101
|
Ibrahim F, Nakaya T, Mourelatos Z. RNA dysregulation in diseases of motor neurons. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:323-52. [PMID: 22035195 DOI: 10.1146/annurev-pathol-011110-130307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that lead to paralysis and typically carry a dismal prognosis. In children, inherited spinal muscular atrophies are the predominant diseases that affect motor neurons, whereas in adults, amyotrophic lateral sclerosis, which is inherited but mostly sporadic, is the most common MND. In recent years, we have witnessed a revolution in this field, sparked by the discovery of the genes that cause MNDs. Remarkably, at least 10 genes, whose products are either RNA-binding proteins or proteins that function in RNA processing and regulation, cause MNDs and place the dysregulation of RNA pathways at the center of motor neuron degeneration pathogenesis.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
102
|
Abstract
PURPOSE OF REVIEW Degenerative ataxias are a heterogeneous group of disorders that are clinically characterized by progressive ataxia. They can be subdivided into three major groups: the acquired ataxias, which are due to exogenous or endogenous nongenetic causes, the hereditary ataxias, and the nonhereditary degenerative ataxias. On the basis of a review of the literature published in 2009 and 2010, this review gives an update of the most recent developments in the field of ataxia. RECENT FINDINGS Using advanced methods of molecular genetic analysis, novel genes for recessive and dominant ataxias were identified. Recent imaging studies in dominantly inherited spinocerebellar ataxias (SCAs) focussed on the analysis of connectivity in the brain. Novel clinical assessment methods were developed and validated in large patient cohorts. Although a phase 3 trial of idebenone in Friedreich ataxia (FRDA) failed, a smaller phase 2 trial of riluzole in a mixed population of ataxia patients suggested a possible antiataxic action of this compound. SUMMARY Recent molecular advances underline the diversity of degenerative ataxias. With the progress in the development of clinical assessment methods for ataxia, the methodological requirements to run large interventional trials are now met.
Collapse
|
103
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51:1302-19. [PMID: 21782935 DOI: 10.1016/j.freeradbiomed.2011.06.027] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA.
| |
Collapse
|
104
|
Fiesel FC, Kahle PJ. TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration. FEBS J 2011; 278:3550-68. [PMID: 21777389 DOI: 10.1111/j.1742-4658.2011.08258.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 (transactive response binding protein of 43 kDa) and FUS (fused in sarcoma) comprise the neuropathological protein aggregates of distinct subtypes of the neurodegenerative diseases frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Moreover, the genes encoding TDP-43 and FUS are linked to these diseases. Both TDP-43 and FUS contain RNA binding motifs, and specific targets are being identified. Potential actions of TDP-43 and FUS include transcriptional regulation, mRNA processing and micro RNA biogenesis. These activities are probably modulated by interacting proteins in cell type specific manners as well as distinctly within the nucleus and cytosol, as both proteins shuttle between these compartments. In this minireview the specific functions of TDP-43 and FUS are described and discussed in the context of how TDP-43 and FUS may contribute to the pathogenesis of frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fabienne C Fiesel
- Department of Neurodegeneration, Faculty of Medicine, University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
105
|
Skourti-Stathaki K, Proudfoot N, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011; 42:794-805. [PMID: 21700224 PMCID: PMC3145960 DOI: 10.1016/j.molcel.2011.04.026] [Citation(s) in RCA: 618] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/10/2011] [Accepted: 04/18/2011] [Indexed: 11/30/2022]
Abstract
We present a molecular dissection of pause site-dependent transcriptional termination for mammalian RNA polymerase II (Pol II)-transcribed genes. We show that nascent transcripts form RNA/DNA hybrid structures (R-loops) behind elongating Pol II and are especially prevalent over G-rich pause sites positioned downstream of gene poly(A) signals. Senataxin, a helicase protein associated with AOA2/ALS4 neurodegenerative disorders, acts to resolve these R-loop structures and by so doing allows access of the 5'-3' exonuclease Xrn2 at 3' cleavage poly(A) sites. This affords 3' transcript degradation and consequent Pol II termination. In effect, R-loops formed over G-rich pause sites, followed by their resolution by senataxin, are key steps in the termination process.
Collapse
Affiliation(s)
| | - Nicholas J. Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
106
|
Vantaggiato C, Bondioni S, Airoldi G, Bozzato A, Borsani G, Rugarli EI, Bresolin N, Clementi E, Bassi MT. Senataxin modulates neurite growth through fibroblast growth factor 8 signalling. Brain 2011; 134:1808-28. [PMID: 21576111 DOI: 10.1093/brain/awr084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senataxin is encoded by the SETX gene and is mainly involved in two different neurodegenerative diseases, the dominant juvenile form of amyotrophic lateral sclerosis type 4 and a recessive form of ataxia with oculomotor apraxia type 2. Based on protein homology, senataxin is predicted to be a putative DNA/RNA helicase, while senataxin interactors from patients' lymphoblast cell lines suggest a possible involvement of the protein in different aspects of RNA metabolism. Except for an increased sensitivity to oxidative DNA damaging agents shown by some ataxia with neuropathy patients' cell lines, no data are available about possible functional consequences of dominant SETX mutations and no studies address the function of senataxin in neurons. To start elucidating the physiological role of senataxin in neurons and how disease-causing mutations in this protein lead to neurodegeneration, we analysed the effect of senataxin on neuronal differentiation in primary hippocampal neurons and retinoic acid-treated P19 cells by modulating the expression levels of wild-type senataxin and three different dominant mutant forms of the protein. Wild-type senataxin overexpression was required and sufficient to trigger neuritogenesis and protect cells from apoptosis during differentiation. These actions were reversed by silencing of senataxin. In contrast, overexpression of the dominant mutant forms did not affect the regular differentiation process in primary hippocampal neurons. Analysis of the cellular pathways leading to neuritogenesis and cytoprotection revealed a role of senataxin in modulating the expression levels and signalling activity of fibroblast growth factor 8. Silencing of senataxin reduced, while overexpression enhanced, fibroblast growth factor 8 expression levels and the phosphorylation of related target kinases and effector proteins. The effects of senataxin overexpression were prevented when fibroblast growth factor 8 signalling was inhibited, while exogenous fibroblast growth factor 8 reversed the effects of senataxin silencing. Overall, these results reveal a key role of senataxin in neuronal differentiation through the fibroblast growth factor 8 signalling and provide initial molecular bases to explain the neurodegeneration associated with loss-of-function mutations in senataxin found in recessive ataxia. The lack of effect on neuritogenesis observed with the overexpression of the dominant mutant forms of senataxin apparently excludes a dominant negative effect of these mutants while favouring haploinsufficiency as the pathogenic mechanism implicated in the amyotrophic lateral sclerosis 4-related degenerative condition. Alternatively, a different protein function, other than the one involved in neuritogenesis, may be implicated in these dominant degenerative processes.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- E. Medea Scientific Institute, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842 Bosisio Parini, Lecco, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 2011; 12:283-94. [PMID: 21487437 DOI: 10.1038/nrm3098] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pervasiveness of RNA synthesis in eukaryotes is largely the result of RNA polymerase II (Pol II)-mediated transcription, and termination of its activity is necessary to partition the genome and maintain the proper expression of neighbouring genes. Despite its ever-increasing biological significance, transcription termination remains one of the least understood processes in gene expression. However, recent mechanistic studies have revealed a striking convergence among several overlapping models of termination, including the poly(A)- and Sen1-dependent pathways, as well as new insights into the specificity of Pol II termination among its diverse gene targets. Broader knowledge of the role of Pol II carboxy-terminal domain phosphorylation in promoting alternative mechanisms of termination has also been gained.
Collapse
|
108
|
Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 2011; 41:21-32. [PMID: 21211720 PMCID: PMC3314950 DOI: 10.1016/j.molcel.2010.12.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/21/2010] [Accepted: 10/21/2010] [Indexed: 11/23/2022]
Abstract
Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.
Collapse
Affiliation(s)
- Hannah E Mischo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Bohlega SA, Shinwari JM, Al Sharif LJ, Khalil DS, Alkhairallah TS, Al Tassan NA. Clinical and molecular characterization of ataxia with oculomotor apraxia patients in Saudi Arabia. BMC MEDICAL GENETICS 2011; 12:27. [PMID: 21324166 PMCID: PMC3048493 DOI: 10.1186/1471-2350-12-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/16/2011] [Indexed: 11/23/2022]
Abstract
Background Autosomal recessive ataxias represent a group of clinically overlapping disorders. These include ataxia with oculomotor apraxia type1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2) and ataxia-telangiectasia-like disease (ATLD). Patients are mainly characterized by cerebellar ataxia and oculomotor apraxia. Although these forms are not quite distinctive phenotypically, different genes have been linked to these disorders. Mutations in the APTX gene were reported in AOA1 patients, mutations in SETX gene were reported in patients with AOA2 and mutations in MRE11 were identified in ATLD patients. In the present study we describe in detail the clinical features and results of genetic analysis of 9 patients from 4 Saudi families with ataxia and oculomotor apraxia. Methods This study was conducted in the period between 2005-2010 to clinically and molecularly characterize patients with AOA phenotype. Comprehensive sequencing of all coding exons of previously reported genes related to this disorder (APTX, SETX and MRE11). Results A novel nonsense truncating mutation c.6859 C > T, R2287X in SETX gene was identified in patients from one family with AOA2. The previously reported missense mutation W210C in MRE11 gene was identified in two families with autosomal recessive ataxia and oculomotor apraxia. Conclusion Mutations in APTX , SETX and MRE11 are common in patients with autosomal recessive ataxia and oculomotor apraxia. The results of the comprehensive screening of these genes in 4 Saudi families identified mutations in SETX and MRE11 genes but failed to identify mutations in APTX gene.
Collapse
Affiliation(s)
- Saeed A Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riaydh, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
110
|
De Amicis A, Piane M, Ferrari F, Fanciulli M, Delia D, Chessa L. Role of senataxin in DNA damage and telomeric stability. DNA Repair (Amst) 2011; 10:199-209. [PMID: 21112256 DOI: 10.1016/j.dnarep.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/28/2010] [Accepted: 10/30/2010] [Indexed: 11/15/2022]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin (SETX), a putative DNA/RNA helicase. The presence of the helicase domain led us to investigate whether SETX might play a role in DNA damage repair and telomere stability. We analyzed the response of AOA2 lymphocytes and lymphoblasts after treatment with camptothecin (CPT), mitomycin C (MMC), H₂O₂ and X-rays by cytogenetic and Q-FISH (quantitative-FISH) assays. The rate of chromosomal aberrations was normal in AOA2 cells after treatment with CPT, MMC, H₂O₂ and X-rays. Conversely, Q-FISH analysis showed constitutively reduced telomere length in AOA2 lymphocytes, compared to age-matched controls. Furthermore, CPT- or X-ray-induced telomere shortening was more marked in AOA2 than in control cells. The partial co-localization of SETX with telomeric DNA, demonstrated by combined immunofluorescence-Q-FISH and chromatin immunoprecipitation, suggests a possible involvement of SETX in telomere stability.
Collapse
Affiliation(s)
- Andrea De Amicis
- II School of Medicine, Department of Clinical and Molecular Medicine, University La Sapienza, Roma, Italy. andrea.deamicis@unirom
| | | | | | | | | | | |
Collapse
|
111
|
El-Khamisy SF. To live or to die: a matter of processing damaged DNA termini in neurons. EMBO Mol Med 2011; 3:78-88. [PMID: 21246735 PMCID: PMC3377058 DOI: 10.1002/emmm.201000114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/22/2010] [Accepted: 12/08/2010] [Indexed: 11/06/2022] Open
Abstract
Defects in the repair of deoxyribonucleic acid (DNA) damage underpin several hereditary neurological diseases in humans. Of the different activities that repair chromosomal DNA breaks, defects in resolving damaged DNA termini are among the most common causes of neuronal cell death. Here, the molecular mechanisms of some of the DNA end processing activities are reviewed and the association with human neurodegenerative disease is discussed.
Collapse
|
112
|
Merner ND, Dion PA, Rouleau GA. Recent advances in the genetics of distal hereditary motor neuropathy give insight to a disease mechanism involving copper homeostasis that may extend to other motor neuron disorders. Clin Genet 2010; 79:23-34. [DOI: 10.1111/j.1399-0004.2010.01591.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
113
|
Anheim M. [Autosomal recessive cerebellar ataxias]. Rev Neurol (Paris) 2010; 167:372-84. [PMID: 21087783 DOI: 10.1016/j.neurol.2010.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Autosomal recessive cerebellar ataxias (ARCA) are heterogeneous and complex inherited neurodegenerative diseases that may affect the cerebellum and/or the spinocerebellar tract, the posterior column of the spinal cord and the peripheral nerves. Cerebellar ataxia is frequently proeminent and mostly associated with several neurological or extra-neurological signs, leading to a major disability before the age of 30. STATE OF ART Friedreich's ataxia (FRDA) is clearly the most frequent ARCA and several rarer entities have been described during the past fifteen years such as ataxia with oculomotor apraxia type 1 (AOA1) and type 2 (AOA2), ataxia with vitamin E deficiency (AVED) and autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The ACAR are characterized by both allelic and non-allelic genetic heterogeneity. They may be divided into three groups: spino-cerebellar ataxia with pure sensory neuropathy; cerebellar ataxia with sensori-motor axonal neuropathy; pure cerebellar ataxia (i.e. ataxia of purely cerebellar origin that may be associated with other symptoms). Common physiological pathways are involved in several ARCA, such as DNA repair deficiency (AOA1, ataxia telangiectasia [AT]…), RNA termination disorder (AOA2), mitochondrial defect (FRDA, sensory ataxic neuropathy with dysarthria and ophthalmoplegia [Sando]…), lipoprotein assembly defects (AVED, abetalipoproteinemia [ABL]), chaperon protein disorders (ARSACS, Marinesco-Sjögren syndrome [MSS]) or peroxysomal diseases (Refsum disease [RD]). PERSPECTIVES New nanotechnology methods and high throughput gene analysis as well as bioinformatics should lead to the identification of several new ARCAs in the next few years despite the rarity of these entities. However, the challenge of the next decades will be the discovery of efficient treatments for these disabling neurodegenerative disorders. CONCLUSION Clinicians should be aware of the more frequent ARCAs, especially FRDA, in addition to ARCAs for which treatment is available (FRDA, AVED, ABL and RD for instance).
Collapse
Affiliation(s)
- M Anheim
- Service de neurogénétique, hôpital de la Pitié-Salpêtrière, 75651 Paris, France.
| |
Collapse
|
114
|
Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, Gomez CM, Oz G. (1)H MR spectroscopy in Friedreich's ataxia and ataxia with oculomotor apraxia type 2. Brain Res 2010; 1358:200-10. [PMID: 20713024 DOI: 10.1016/j.brainres.2010.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/07/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIM Friedreich's ataxia (FRDA) and ataxia with oculomotor apraxia type 2 (AOA2) are the two most frequent forms of autosomal recessive cerebellar ataxias. However, brain metabolism in these disorders is poorly characterized and biomarkers of the disease progression are lacking. We aimed at assessing the neurochemical profile of the pons, the cerebellar hemisphere and the vermis in patients with FRDA and AOA2 to identify potential biomarkers of these diseases. METHODS Short-echo, single-voxel proton ((1)H) magnetic resonance spectroscopy data were acquired from 8 volunteers with FRDA, 9 volunteers with AOA2, and 38 control volunteers at 4T. Disease severity was assessed by the Friedreich's Ataxia Rating Scale (FARS). RESULTS Neuronal loss/dysfunction was indicated in the cerebellar vermis and hemispheres in both diseases by lower total N-acetylaspartate levels than controls. The putative gliosis marker myo-inositol was higher than controls in the vermis and pons in AOA2 and in the vermis in FRDA. Total creatine, another potential gliosis marker, was higher in the cerebellar hemispheres in FRDA relative to controls. Higher glutamine in FRDA and lower glutamate in AOA2 than controls were observed in the vermis, indicating different mechanisms possibly leading to altered glutamatergic neurotransmission. In AOA2, total N-acetylaspartate levels in the cerebellum strongly correlated with the FARS score (p<0.01). CONCLUSION Distinct neurochemical patterns were observed in the two patient populations, warranting further studies with larger patient populations to determine if the alterations in metabolite levels observed here may be utilized to monitor disease progression and treatment.
Collapse
Affiliation(s)
- Isabelle Iltis
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Motor neurons are large, highly polarised cells with very long axons and a requirement for precise spatial and temporal gene expression. Neurodegenerative disorders characterised by selective motor neuron vulnerability include various forms of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). A rapid expansion in knowledge on the pathophysiology of motor neuron degeneration has occurred in recent years, largely through the identification of genes leading to familial forms of ALS and SMA. The major emerging theme is that motor neuron degeneration can result from mutation in genes that encode factors important for ribonucleoprotein biogenesis and RNA processing, including splicing regulation, transcript stabilisation, translational repression and localisation of mRNA. Complete understanding of how these pathways interact and elucidation of specialised mechanisms for mRNA targeting and processing in motor neurons are likely to produce new targets for therapy in ALS and related disorders.
Collapse
|
116
|
RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33:249-58. [PMID: 20227117 DOI: 10.1016/j.tins.2010.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
The pathogenic mechanisms of degenerative diseases of the nervous system are not well understood. Recent evidence suggests that proteins with a role in RNA synthesis, processing, function and degradation play a role in the mechanism of degenerative disorders affecting the motor neuron. However, most of these proteins also affect cellular processes other than RNA processing. Furthermore, many of the familial diseases are inherited dominantly, suggesting a gain-of-function as their pathogenic mechanism. This newly gained function could be unrelated to their normal role in the cell. Therefore, here we review some of the recent data linking RNA metabolism and motor neuron disorders, but also critically assess their relevance for our understanding of the mechanism of neurodegeneration.
Collapse
|
117
|
Nakamura K, Yoshida K, Makishita H, Kitamura E, Hashimoto S, Ikeda SI. A novel nonsense mutation in a Japanese family with ataxia with oculomotor apraxia type 2 (AOA2). J Hum Genet 2009; 54:746-8. [DOI: 10.1038/jhg.2009.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
118
|
Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics 2009; 184:107-18. [PMID: 19884310 DOI: 10.1534/genetics.109.110031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae SEN1 gene codes for a nuclear-localized superfamily I helicase. SEN1 is an ortholog of human SETX (senataxin), which has been implicated in the neurological disorders ataxia-ocular apraxia type 2 and juvenile amyotrophic lateral sclerosis. Pleiotropic phenotypes conferred by sen1 mutations suggest that Sen1p affects multiple steps in gene expression. Sen1p is embedded in a protein-protein interaction network involving direct binding to multiple partners. To test whether the interactions occur independently or in a dependent sequence, we examined interactions with the RNA polymerase II subunit Rpb1p, which is required for transcription, and Rnt1p, which is required for 3'-end maturation of many noncoding RNAs. Mutations were identified that impair one of the two interactions without impairing the other interaction. The effects of the mutants on the synthesis of U5 small nuclear RNA were analyzed. Two defects were observed, one in transcription termination and one in 3'-end maturation. Impairment of the Sen1p-Rpb1p interaction resulted in a termination defect. Impairment of the Sen1p-Rnt1p interaction resulted in a processing defect. The results suggest that the Sen1p-Rpb1p and Sen1p-Rnt1p interactions occur independently of each other and serve genetically separable purposes in targeting Sen1p to function in two temporally overlapping steps in gene expression.
Collapse
|