101
|
Black AP, Wallace J, Binka M, Butt ZA. The challenges of viral hepatitis elimination: a global response to a global problem. BMC Public Health 2023; 23:1042. [PMID: 37264379 DOI: 10.1186/s12889-023-15960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Antony P Black
- Laboratory for Vaccine-Preventable Diseases, Institut Pasteur du Laos, Vientiane, Laos.
| | - Jack Wallace
- Burnet Institute, Melbourne, Australia.
- Centre for Social Research in Health, UNSW, Kensington, Australia.
| | - Mawuena Binka
- School of Population and Public Health, University of British Columbia, Vancouver, Canada.
| | - Zahid Ahmad Butt
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
102
|
Wang Y, Xie N, Li F, Wang Z, Ding S, Hu X, Wang K. Spatial age-period-cohort analysis of hepatitis B risk in Xinjiang from 2006 to 2019. Front Public Health 2023; 11:1171516. [PMID: 37325304 PMCID: PMC10264624 DOI: 10.3389/fpubh.2023.1171516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Objective The objective of this study was to investigate the spatio-temporal distribution and epidemiological characteristics of hepatitis B in 96 districts and counties of Xinjiang and to give useful information for hepatitis B prevention and treatment. Methods Based on the incidence data of hepatitis B in 96 districts and counties of Xinjiang from 2006 to 2019, the global trend analysis method was used to characterize the spatial variability of the disease, and the spatial autocorrelation and spatio-temporal aggregation analysis were used to explore the spatial clustering of hepatitis B and to identify high-risk areas and periods. The Integrated Nested Laplace Approximation (INLA)-based spatial age-period-cohort model was established to further explore the influence of age, period, birth queue effect, and spatial distribution on the incidence risk of hepatitis B, and sum-to-zero constraint was adopted to avoid the issue of model unrecognition. Results The risk of hepatitis B in Xinjiang is increasing from west to east and from north to south, with spatial heterogeneity and spatio-temporal scanning statistics yielding five clustering areas. The spatial age-period-cohort model showed two peaks in the average risk of hepatitis B, at [25,30) years old and [50,55) years old, respectively. The mean risk of hepatitis B incidence fluctuated up and down around 1 with time, and the average risk of disease by birth cohort displayed an increasing-decreasing-stabilizing trend. Taking age, period, and cohort effect into consideration, it was found that the areas with a high risk of hepatitis B are Tianshan District, Xinshi District, Shuimogou District, Changji City, Aksu City, Kashi City, Korla City, Qiemo County and Yopurga County in Xinjiang. According to the spatio-temporal effect item, it was found that there are unobserved variables affecting the incidence of hepatitis B in some districts and counties of Xinjiang. Conclusion The spatio-temporal characteristics of hepatitis B and the high-risk population needed to be taken into attention. It is suggested that the relevant disease prevention and control centers should strengthen the prevention and control of hepatitis B among young people while paying attention to middle-aged and older adult people, and strengthening the prevention and monitoring of high-risk areas.
Collapse
Affiliation(s)
- Yijia Wang
- College of Mathematics and System Science, Xinjiang University, Urumqi, China
| | - Na Xie
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Fengjun Li
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Zhe Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuzhen Ding
- College of Mathematics and System Science, Xinjiang University, Urumqi, China
| | - Xijian Hu
- College of Mathematics and System Science, Xinjiang University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
103
|
Aronthippaitoon Y, Szerman N, Ngo-Giang-Huong N, Laperche S, Ungeheuer MN, Sureau C, Khamduang W, Gaudy-Graffin C. Are International Units of Anti-HBs Antibodies Always Indicative of Hepatitis B Virus Neutralizing Activity? Vaccines (Basel) 2023; 11:vaccines11040791. [PMID: 37112703 PMCID: PMC10147002 DOI: 10.3390/vaccines11040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Anti-HBs antibodies are elicited upon hepatitis B vaccination, and concentrations above 10 mIU/mL are considered protective. Our aim was to assess the relationship between IU/mL of anti-HBs and neutralization activity. Methods: Immunoglobulins G (IgGs) were purified from individuals who received a serum-derived vaccine (Group 1), a recombinant vaccine, Genevac-B or Engerix-B (Group 2), or who recovered from acute infection (Group 3). IgGs were tested for anti-HBs, anti-preS1, and anti-preS2 antibodies and for their neutralizing activity in an in vitro infection assay. Results: Anti-HBs IUs/mL value did not strictly correlate with neutralization activity. The Group 1 antibodies demonstrated a greater neutralizing activity than those of Group 2. Anti-preS1 antibodies were detected in Groups 1 and 3, and anti-preS2 in Group 1 and Group 2/Genhevac-B, but the contribution of anti-preS antibodies to neutralization could not be demonstrated. Virions bearing immune escape HBsAg variants were less susceptible to neutralization than wild-type virions. Conclusion. The level of anti-HBs antibodies in IUs is not sufficient to assess neutralizing activity. Consequently, (i) an in vitro neutralization assay should be included in the quality control procedures of antibody preparations intended for HB prophylaxis or immunotherapy, and (ii) a greater emphasis should be placed on ensuring that vaccine genotype/subtype matches with that of the circulating HBV.
Collapse
Affiliation(s)
- Yada Aronthippaitoon
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nathan Szerman
- Laboratoire de Bactériologie-Virologie-Hygiène, CHRU, Université of Tours, INSERM U1259, 37044 Tours, France
| | - Nicole Ngo-Giang-Huong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, Agropolis, University of Montpellier, 34394 Montpellier, France
| | - Syria Laperche
- Institut National de la Transfusion Sanguine, CNR Risques Infectieux Transfusionnels, 75015 Paris, France
- Etablissement Français du Sang, La Plaine, 93218 Saint-Denis, France
| | | | - Camille Sureau
- Institut National de la Transfusion Sanguine, CNR Risques Infectieux Transfusionnels, 75015 Paris, France
| | - Woottichai Khamduang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Catherine Gaudy-Graffin
- Laboratoire de Bactériologie-Virologie-Hygiène, CHRU, Université of Tours, INSERM U1259, 37044 Tours, France
| |
Collapse
|
104
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
105
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
106
|
Abstract
Hepatitis B virus (HBV) infection is a major public health problem, with an estimated 296 million people chronically infected and 820 000 deaths worldwide in 2019. Diagnosis of HBV infection requires serological testing for HBsAg and for acute infection additional testing for IgM hepatitis B core antibody (IgM anti-HBc, for the window period when neither HBsAg nor anti-HBs is detected). Assessment of HBV replication status to guide treatment decisions involves testing for HBV DNA, whereas assessment of liver disease activity and staging is mainly based on aminotransferases, platelet count, and elastography. Universal infant immunisation, including birth dose vaccination is the most effective means to prevent chronic HBV infection. Two vaccines with improved immunogenicity have recently been approved for adults in the USA and EU, with availability expected to expand. Current therapies, pegylated interferon, and nucleos(t)ide analogues can prevent development of cirrhosis and hepatocellular carcinoma, but do not eradicate the virus and rarely clear HBsAg. Treatment is recommended for patients with cirrhosis or with high HBV DNA levels and active or advanced liver disease. New antiviral and immunomodulatory therapies aiming to achieve functional cure (ie, clearance of HBsAg) are in clinical development. Improved vaccination coverage, increased screening, diagnosis and linkage to care, development of curative therapies, and removal of stigma are important in achieving WHO's goal of eliminating HBV infection by 2030.
Collapse
Affiliation(s)
- Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - George V Papatheodoridis
- Academic Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Anna S F Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
107
|
da Cunha Rosa LR, Brandão LGVA, Moura WÉA, Campos LR, Pessoni GC, de Oliveira Roque E Lima J, de Moraes JC, Dos Santos Carneiro MA, Teles SA, Caetano KAA. Prevalence, Risk Factors and Vaccine Response against Hepatitis B in People Aged 50 Years or Older. Vaccines (Basel) 2023; 11:vaccines11030597. [PMID: 36992181 DOI: 10.3390/vaccines11030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Universal immunization against hepatitis B has contributed to reducing incidence of the disease, but older individuals remain susceptible to acquiring the hepatitis B virus worldwide. Thus, this study aimed to investigate the epidemiology of HBV infection in individuals aged 50 years and over in central Brazil and to evaluate the immunogenicity of the monovalent vaccine against hepatitis B in this age group using two vaccine regimens. Method: Initially, a cross-sectional and analytical study was carried out to investigate the epidemiology of hepatitis B. Then, individuals without proof of vaccination for hepatitis B were recruited for a phase IV randomized and controlled clinical trial using two vaccine regimens: Intervention Regimen (IR) (three doses of 40 μg at months 0, 1 and 6) vs. Comparison Regimen (CR) (three doses of 20 μg at months 0, 1 and 6). Results: The overall prevalence of exposure to HBV was 16.6% (95% CI: 14.0%–9.5%). In the clinical trial, statistical differences in protective titers were observed (p = 0.007; IR 96% vs. CR 86%) and the geometric mean of anti-HBs titers was higher in individuals who received the IR (518.2 mIU/mL vs. 260.2 mIU/mL). In addition, the proportion of high responders was higher among those who received the IR (65.3%). Conclusion: reinforced doses should be used in individuals aged 50 years or older to overcome the lower efficacy of the vaccine against hepatitis B.
Collapse
Affiliation(s)
| | | | | | - Lays Rosa Campos
- Faculty of Nursing, Federal University of Goias, Goiânia 74605-080, GO, Brazil
| | | | | | - José Cássio de Moraes
- Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo 01224-001, SP, Brazil
| | | | - Sheila Araújo Teles
- Faculty of Nursing, Federal University of Goias, Goiânia 74605-080, GO, Brazil
| | | |
Collapse
|
108
|
Xie YJ, Liu WQ, Li D, Hou JC, Coghi PS, Fan XX. Overcoming Suppressive Tumor Microenvironment by Vaccines in Solid Tumor. Vaccines (Basel) 2023; 11:vaccines11020394. [PMID: 36851271 PMCID: PMC9964970 DOI: 10.3390/vaccines11020394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Conventional vaccines are widely used to boost human natural ability to defend against foreign invaders, such as bacteria and viruses. Recently, therapeutic cancer vaccines attracted the most attention for anti-cancer therapy. According to the main components, it can be divided into five types: cell, DNA, RNA, peptide, and virus-based vaccines. They mainly perform through two rationales: (1) it trains the host immune system to protect itself and effectively eradicate cancer cells; (2) these vaccines expose the immune system to molecules associated with cancer that enable the immune system to recognize and destroy cancer cells. In this review, we thoroughly summarized the potential strategies and technologies for developing cancer vaccines, which may provide critical achievements for overcoming the suppressive tumor microenvironment through vaccines in solid tumors.
Collapse
Affiliation(s)
- Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wen-Qian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Dan Li
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing 101400, China
| | - Jin-Cai Hou
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing 101400, China
| | - Paolo Saul Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (P.S.C.); (X.-X.F.)
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Correspondence: (P.S.C.); (X.-X.F.)
| |
Collapse
|
109
|
Proto-Oncogene FAM50A Can Regulate the Immune Microenvironment and Development of Hepatocellular Carcinoma In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24043217. [PMID: 36834630 PMCID: PMC9966472 DOI: 10.3390/ijms24043217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a vital global health problem. The characteristics are high morbidity, high mortality, difficulty in early diagnosis and insensitivity to chemotherapy. The main therapeutic schemes for treating HCC mainly include Tyrosine kinase inhibitors represented by sorafenib and lenvatinib. In recent years, immunotherapy for HCC has also achieved certain results. However, a great number of patients failed to benefit from systemic therapies. FAM50A belongs to the FAM50 family and can be used as a DNA-binding protein or transcription factor. It may take part in the splicing of RNA precursors. In studies of cancer, FAM50A has been demonstrated to participate in the progression of myeloid breast cancer and chronic lymphocytic leukemia. However, the effect of FAM50A on HCC is still unknown. In this study, we have demonstrated the cancer-promoting effects and diagnostic value of FAM50A in HCC using multiple databases and surgical samples. We identified the role of FAM50A in the tumor immune microenvironment (TIME) and immunotherapy efficacy in HCC. We also proved the effects of FAM50A on the malignancy of HCC in vitro and in vivo. In conclusion, we confirmed that FAM50A is an important proto-oncogene in HCC. FAM50A acts as a diagnostic marker, immunomodulator and therapeutic target for HCC.
Collapse
|
110
|
Zeng Y, Zou F, Xia N, Li S. In-depth review of delivery carriers associated with vaccine adjuvants: current status and future perspectives. Expert Rev Vaccines 2023; 22:681-695. [PMID: 37496496 DOI: 10.1080/14760584.2023.2238807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Vaccines are powerful tools for controlling microbial infections and preventing epidemics. To enhance the immune response to antigens, effective subunit vaccines or mRNA vaccines often require the combination of adjuvants or delivery carriers. In recent years, with the rapid development of immune mechanism research and nanotechnology, various studies based on the optimization of traditional adjuvants or various novel carriers have been intensified, and the construction of vaccine adjuvant delivery systems (VADS) with both adjuvant activity and antigen delivery has become more and more important in vaccine research. AREAS COVERED This paper reviews the common types of vaccine adjuvant delivery carriers, classifies the VADS according to their basic carrier types, introduces the current research status and future development trend, and emphasizes the important role of VADS in novel vaccine research. EXPERT OPINION As the number of vaccine types increases, conventional aluminum adjuvants show limitations in effectively stimulating cellular immune responses, limiting their use in therapeutic vaccines for intracellular infections or tumors. In contrast, the use of conventional adjuvants as VADS to carry immunostimulatory molecules or deliver antigens can greatly enhance the immune boosting effect of classical adjuvants. A comprehensive understanding of the various delivery vehicles will further facilitate the development of vaccine adjuvant research.
Collapse
Affiliation(s)
- Yarong Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Feihong Zou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| |
Collapse
|
111
|
Nanotechnology-Based Nucleic Acid Vaccines for Treatment of Ovarian Cancer. Pharm Res 2023; 40:123-144. [PMID: 36376606 PMCID: PMC9663189 DOI: 10.1007/s11095-022-03434-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Anticancer vaccines represent a promising approach for effective treatment of cancer and along with recent advantages of nucleic acid-based vaccines for other diseases form a prospective and potentially efficacious direction of the research, development and clinical applications. Despite the ongoing several clinical trials of mRNA vaccines for the treatment of various types of cancer, to-date no cancer vaccines were approved by the US Food and Drug Administration. The present review analyzes and summarizes major approaches for treating of different forms of ovarian cancer including mRNA-based vaccines as well as nanotechnology-based approaches for their delivery.
Collapse
|
112
|
Harun MGD, Sumon SA, Mohona TM, Rahman A, Abdullah SAHM, Islam MS, Anwar MMU. Hepatitis B Vaccination Coverage among Bangladeshi Healthcare Workers: Findings from Tertiary Care Hospitals. Vaccines (Basel) 2022; 11:41. [PMID: 36679886 PMCID: PMC9865822 DOI: 10.3390/vaccines11010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Healthcare workers (HCWs) are at a four-fold higher risk of being infected with the hepatitis B virus in hospital settings. This study investigated the hepatitis B vaccination coverage among Bangladeshi HCWs in selected tertiary care hospitals. Between September 2020 to January 2021, a multicenter cross-sectional study was conducted in 11 hospitals across Bangladesh. Participants included physicians, nurses, cleaners, and administrative staff. A semi-structured questionnaire was used to collect data through face-to-face interviews. Descriptive and multivariate statistics were used to analyze the data. The overall hepatitis B vaccination coverage was 66.6% (1363/2046) among HCWs, with cleaning staff having the lowest at 38.8%. Among the unvaccinated, 89.2% of HCWs desired to receive the free vaccine in the near future. In the last year, over one-fourth of staff (27.9%) had at least one history of needlestick injury. Only 9.8% HCWs were found to have attended training on hepatitis B virus prevention and management in the previous two years. Multivariate analysis revealed that physicians (AOR: 7.13, 95% CI: 4.94-10.30) and nurses (AOR: 6.00, 95% CI: 4.09-8.81) were more likely to be vaccinated against hepatitis B than cleaners and administrative staff. Low uptake of hepatitis B vaccination among HCWs suggests policies that require vaccination are needed to achieve optimum vaccine coverage.
Collapse
Affiliation(s)
- Md. Golam Dostogir Harun
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
| | - Shariful Amin Sumon
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
| | - Tahrima Mohsin Mohona
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
| | - Aninda Rahman
- Communicable Disease Control (CDC), Directorate General of Health Services, Government of Bangladesh, Dhaka 1212, Bangladesh
| | | | - Md. Saiful Islam
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia
| | | |
Collapse
|
113
|
Kennedy SP, Treacy O, Allott EH, Eustace AJ, Lynam-Lennon N, Buckley N, Robson T. Precision Medicine and Novel Therapeutic Strategies in Detection and Treatment of Cancer: Highlights from the 58th IACR Annual Conference. Cancers (Basel) 2022; 14:6213. [PMID: 36551698 PMCID: PMC9777219 DOI: 10.3390/cancers14246213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Innovation in both detection and treatment of cancer is necessary for the constant improvement in therapeutic strategies, especially in patients with novel or resistant variants of cancer. Cancer mortality rates have declined by almost 30% since 1991, however, depending on the cancer type, acquired resistance can occur to varying degrees. To combat this, researchers are looking towards advancing our understanding of cancer biology, in order to inform early detection, and guide novel therapeutic approaches. Through combination of these approaches, it is believed that a more complete and thorough intervention on cancer can be achieved. Here, we will discuss the advances and approaches in both detection and treatment of cancer, presented at the 58th Irish Association for Cancer Research (IACR) annual conference.
Collapse
Affiliation(s)
- Sean P. Kennedy
- School of Biological, Health and Sports Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Emma H. Allott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Alex J. Eustace
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St James’s Cancer Institute, Trinity Translational Medicine Institute, St James’s Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
114
|
Hudu SA, Jimoh AO, Ibrahim KG, Alshrari AS. Hepatitis B Therapeutic Vaccine: A Patent Review. Pharmaceuticals (Basel) 2022; 15:1542. [PMID: 36558991 PMCID: PMC9783911 DOI: 10.3390/ph15121542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Viral hepatitis has long been underrated as a danger to global health. The UN only recently called for worldwide action to tackle viral hepatitis and lessen the disease burden in its "2030 Agenda for Sustainable Development". Hepatitis B virus (HBV), which causes liver cirrhosis and malignancy, is a main cause of death globally. This review analyses innovative HBV therapeutic vaccine candidates for which a patent was filed between January 2010 and March 2022 and presents future improvement techniques for vaccine efficacy. Although there is a preventative vaccine for HBV infection, over 3% of people worldwide have the disease on a long-term basis and can no longer benefit from it. Most people will have chronic HBV infection for the rest of their lives once it has been diagnosed. Moreover, only a small percentage of treated patients experience a functional cure with persistent hepatitis B surface antigen reduction. A significant proportion of deaths are caused by liver cirrhosis and hepatocellular cancer, which are both caused by chronic hepatitis B infection. Hence, there is an urgent need for novel medications due to the inadequacies of the current therapies.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Abdulgafar Olayiwola Jimoh
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed Subeh Alshrari
- Department of Basic Health Sciences, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
115
|
Ren W, Wu Z, Liu Y, Qiu Y, Yao J, Ren J. Evaluation of the effect of enhanced immunization in adults: A cross-sectional study in the southeast city of China. Hum Vaccin Immunother 2022; 18:2096972. [PMID: 35878394 DOI: 10.1080/21645515.2022.2096972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The efficacy of hepatitis B vaccination in adults was evaluated by comparison of the positive seroprotection rates and the hepatitis B surface antibody (anti-HBs) geometric mean titers (GMTs) between intensive intervention areas and non-intensive intervention areas after 8 years post-vaccination in the Zhejiang province. Seven cities (towns) in Zhejiang province were selected as intensive intervention areas, and adults in the demonstration areas receive hepatitis B vaccine voluntarily and for free. Other areas were non-intensive intervention areas. A total of 3587 participants received the full vaccination course (three doses), and blood samples were withdrawn 8 years after the first vaccination comprised the immunized group, and 2000 participants constituted the control group. The anti-HBs positive seroprotection rates of the immunized and control groups were 65.0% and 53.0%, respectively. The anti-HBs GMT of the subjects in the immunized group was 26.30 mIU/mL compared to 9.33 mIU/mL in the control group (P < .001). Significant differences were detected in the 24-35-, 36-45-, and 46-55-year-old subgroups in the positive seroprotection rates and the anti-HBs GMTs (P < .001) between the immunized and control groups. Moreover, significant differences were found in the anti-HBs GMT in the 46-55-year-old subgroup between the two groups (P = .02), while no differences were observed in the positive seroprotection rate (P = .428). In conclusion, adults who did not receive the hepatitis B vaccine in infancy and had negative serological markers of hepatitis B, especially adults <47-years-old, need vaccination.
Collapse
Affiliation(s)
- Wen Ren
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zikang Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Qiu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yao
- Department of Immunology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jingjing Ren
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
116
|
Nakai Y, Miyakawa K, Yamaoka Y, Hatayama Y, Nishi M, Suzuki H, Kimura H, Takahashi H, Kimura Y, Ryo A. Generation and Utilization of a Monoclonal Antibody against Hepatitis B Virus Core Protein for a Comprehensive Interactome Analysis. Microorganisms 2022; 10:microorganisms10122381. [PMID: 36557634 PMCID: PMC9783060 DOI: 10.3390/microorganisms10122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatitis B virus (HBV) core antigen (HBc) is a structural protein that forms the viral nucleocapsid and is involved in various steps of the viral replication cycle, but its role in the pathogenesis of HBV infection is still elusive. In this study, we generated a mouse monoclonal antibody (mAb) against HBc and used it in antibody-based in situ biotinylation analysis in order to identify host proteins that interact with HBc. HBc antigen was produced with a wheat germ cell-free protein synthesis system and used to immunize mice. Among the established hybridoma clones, a single clone (mAb #7) was selected and further characterized for its ability in the antibody-based in situ biotinylation analysis to collect host proteins that are in the vicinity of HBc. Using mass spectrometry, we identified 215 HBc-interacting host proteins, three of which bind HBc most significantly under hypoxic conditions. Our results indicate that mAb #7 can be used to systematically identify host proteins that interact with HBc under pathophysiological conditions, and thus may be useful to explore the molecular pathways involved in HBV-induced cytopathogenesis.
Collapse
Affiliation(s)
- Yusuke Nakai
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara 259-1146, Japan
| | - Yasuyoshi Hatayama
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Takasaki 370-0006, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
- Correspondence: ; Tel.: +81-45-787-2602
| |
Collapse
|
117
|
Wallace J, Richmond J, Howell J, Hajarizadeh B, Power J, Treloar C, Revill PA, Cowie B, Wang S, Stoové M, Pedrana A, Hellard M. Exploring the Public Health and Social Implications of Future Curative Hepatitis B Interventions. Viruses 2022; 14:2542. [PMID: 36423153 PMCID: PMC9693003 DOI: 10.3390/v14112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis B is a significant global health issue where the 296 million people estimated to live with the infection risk liver disease or cancer without clinical intervention. The World Health Organization has committed to eliminating viral hepatitis as a public health threat by 2030, with future curative hepatitis B interventions potentially revolutionizing public health responses to hepatitis B, and being essential for viral hepatitis elimination. Understanding the social and public health implications of any cure is imperative for its successful implementation. This exploratory research, using semi-structured qualitative interviews with a broad range of professional stakeholders identifies the public health elements needed to ensure that a hepatitis B cure can be accessed by all people with hepatitis B. Issues highlighted by the experience of hepatitis C cure access include preparatory work to reorientate policy settings, develop resourcing options, and the appropriateness of health service delivery models. While the form and complexity of curative hepatitis B interventions are to be determined, addressing current disparities in cascade of care figures is imperative with implementation models needing to respond to the cultural contexts, social implications, and health needs of people with hepatitis B, with cure endpoints and discourse being contested.
Collapse
Affiliation(s)
- Jack Wallace
- Burnet Institute, Melbourne, VIC 3004, Australia
- Australian Research Centre in Sex, Health and Society, Latrobe University, Bundoora, VIC 3083, Australia
- Centre for Social Research in Health, UNSW, Sydney, NSW 2052, Australia
| | | | - Jessica Howell
- Burnet Institute, Melbourne, VIC 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jennifer Power
- Australian Research Centre in Sex, Health and Society, Latrobe University, Bundoora, VIC 3083, Australia
| | - Carla Treloar
- Centre for Social Research in Health, UNSW, Sydney, NSW 2052, Australia
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin Cowie
- WHO Collaborating Centre for Viral Hepatitis, Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Su Wang
- Center for Asian Health, Saint Barnabas Medical Center, RWJBarnabas-Rutgers Medical Group, Florham Park, NJ 07039, USA
| | - Mark Stoové
- Burnet Institute, Melbourne, VIC 3004, Australia
| | | | - Margaret Hellard
- Burnet Institute, Melbourne, VIC 3004, Australia
- Department of Infectious Diseases, Alfred Health & Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
118
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
119
|
Rahmani A, Montecucco A, Kusznir Vitturi B, Debarbieri N, Dini G, Durando P. Long-Term Effectiveness of Hepatitis B Vaccination in the Protection of Healthcare Students in Highly Developed Countries: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:1841. [PMID: 36366350 PMCID: PMC9695994 DOI: 10.3390/vaccines10111841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/05/2023] Open
Abstract
Hepatitis B virus represents an important global health problem. In highly developed countries, mass vaccination campaigns of newborns in recent decades have drastically reduced the proportion of carriers. However, workers exposed to blood and body fluids, including healthcare students, can be at risk of exposure. In order to assess the proportion of susceptible individuals in the specific population of healthcare students in highly developed countries, a systematic review and meta-analysis was performed to summarize the evidence on the persistence of humoral immune protection induced by the primary cycle of hepatitis B vaccination, as well as the proportion of true non-responders. Forty-six studies were included in the final analysis (52,749 participants). Overall, the seroprotection prevalence at the pre-exposure assessment was equal to 73.8% (95% CI 69.1-78.0); the prevalence of anamnestic response following the administration of a challenge dose was 90.9% (95% CI 87.7-93.3), demonstrating a high proportion of persistence of vaccination-induced immunity. Among those without evidence of anamnestic response, 5.0% (95% CI 2.1-11.5) were non-responders following the completion of a secondary immunization cycle. These findings demonstrate that the majority of healthcare students vaccinated with the complete HBV primary cycle maintain an effective humoral immunity against this pathogen for over two decades.
Collapse
Affiliation(s)
- Alborz Rahmani
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Alfredo Montecucco
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Nicoletta Debarbieri
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Guglielmo Dini
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Durando
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
120
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
121
|
White MC, Wu X, Damania B. Oncogenic viruses, cancer biology, and innate immunity. Curr Opin Immunol 2022; 78:102253. [PMID: 36240666 DOI: 10.1016/j.coi.2022.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Malignancies that arise as a result of viral infection account for roughly 15% of cancer cases worldwide. The innate immune system is the body's first line of defense against oncogenic viral infection and is also involved in the response against viral-driven tumors. In this review, we discuss research advances made over the last five years elucidating how the innate immune system recognizes and responds to oncogenic viruses, how these viruses have evolved to escape this immune pressure, and ways that innate immunity can inform the development of novel therapeutics against oncogenic viral infection and their associated cancers.
Collapse
Affiliation(s)
- Maria C White
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinjun Wu
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
122
|
Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer. Diseases 2022; 10:60. [PMID: 36135216 PMCID: PMC9498256 DOI: 10.3390/diseases10030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shubham Dutta
- MassBiologics, UMass Chan Medical School, Boston, MA 02126, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
123
|
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses 2022; 14:v14091939. [PMID: 36146747 PMCID: PMC9503375 DOI: 10.3390/v14091939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Mohube B. Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- Correspondence:
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Anna Kramvis
- Hepatitis Diversity Research Unit, Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kubendran Naidoo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Omphile E. Simani
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tongai G. Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
124
|
The effectiveness of 20 μg hepatitis B vaccine used for the prevention of HBV vertical transmission. Sci Rep 2022; 12:11759. [PMID: 35817837 PMCID: PMC9273617 DOI: 10.1038/s41598-022-15744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
To evaluate the efficiency of a 20 μg hepatitis B vaccine(HepB) for disease prevention in two counties in Henan Province, China. A questionnaire was designed to examine the information of hepatitis B surface antigen (HBsAg) positive pregnant women, and their blood samples were collected to test for hepatitis B e antigen (HBeAg), hepatitis B e antibody, and hepatitis B virus (HBV) DNA. Three doses of 20 μg HepB and one dose of hepatitis B immune globulin(HBIG) were administered to newborns. Blood samples were collected from children one month after their complete immunization to test for HBsAg and hepatitis B surface antibody(HBsAb). A total of 419 HBsAg positive-pregnant women and 430 newborns were investigated. The average age of pregnant women was 29.6 ± 4.3 years, with an HBeAg positive rate of 29.1% (122/419). All newborns received their first dose of 20 μg hepatitis B vaccine and 100 IU HBIG within 12 h after birth. Six infants (1.9%, 6/319) tested positive for HBsAg and negative for HBsAb after one month of receiving the three basic doses of HepB. The geometric mean concentration(GMC) of HBsAb-positive infants was 861.6 mIU/mL, and their HBsAb antibody titers decreased with age. Immunization of children born to HBsAg-positive mothers with 20 μg HepB got the satisfactory effect on preventing mother-to-child transmission.
Collapse
|
125
|
Abouqal R, Beji M, Chakroun M, Marhoum El Filali K, Rammaoui J, Zaghden H. Trends in Adult and Elderly Vaccination: Focus on Vaccination Practices in Tunisia and Morocco. Front Public Health 2022; 10:903376. [PMID: 35844850 PMCID: PMC9286557 DOI: 10.3389/fpubh.2022.903376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Vaccine preventable diseases (VPDs) are a prevailing concern among the adult population, despite availability of vaccines. Unlike pediatric vaccination programs, adult vaccination programs lack the required reach, initiative, and awareness. Clinical studies and real-world data have proven that vaccines effectively reduce the disease burden of VPDs and increase life expectancy. In Tunisia and Morocco, the national immunization program (NIP) focuses more on pediatric vaccination and have limited vaccination programs for adults. However, some vaccination campaigns targeting adults are organized. For example, influenza vaccination campaigns prioritizing at risk adults which includes healthcare professionals, elderly, and patients with comorbidities. Women of childbearing age who have never been vaccinated or whose information is uncertain are recommended to receive tetanus vaccination. Tunisia NIP recommends rubella vaccine mainly for women of childbearing age, while in Morocco, national vaccination campaigns were organized for girls and women (up to 24 years of age) to eliminate rubella. Further, travelers from both countries are recommended to follow all requirements and recommendations in the travel destination. The objective of this manuscript is to provide an overview of the global disease burden of common VPDs including (but not limited to) meningococcal diseases, pneumococcal diseases, hepatitis, and influenza. The review also provides an overview of clinical data and guidelines/recommendations on adult vaccination practices, with special focus on Tunisia and Morocco. Some European and North American countries have concrete recommendations and strategies for adult vaccination to keep the VPDs in check. In Morocco and Tunisia, although, there are sporadic adult vaccination initiatives, the efforts still need upscaling and endorsements to boost vaccination awareness and uptake. There is a need to strengthen strategies in both countries to understand the disease burden and spread awareness. Additional studies are needed to generate economic evidence to support cost-effectiveness of vaccines. Integration of private and public healthcare systems may further improve vaccination uptake in adults.
Collapse
Affiliation(s)
- Redouane Abouqal
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Acute Medical Unit, Ibn Sina University Hospital, Rabat, Morocco
| | - Maher Beji
- Department of Internal Medicine, Military Hospital Bizerte, Bizerte, Tunisia
- Faculty of Medicine of Tunis, University El Manar, Tunis, Tunisia
- Tunisian Society of Tropical Medicine and Travel, Tunis, Tunisia
| | - Mohamed Chakroun
- Infectious Diseases Department, University Hospital, Monastir, Tunisia
| | | | | | | |
Collapse
|
126
|
Pang Y, Eresen A, Zhang Z, Hou Q, Wang Y, Yaghmai V, Zhang Z. Adverse events of sorafenib in hepatocellular carcinoma treatment. Am J Cancer Res 2022; 12:2770-2782. [PMID: 35812068 PMCID: PMC9251699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 01/05/2023] Open
Abstract
Sorafenib is an oral multikinase inhibitor approved by the US Food and Drug Administration for treatment of the patients with surgically unresectable hepatocellular carcinoma (HCC). Sorafenib mitigates angiogenesis by targeting vascular endothelial growth factor receptors and platelet-derived growth factor receptors in endothelial cells and pericytes. Moreover, it suppresses cell proliferation via blockage of B-RAF and RAF1 of the mitogen-activated protein kinase pathway in tumor cells. Sorafenib has been the standard molecular targeted medication in the treatment of advanced-stage HCC patients ineligible for potentially curative interventional (radiofrequency or microwave ablation) or palliative trans-arterial chemoembolization (TACE) therapies for over a decade. However, it only increases overall survival by less than 3 months, and systemic exposure to sorafenib causes clinically significant toxicities (about 50% of patients). Given the high frequency and severity of these toxicities, sorafenib dose must be often reduced or discontinued altogether. In this review, we discussed the mechanism of sorafenib-associated adverse events and their management during HCC treatment.
Collapse
Affiliation(s)
- Yongsheng Pang
- Department of Radiological Sciences, University of California Irvine Irvine, CA, USA
| | - Aydin Eresen
- Department of Radiological Sciences, University of California Irvine Irvine, CA, USA
| | - Zigeng Zhang
- Department of Radiological Sciences, University of California Irvine Irvine, CA, USA
| | - Qiaoming Hou
- Department of Radiological Sciences, University of California Irvine Irvine, CA, USA
| | - Yining Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California Irvine Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiological Sciences, University of California Irvine Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine Irvine, CA, USA.,Department of Biomedical Engineering, University of California Irvine Irvine, CA, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine Irvine, CA, USA
| |
Collapse
|
127
|
Vishweshwaraiah YL, Dokholyan NV. Toward rational vaccine engineering. Adv Drug Deliv Rev 2022; 183:114142. [PMID: 35150769 PMCID: PMC8931536 DOI: 10.1016/j.addr.2022.114142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Technological revolutions in several fields have pushed the boundaries of vaccine design and provided new avenues for vaccine development. Next-generation vaccine platforms have shown promise in targeting challenging antigens, for which traditional approaches have been ineffective. With advances in protein engineering, structural biology, computational biology and immunology, the structural vaccinology approach, which uses protein structure information to develop immunogens, holds promise for future vaccine design. In this review, we highlight various vaccine development strategies, along with their advantages and limitations. We discuss the rational vaccine design approach, which focuses on structure-based vaccine design. Finally, we discuss antigen engineering using the epitope-scaffold approach, gaps in structural vaccinology, and remaining challenges in vaccine design.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
128
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. Mapping Intellectual Structure for the Long Non-Coding RNA in Hepatocellular Carcinoma Development Research. Front Genet 2022; 12:771810. [PMID: 35047004 PMCID: PMC8762053 DOI: 10.3389/fgene.2021.771810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Emerging research suggests that long non-coding RNAs (lncRNAs) play an important role in a variety of developmental or physiological processes of hepatocellular carcinoma (HCC). Various differentially expressed lncRNAs have been identified in HCC. Thus, a deeper analysis of recent research concerning lncRNA and HCC development could provide scientists with a valuable reference for future studies. Methods: Related publications were retrieved from the Web of Science Core Collection database. CiteSpace version 5.6.R4 was employed to conduct bibliometric analysis. Several network maps were constructed to evaluate the collaborations between different countries, institutions, authors, journals, and keywords. Results: A total of 2,667 records were initially found from the year of 2010–2020. The annual related publications output had increased dramatically during these years. Although China was the most prolific country in terms of research publication, the United States played a leading role in collaborative network. The Nanjing Medical University was the most productive institute in the field of lncRNAs in HCC development. Gang Chen was the most prolific researcher, while Yang F was the most frequently co-cited author. Oncotarget, Cell, and Oncogene were the most highly co-cited journals. The most recent burst keywords were interaction, database, and pathway. Conclusion: This study provides a comprehensive overview for the field of lncRNAs in HCC development based on bibliometric and visualized methods. The results would provide a reference for scholars focusing on this field.
Collapse
Affiliation(s)
- Zhifeng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
129
|
The Course of Anti-HBc Antibodies over Time in Immunocompromised Hosts. Vaccines (Basel) 2022; 10:vaccines10020137. [PMID: 35214596 PMCID: PMC8877063 DOI: 10.3390/vaccines10020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis B virus infection results in the appearance of anti-HBc antibodies that normally persist lifelong. We analyzed the course of anti-HBc antibodies overtime, focusing on patients with a permanent loss or fluctuating anti-HBc antibodies. From 120,531 patients tested for anti-HBc antibodies (Architect, Abbott) from January 2006 to December 2020, ≥4 serial values were available in 8098 and permanent or intermittent anti-HBc loss was observed in 139 patients. It was relatively frequent in baseline anti-HBc positive, immunocompromised patients with available serial measurements of anti-HBc overtime (13% of hematologic/oncologic patients, 10% of solid organ transplant recipients, and 6% of HIV patients compared to 3% in patients with other diseases). In the same period, 12,607 samples were tested for HBsAg, anti-HBc antibodies, and HBV DNA—in nine cases we detected HBV DNA with undetectable anti-HBc and HBsAg. In four out of nine cases contamination of the PCR during processing was the likeliest cause, in another four, no further data were available, while in one the HBV DNA was later followed by a temporary anti-HBc seroconversion. In conclusion, permanent or intermittent anti-HBc loss is more common in immunocompromised hosts than in patients with other underlying diseases. Furthermore, anti-HBc and HBsAg assays can be safely used to exclude an active HBV infection, even in immunocompromised hosts.
Collapse
|
130
|
Din A, Li Y. Mathematical analysis of a new nonlinear stochastic hepatitis B epidemic model with vaccination effect and a case study. EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:558. [PMID: 35542829 PMCID: PMC9073523 DOI: 10.1140/epjp/s13360-022-02748-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 05/13/2023]
Abstract
This work present a detailed analysis of a stochastic delayed model which governs the transmission mechanism of the Hepatitis B virus (HBV) while considering the white noises and the effect of vaccinations. It is assumed that the perturbations are nonlinear and an individual may lose his/her immunity after the vaccination, that is, the vaccination can produce temporal immunity. Based on the characteristics of the disease and the underlying assumptions, we formulated the associated deterministic model for which the threshold parameter R 0 D is calculated. The model was further extended to a stochastic model and it is well-justified that the model is both mathematically and biologically feasible by showing that the model solution exists globally, bounded stochastically and is positive. By utilizing the concepts of stochastic theory and by constructing appropriate Lyapunov functions, we developed the theory for the extinction and persistence of the disease. Further, it is shown that the model is ergodic and has a unique stationary distribution. The stochastic bifurcation theory is utilized and a detailed bifurcation analysis of the model is presented. By using the standard curve fitting tools, we fitted the model against the available HBV data in Pakistan from March 2018 to February 2019 and accordingly the parameters of the model were estimated. These estimated values were used in simulating the model, theoretical findings of the study are validated through simulations and predictions were drawn. Simulations suggest that for a complete understanding of HBV dynamics, one must include time delay into such studies, and improvements in every vaccination program are unavoidable.
Collapse
Affiliation(s)
- Anwarud Din
- Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275 P. R. China
| | - Yongjin Li
- Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275 P. R. China
| |
Collapse
|
131
|
Dowell AC, Haigh TA, Ryan GB, Turner JE, Long HM, Taylor GS. Cytotoxic CD4+ T-cells specific for EBV capsid antigen BORF1 are maintained in long-term latently infected healthy donors. PLoS Pathog 2021; 17:e1010137. [PMID: 34882759 PMCID: PMC8691624 DOI: 10.1371/journal.ppat.1010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/21/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development. Epstein-Barr virus is a widespread herpesvirus carried by most individuals. Whilst infection is usually asymptomatic, development of a prophylactic vaccine against EBV is desirable because of the virus’s association with infectious mononucleosis in primary infection and several cancers and autoimmune diseases during long-term virus carriage. Identifying T-cell responses that can recognise newly infected B-cells at very early stages of infection may provide novel targets for T-cell vaccination. Here we characterise T-cell responses against three virus proteins, BcLF1, BDLF1 and BORF1 that, as structural proteins of the virus particle, are delivered into the cell by the infecting virus. We find that all three proteins are recognised by T-cells from infected individuals. Moreover, isolated structural antigen-specific CD4+ T-cells rapidly recognise newly infected B-cells and prevent their outgrowth in vitro. As reported for CD4+ T-cells against other EBV proteins, structural antigen-specific CD4+ T-cells induced by primary EBV infection have cytotoxic function. However, we also demonstrate that, unusually, this cytotoxic function is retained in memory T-cells present in long-term infected individuals. Structural antigens may therefore represent useful targets for prophylactic EBV vaccine development to induce CD4+ T-cells able to rapidly eliminate virus-infected cells.
Collapse
Affiliation(s)
- Alexander C. Dowell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tracey A. Haigh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gordon B. Ryan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|