- Spine Center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Jianhua Li
- Department of OrthopedicsTianjin Haihe HospitalTianjinChina
| | - Xiaolong Chen
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shibao Lu
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
136
|
Yu X, Liu Z, Yu Y, Qian C, Lin Y, Jin S, Wu L, Li S. Hesperetin promotes diabetic wound healing by inhibiting ferroptosis through the activation of SIRT3. Phytother Res 2024; 38:1478-1493. [PMID: 38234096 DOI: 10.1002/ptr.8121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Hesperetin (HST) is a flavonoid compound naturally occurring in citrus fruits and is widespread in various traditional medicinal herbs such as grapefruit peel, orange peel, and tangerine peel. These plant materials are commonly used in traditional Chinese medicine to prepare herbal remedies. The study aimed to investigate the potential molecular mechanisms through which HST reduces ferroptosis in human umbilical vein endothelial cells (HUVECs) and promotes angiogenesis and wound healing. We employed network pharmacology to predict the downstream targets affected by HST. The expression of markers related to ferroptosis was assessed through Western blot (WB) and polymerase chain reaction. Intracellular levels of ferroptosis-related metabolism were examined using glutathione/oxidized glutathione (GSH/GSSG) and malondialdehyde (MDA) assay kits. Mitochondrial status and iron levels within the cells were investigated through staining with Mitosox, FerroOrange, and JC1 staining. Potential downstream direct targets of HST were identified using molecular docking. Additionally, wound healing and neovascularization within the wound site were analyzed using various methods including HE staining, Masson's staining, immunohistochemistry, and Doppler hemodynamics assessment. HST effectively inhibits the elevated levels of intracellular ferroptosis stimulated by ERASTIN. Furthermore, we observed that HST achieves this inhibition of ferroptosis by activating SIRT3. In a diabetic rat wound model, HST significantly promotes wound healing, reducing levels of tissue ferroptosis, consistent with our in vitro findings. This study demonstrates that HST can inhibit the progression of ferroptosis and protect the physiological function of HUVECs by activating SIRT3. HST holds promise as a natural compound for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Xianbin Yu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhixuan Liu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Yitian Yu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chengjie Qian
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuzhe Lin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shuqing Jin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Long Wu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
137
|
Yang Z, Wang J, Pi J, Hu D, Xu J, Zhao Y, Wang Y. Identification and Validation of Genes Related to Macrophage Polarization and Cell Death Modes Under Mycobacterium tuberculosis Infection. J Inflamm Res 2024; 17:1397-1411. [PMID: 38476473 PMCID: PMC10927374 DOI: 10.2147/jir.s448372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose To investigate the correlation between M1/M2 macrophages (M1/M2 Mφ) and cell death mode under Mycobacterium tuberculosis (Mtb) infection. Methods Raw gene expression profiles were collected from the Gene Expression Omnibus (GEO) database. Genes related to different cell death modes were collected from the KEGG, FerrDb and GSEA databases. The differentially expressed genes (DEGs) of the gene expression profiles were identified using the limma package in R. The intersection genes of M1/M2 Mφ with different cell death modes were obtained by the VennDiagram package. Hub genes were obtained by constructing the protein-protein interactions (PPI) network and Receiver Operating Characteristic (ROC) curve analysis. The expression of cell death modes marker genes and Hub genes were verified by Western Blot and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results Bioinformatics analysis was performed to screen Hub genes of Mtb-infected M1 Mφ and different cell death modes, naming NFKB1, TNF, CFLAR, TBK1, IL6, RELA, SOCS1, AIM2; Hub genes of Mtb-infected M2 Mφ and different cell death modes, naming TNF, BIRC3, MAP1LC3C, DEPTOR, UVRAG, SOCS1. Combined with experimental validation, M1 Mφ under Mtb infection showed higher expression of death (including apoptosis, autophagy, ferroptosis, and pyroptosis) genes compared to M2 Mφ and genes such as NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2, BIRC3, DEPTOR show differential expression. Conclusion NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2 in Mtb-infected M1 Mφ, and TNF, BIRC3, DEPTOR in Mtb-infected M2 Mφ might be used as potential diagnostic targets for TB. At early stage of Mtb infection, apoptosis, autophagy, ferroptosis, and pyroptosis occurred more significantly in M1 Mφ than that in M2 Mφ, which may contribute to the transition of Mtb-infected Mφ from M1-dominant to M2-dominant and contribute to the immune escape mechanisms of Mtb.
Collapse
Affiliation(s)
- Zisha Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Di Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| |
Collapse
|
138
|
Gong Y, Zhang C, Li H, Yu X, Li Y, Liu Z, He R. Ferroptosis-Related lncRNA to Predict the Clinical Outcomes and Molecular Characteristics of Kidney Renal Papillary Cell Carcinoma. Curr Issues Mol Biol 2024; 46:1886-1903. [PMID: 38534739 PMCID: PMC10969180 DOI: 10.3390/cimb46030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Kidney renal papillary cell carcinoma (KIRP) is a highly heterogeneous type of kidney cancer, resulting in limited effective prognostic targets for KIRP patients. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in the regulation of ferroptosis and iron metabolism, making them potential targets for the treatment and prognosis of KIRP. In this study, we constructed a ferroptosis-related lncRNA risk score model (FRM) based on the TCGA-KIRP dataset, which represents a novel subtype of KIRP not previously reported. The model demonstrated promising diagnostic accuracy and holds potential for clinical translation. We observed significant differences in metabolic activities, immune microenvironment, mutation landscape, ferroptosis sensitivity, and drug sensitivity between different risk groups. The high-risk groups exhibit significantly higher fractions of cancer-associated fibroblasts (CAFs), hematopoietic stem cells (HSC), and pericytes. Drugs (IC50) analysis provided a range of medication options based on different FRM typing. Additionally, we employed single-cell transcriptomics to further analyze the impact of immune invasion on the occurrence and development of KIRP. Overall, we have developed an accurate prognostic model based on the expression patterns of ferroptosis-related lncRNAs for KIRP. This model has the potential to contribute to the evaluation of patient prognosis, molecular characteristics, and treatment modalities, and can be further translated into clinical applications.
Collapse
Affiliation(s)
- Yubo Gong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
| | - Chenchen Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
| | - Hao Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
| | - Xiaojie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
| | - Yuejia Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
| | - Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.G.); (C.Z.); (H.L.); (X.Y.); (Y.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
139
|
Wu M, Li K, Liao Y, Li L, Xiao X, Chen Y, Guo J, Hu F, Qu J, Wang Z, Feng H. Multi -omics analysis for ferroptosis -related genes as prognostic factors in cutaneous melanoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:159-174. [PMID: 38755712 PMCID: PMC11103070 DOI: 10.11817/j.issn.1672-7347.2024.230401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Melanoma is highly malignant and heterogeneous. It is essential to develop a specific prognostic model for improving the patients' survival and treatment strategies. Recent studies have shown that ferroptosis results from the overproduction of lipid peroxidation and is an iron-dependent form of programmed cell death. Despite this, ferroptosis-related genes (FRGs) and their clinical significances remain unknown in malignant melanoma. This study aims to assess the role of FRGs in melanoma, with the goal of developing a novel prognostic model that provides new insights into personalized treatment and improvement of therapeutic outcomes for melanoma. METHODS We systematically characterized the genetic alterations and mRNA expression of 73 FRGs in The Cancer Genome Atlas (TCGA)-skin cutaneous melanoma (SKCM) dataset in this study. The results were validated with real-time RT-PCR and Western blotting. Subsequently, a multi-gene feature model was constructed using the TCGA-SKCM cohort. Melanoma patients were classified into a high-risk group and a low-risk group based on the feature model. As a final step, correlations between ferroptosis-related signatures and immune features, immunotherapy efficacy, or drug response were analyzed. RESULTS By analyzing melanoma samples from TCGA-SKCM dataset, FRGs exhibited a high frequency of genetic mutations and copy number variations (CNVs), significantly impacting gene expression. Additionally, compared with normal skin tissue, 30 genes with significantly differential expression were identified in melanoma tissues. A prognostic model related to FRGs, constructed using the LASSO Cox regression method, identified 13 FRGs associated with overall survival prognosis in patients and was validated with external datasets. Finally, functional enrichment and immune response analysis further indicated significant differences in immune cell infiltration, mutation burden, and hypoxia status between the high-risk group and the low-risk group, and the model was effective in predicting responses to immunotherapy and drug sensitivity. CONCLUSIONS This study develops a strong ferroptosis-related prognostic signature model which could put forward new insights into target therapy and immunotherapy for patients with melanoma.
Collapse
Affiliation(s)
- Meng Wu
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002.
| | - Ke Li
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Lan Li
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Yongjian Chen
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Junweichen Guo
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Feng Hu
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002
| | - Jing Qu
- Department of Dermatology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine (Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine), Changsha 410006
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha 410205, China.
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha 410002.
| |
Collapse
|
140
|
Chen J, Zhao R, Wang Y, Xiao H, Lin W, Diao M, He S, Mei P, Liao Y. G protein-coupled estrogen receptor activates PI3K/AKT/mTOR signaling to suppress ferroptosis via SREBP1/SCD1-mediated lipogenesis. Mol Med 2024; 30:28. [PMID: 38383297 PMCID: PMC10880371 DOI: 10.1186/s10020-023-00763-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/25/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. The sex differences in the occurrence and fatality rates of non-small cell lung cancer (NSCLC), along with its association with estrogen dependence, suggest that estrogen receptors (ERs) contribute to the development of NSCLC. However, the influence of G protein-coupled estrogen receptor (GPER1) on NSCLC remains to be determined. Escape from ferroptosis is one of the hallmarks of tumor discovered in recent years. In this context, the present study evaluated whether GPER1 promotes NSCLC progression by preventing ferroptosis, and the underlying mechanism through which GPER1 protects against ferroptosis was also explored. METHODS The effects of GPER1 on the cytotoxicity of H2O2, the ferroptosis inducer RSL3, and Erastin were assessed using the CCK8 assay and plate cloning. Lipid peroxidation levels were measured based on the levels of MDA and BODIPY™581/591C11. GPER1 overexpression and knockdown were performed and G1 was used, and the expression of SCD1 and PI3K/AKT/mTOR signaling factors was measured. Immunofluorescence analysis and immunohistochemistry were performed on paired specimens to measure the correlation between the expression of GPER1 and SCD1 in NSCLC tissues. The effect of GPER1 on the cytotoxicity of cisplatin was measured in vitro using the CCK8 assay and in vivo using xenograft tumor models. RESULTS GPER1 and G1 alleviated the cytotoxicity of H2O2, reduced sensitivity to RSL3, and impaired lipid peroxidation in NSCLC tissues. In addition, GPER1 and G1 promoted the protein and mRNA expression of SCD1 and the activation of PI3K/AKT/mTOR signaling. GPER1 and SCD1 expression were elevated and positively correlated in NSCLC tissues, and high GPER1 expression predicted a poor prognosis. GPER1 knockdown enhanced the antitumor activity of cisplatin in vitro and in vivo. CONCLUSION GPER1 prevents ferroptosis in NSCLC by promoting the activation of PI3K/AKT/mTOR signaling, thereby inducing SCD1 expression. Therefore, treatments targeting GPER1 combined with cisplatin would exhibit better antitumor effects.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingxin Diao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiwen He
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
141
|
Chen Y, Zhang C, Li Y, Tan X, Li W, Tan S, Liu G. Discovery of lung adenocarcinoma tumor antigens and ferroptosis subtypes for developing mRNA vaccines. Sci Rep 2024; 14:3219. [PMID: 38331967 PMCID: PMC10853282 DOI: 10.1038/s41598-024-53622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
mRNA vaccines are becoming a feasible alternative for treating cancer. To develop mRNA vaccines against LUAD, potential antigens were identified and LUAD ferroptosis subtypes distinguished for selecting appropriate patients. The genome expression omnibus, cancer genome atlas (TCGA) and FerrDB were used to collect gene expression profiles, clinical information, and the genes involved in ferroptosis, respectively. cBioPortal was used to visualize and compare genetic alterations, GEPIA2 to calculate prognostic factors of the selected antigens, and TIMER to visualize the relationship between potential antigens and tumor immune cell infiltration. Consensus clustering analysis was utilized to identify ferroptosis subtypes and their prognostic value assessed by Log-rank and cox regression tests. The modules of ferroptosis-related gene screening were conducted by weight gene co-expression network analysis. The LUAD ferroptosis landscape was visualized through dimensionality reduction and graph learning. Six tumor antigens had obvious LUAD-mutations, positively correlated with different antigen-presenting cells, and might induce tumor cell ferroptosis. LUAD patients were stratified into three ferroptosis subtypes (FS1, FS2, and FS3) according to diverse molecular, cellular, and clinical characteristics. FS3 showed the highest tumor mutation burden and the most somatic mutations, deemed potential indicators of mRNA vaccine effectiveness. Moreover, different ferroptosis subtypes expressed distinct immune checkpoints and immunogenic cell death modulators. AGPS, NRAS, MTDH, PANX1, NOX4, and PPARD are potentially suitable for mRNA vaccinations against LUAD, specifically in patients with FS3 tumors. This study defines vaccination candidates and establishes a theoretical basis for LUAD mRNA vaccinations.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Changwen Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Xiaoyu Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Wentao Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Sen Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Guangnan Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China.
| |
Collapse
|
142
|
Huang J, Fan H, Li C, Yang K, Xiong C, Xiong S, Feng S, Chen S, Wang B, Su Y, Xu B, Yang H, Wang N, Zhu J. Dysregulation of ferroptosis-related genes in granulosa cells associates with impaired oocyte quality in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1346842. [PMID: 38390208 PMCID: PMC10882713 DOI: 10.3389/fendo.2024.1346842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Background Poor oocyte quality remains one of the major challenges for polycystic ovary syndrome (PCOS) patients during in vitro fertilization (IVF) treatment. Granulosa cells (GCs) in PCOS display altered functions and could cause an unfavorable microenvironment for oocyte growth and maturation. Ferroptosis is a new form of programmed cell death, but its role in PCOS has been largely unclarified. Methods Ferroptosis-related differentially expressed genes (DEGs) of GCs in women with PCOS were identified by bioinformatic analyses of GSE155489 and GSE168404 datasets. Functional enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Core ferroptosis-related genes were further screened by random forest, and evaluated for diagnostic value by receiver operating characteristic curve analyses. Gene expression was validated by real-time quantitative polymerase chain reaction of collected GC samples, and analyzed for association with oocyte quality. In addition, gene regulatory network was constructed based on predicted RNA interactions and transcription factors, while potential therapeutic compounds were screened through molecular docking with crystallographic protein structures. Results A total of 14 ferroptosis-related DEGs were identified. These DEGs were mainly enriched in reactive oxygen species metabolic process, mitochondrial outer membrane, antioxidant activity as well as ferroptosis and adipocytokine signaling pathways. Eight core ferroptosis-related genes (ATF3, BNIP3, DDIT4, LPIN1, NOS2, NQO1, SLC2A1 and SLC2A6) were further selected in random forest model, which showed high diagnostic performance for PCOS. Seven of them were validated in GC samples, and five were found to be significantly and positively correlated with one or more oocyte quality parameters in PCOS patients, including oocyte retrieval rate, mature oocyte rate, normal fertilization rate, and good-quality embryo rate. Gene regulatory network revealed JUN and HMGA1 as two important transcription factors, while dicoumarol and flavin adenine dinucleotide were predicted as small molecules with therapeutic potential. Conclusions This is the first comprehensive report to study the differential expression of ferroptosis-related genes in GCs of PCOS and their clinical relevance with oocyte quality. Our findings could provide novel insights on the potential role of GC ferroptosis in PCOS pathogenesis, diagnosis, and targeted treatment.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Chenxi Li
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Shenghui Feng
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Shen Chen
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Bangqi Wang
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yufang Su
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Boyun Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ni Wang
- Department of Anesthesiology, Xi’an Children’s Hospital, Xi’an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
143
|
Mei H, Wu D, Yong Z, Cao Y, Chang Y, Liang J, Jiang X, Xu H, Yang J, Shi X, Xie R, Zhao W, Wu Y, Liu Y. PM 2.5 exposure exacerbates seizure symptoms and cognitive dysfunction by disrupting iron metabolism and the Nrf2-mediated ferroptosis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168578. [PMID: 37981141 DOI: 10.1016/j.scitotenv.2023.168578] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
In recent years, air pollution has garnered global attention due to its ability to traverse borders and regions, thereby impacting areas far removed from the emission sources. While prior studies predominantly focused on the deleterious effects of PM2.5 on the respiratory and cardiovascular systems, emerging evidence has highlighted the potential risks of PM2.5 exposure to the central nervous system. Nonetheless, research elucidating the potential influences of PM2.5 exposure on seizures, specifically in relation to neuronal ferroptosis, remains limited. In this study, we investigated the potential effects of PM2.5 exposure on seizure symptoms and seizures-induced hippocampal neuronal ferroptosis. Our findings suggest that seizure patients residing in regions with high PM2.5 levels are more likely to disturb iron homeostasis and the Nrf2 dependent ferroptosis pathway compared to those living in areas with lower PM2.5 levels. The Morris Water Maze test, Racine scores, and EEG recordings in epileptic mice suggest that PM2.5 exposure can exacerbate seizure symptoms and cognitive dysfunction. Neurotoxic effects of PM2.5 exposure were demonstrated via Nissl staining and CCK-8 assays. Direct evidence of PM2.5-induced hippocampal neuronal ferroptosis was provided through TEM images. Additionally, increased Fe2+ and lipid ROS levels indirectly supported the notion of PM2.5-induced hippocampal ferroptosis. Therefore, our study underscores the necessity of preventing and controlling PM2.5 levels, particularly for patients with seizures.
Collapse
Affiliation(s)
- Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zenghua Yong
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Junjie Liang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hua Xu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
144
|
Du R, Huang J. Machine Learning Revealed a Novel Ferroptosis-Based Classification for Diagnosis in Antiretroviral Therapy-Treated HIV Patients with Defective Immune Recovery. AIDS Res Hum Retroviruses 2024; 40:90-100. [PMID: 37031354 DOI: 10.1089/aid.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Abstract
Despite virological suppression, the CD4+ T lymphocytes are not restored in some HIV-infected patients after antiretroviral therapy. These individuals are known as immune non-responders (INRs). INRs are at high risk of developing AIDS and non-AIDS-related events and have a shorter life expectancy. Hence, it is vital to identify INRs early and prevent their complications, but there are still no specific diagnostic indicators or models. Ferroptosis has lately been reported as a type of programmed cell death, which plays an indispensable part in diverse diseases. However, its particular regulatory mechanisms remain unclear and its function in the pathogenic process of defective immunological recovery is still unknown. Blood is mainly used for rapid diagnosis because it enables quick testing. To investigate the role of ferroptosis-related genes (FRGs) in early detection of INRs, we scrutinized Gene Expression Omnibus datasets of peripheral blood samples to estimate their effectiveness. To our knowledge, for the first time, gene expression data were utilized in this study to discover six FRGs that were explicitly expressed in peripheral blood from INRs. Later on, multiple machine-supervised learning algorithms were employed, and a superlative diagnostic model for INRs was built with the random forest algorithm, which displayed satisfactory diagnostic efficiency in the training cohort (area under the curve [AUC] = 0.99) and one external validation cohort (AUC = 0.727). Our findings suggest that FRGs are implicated in the development of defective immune recovery, presenting a potential route for early detection and potential biological targets for the most effective treatment of defective immune recovery.
Collapse
Affiliation(s)
- Ruoyang Du
- Department of Urology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Jianfeng Huang
- Department of Urology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| |
Collapse
|
145
|
Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics 2024; 56:221-234. [PMID: 38073489 DOI: 10.1152/physiolgenomics.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiuyu Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinglan Gu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
146
|
Chen K, Yu Y, Wang Y, Zhu Y, Qin C, Xu J, Zou X, Tao T, Li Y, Jiang Y. Systematic Pharmacology and Experimental Validation to Reveal the Alleviation of Astragalus membranaceus Regulating Ferroptosis in Osteoarthritis. Drug Des Devel Ther 2024; 18:259-275. [PMID: 38318502 PMCID: PMC10843981 DOI: 10.2147/dddt.s441350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Background Astragalus membranaceus (AM) shows promise as a therapeutic agent for osteoarthritis (OA), a debilitating condition with high disability rates. OA exacerbation is linked to chondrocyte ferroptosis, yet the precise pharmacological mechanisms of AM remain unclear. Methods We validated AM's protective efficacy in an anterior cruciate ligament transection (ACLT) mouse model of OA. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database was utilized to identify AM's active components and their targets. FerrDb (a database for regulators and markers of ferroptosis and ferroptosis-disease associations) pinpointed ferroptosis-related targets, while GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), Therapeutic Target Database (TTD), and DrugBank sourced OA-related genes. Molecular docking analysis further validated these targets. Ultimately, the validation of the results was accomplished through in vitro experiments. Results AM exhibited anabolic effects and suppressed catabolism in OA chondrocytes. Network pharmacology identified 19 common genes, and molecular docking suggested quercetin, an AM constituent, interacts with key proteins like HO-1 and NRF2 to inhibit chondrocyte ferroptosis. In vitro experiments confirmed AM's ability to modulate the NRF2/HO-1 pathway via quercetin, mitigating chondrocyte ferroptosis. Conclusion This study elucidates how AM regulates chondrocyte ferroptosis, impacting OA progression, providing a theoretical basis and experimental support for AM's scientific application.
Collapse
Affiliation(s)
- Kai Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yishu Wang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Zhu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chaoren Qin
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jintao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiangjie Zou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianqi Tao
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Li
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
147
|
Li Q, Ling Y, Ma Y, Zhang T, Yang Y, Tao S. Paracrine signaling of ferroptotic airway epithelium in crystalline silica-induced pulmonary fibrosis augments local fibroblast activation through glycolysis reprogramming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115994. [PMID: 38262094 DOI: 10.1016/j.ecoenv.2024.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Chronic exposure to crystalline silica (CS) contributes to pulmonary fibrosis. Airway epithelium dysfunction and fibroblast activation have both been recognized as pivotal players, alongside disturbances in ferroptosis and glycolysis reprogramming. However, the mechanisms involved remain unclear. In this study, we investigated the crosstalk between airway epithelium and fibroblast in the context of CS-induced pulmonary fibrosis. CS was employed in vivo and the in vitro co-culture system of airway epithelium and fibroblast. Spatial transcriptome analysis of CS-induced fibrotic lung tissue was conducted as well. Results showed that epithelium ferroptosis caused by CS enhanced TGFβ1-induced fibroblast activation through paracrine signaling. tPA was further identified to be the central mediator that bridges epithelium ferroptosis and fibroblast activation. And increased fibroblast glycolysis reprogramming was evidenced to promote fibroblast activation. By inhibition of epithelium ferroptosis or silencing tPA of airway epithelium, fibroblast AMPK phosphorylation was inhibited. Moreover, we revealed that tPA secreted by ferroptotic epithelium transmits paracrine signals to fibroblasts by governing glycolysis via p-AMPK/AMPK mediated Glut1 accumulation. Collectively, our study demonstrated the regulation of airway epithelium ferroptosis on fibroblast activation in CS-induced pulmonary fibrosis, which would shed light on the complex cellular crosstalk within pulmonary fibrosis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Qianmin Li
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No.1 Jiankang Road, Yuzhong District, Chongqing 400014, China
| | - Yi Ling
- Suzhou Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yu Ma
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No.1 Jiankang Road, Yuzhong District, Chongqing 400014, China
| | - Tao Zhang
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No.1 Jiankang Road, Yuzhong District, Chongqing 400014, China
| | - Youjing Yang
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No.1 Jiankang Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Emergency Medicine, No.1 Guihuayuan Road, Yuzhong District, Chongqing 400014, China.
| | - Shasha Tao
- Chongqing University Central Hospital & Chongqing Emergency Medical Center, No.1 Jiankang Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Emergency Medicine, No.1 Guihuayuan Road, Yuzhong District, Chongqing 400014, China.
| |
Collapse
|
148
|
Williams CH, Neitzel LR, Cornell J, Rea S, Mills I, Silver MS, Ahmad JD, Birukov KG, Birukova A, Brem H, Tyler B, Bar EE, Hong CC. GPR68-ATF4 signaling is a novel prosurvival pathway in glioblastoma activated by acidic extracellular microenvironment. Exp Hematol Oncol 2024; 13:13. [PMID: 38291540 PMCID: PMC10829393 DOI: 10.1186/s40164-023-00468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.
Collapse
Affiliation(s)
- Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian Mills
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maya S Silver
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jovanni D Ahmad
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
149
|
Huang E, Han H, Qin K, Du X. Delineation and authentication of ferroptosis genes in ventilator-induced lung injury. BMC Med Genomics 2024; 17:31. [PMID: 38254192 PMCID: PMC10804751 DOI: 10.1186/s12920-024-01804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Mechanical ventilation, a critical support strategy for individuals enduring severe respiratory failure and general anesthesia, paradoxically engenders ventilator-induced lung injury (VILI). Ferrostatin-1 mitigates lung injury via ferroptosis inhibition, yet the specific ferroptosis genes contributing significantly to VILI remain obscure. METHODS Leveraging the Gene Expression Omnibus database, we acquired VILI-associated datasets and identified differentially expressed genes (DEGs). To identify the hub genes, we constructed a protein-protein interaction network and used three parameters from CytoHubba. Consequently, we identified hub genes and ferroptosis genes as ferroptosis hub genes for VILI (VFHGs). We conducted enrichment analysis and established receiver operating characteristic (ROC) curves for VFHGs. Subsequently, to confirm the correctness of the VFHGs, control group mice and VILI mouse models, as well as external dataset validation, were established. For further research, a gene-miRNA network was established. Finally, the CIBERSORT algorithm was used to fill the gap in the immune infiltration changes in the lung during VILI. RESULTS We identified 64 DEGs and 4 VFHGs (Il6,Ptgs2,Hmox1 and Atf3) closely related to ferroptosis. ROC curves demonstrated the excellent diagnostic performance of VFHGs in VILI. PCR and external dataset validation of the VILI model demonstrated the accuracy of VFHGs. Subsequently, the gene-miRNA network was successfully established. Ultimately, an Immune cell infiltration analysis associated with VILI was generated. CONCLUSIONS The results emphasize the importance of 4 VFHGs and their involvement in ferroptosis in VILI, confirming their potential as diagnostic biomarkers for VILI.
Collapse
Affiliation(s)
- Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China.
| |
Collapse
|
150
|
Chen Y, Zhang Y, Zhang S, Ren H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J Biomol Struct Dyn 2024:1-19. [PMID: 38229237 DOI: 10.1080/07391102.2023.2298390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/26/2023] [Indexed: 01/18/2024]
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, leads to cell death. Growing evidence suggests the involvement of ferroptosis in sarcopenia. However, the fundamental ferroptosis-related genes (FRGs) for sarcopenia diagnosis, prognosis, and therapy remain elusive. This study aimed to identify molecular biomarkers of ferroptosis in sarcopenia patients. Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between normal and sarcopenia samples were identified using the 'limma' package in R software. FRGs were extracted from GeneCards and FerrDB databases. Functional enrichment analysis determined the roles of DEGs using the 'clusterProfiler' package. A protein-protein network was constructed using Cytoscape software. Immune infiltration analysis and receiver operating characteristic (ROC) analysis were performed. mRNA-miRNA, mRNA-TF, and mRNA-drug interactions were predicted using ENCORI, hTFtarget, and CHIPBase databases. The network was visualized using Cytoscape. We identified 46 FRGs in sarcopenia. Functional enrichment analysis revealed their involvement in critical biological processes, including responses to steroid hormones and glucocorticoids. KEGG enrichment analysis implicated pathways such as carbon metabolism, ferroptosis, and glyoxylate in sarcopenia. Totally, 11 hub genes were identified, and ROC analysis demonstrated their potential as sensitive and specific markers for sarcopenia in both datasets. Additionally, differences in immune cell infiltration were observed between normal and sarcopenia samples. The hub genes identified in this study are closely associated with ferroptosis in sarcopenia and can effectively differentiate sarcopenia from controls. CDKN1A, CS, DLD, FOXO1, HSPB1, LDHA, MDH2, and YWHAZ show high sensitivity and specificity for sarcopenia diagnosis.
Collapse
Affiliation(s)
- Yanzhong Chen
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Yaonan Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Department of orthopedics, Beijing Hospital, Beijing, China
| | - Sihan Zhang
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Hong Ren
- School of Sport Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|