101
|
Enrichment and in vitro features of the putative gonocytes from cryopreserved testicular tissue of neonatal bulls. Andrology 2016; 4:1150-1158. [DOI: 10.1111/andr.12229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
|
102
|
Abdul Wahab AY, Md. Isa ML, Ramli R. Spermatogonial Stem Cells Protein Identification in In Vitro Culture from Non-Obstructive Azoospermia Patient. Malays J Med Sci 2016; 23:40-48. [PMID: 27418868 PMCID: PMC4934717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/22/2016] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are classifiedas a unique adult stem cells that have capability to propagate, differentiate, and transmit genetic information to the next generation. Studies on human SSCs may help resolve male infertility problems, especially in azoospermia patients. Therefore, this study aims to propagate SSCs in-vitro with a presence of growth factor and detect SSC-specific protein cell surface markers. METHODS The sample was derived from non-obstructive azoospermic (NOA) patient. The disassociation of SSCs was done using trypsin. Specific cultures in serum-free media with added basic fibroblast growth factor (bFGF) were developed to support self-renewal division. This undifferentiated protocol was performed for 49 days. Cells were analysed on days 1, 7, 14, 21, and 49. RESULTS Human SSCs began to aggregate and form colonies after 14 to 21 days in specific culture. Then, the cells were successful expanded and remained stable for a duration of 49 days. Four specifics markers were identified using immunofluorescence in SSCs on day 49: ITGα6, ITGβ CD9, and GFRα1. CONCLUSION This approach of using in vitro culture with additional growth factor is able to propagate SSCs from non-obstructive azoospermia patient via detection of protein cell surface markers.
Collapse
Affiliation(s)
- Azantee Yazmie Abdul Wahab
- Department of Obstetrics & Gyanecology (O&G), Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Jalan Hospital Campus, 25150 Kuantan, Pahang, Malaysia
| | - Muhammad Lokman Md. Isa
- Department of Basic Medical Science of Nursing, Kulliyyah of Nursing, International Islamic University Malaysia (IIUM) Jalan Hospital Campus, 25150 Kuantan, Pahang, Malaysia
| | - Roszaman Ramli
- IIUM Fertility Centre, International Islamic University Malaysia (IIUM) Jalan Hospital Campus, 25150 Kuantan, Pahang, Malaysia
| |
Collapse
|
103
|
Wang H, Wen L, Yuan Q, Sun M, Niu M, He Z. Establishment and applications of male germ cell and Sertoli cell lines. Reproduction 2016; 152:R31-40. [PMID: 27069011 DOI: 10.1530/rep-15-0546] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/08/2016] [Indexed: 01/03/2023]
Abstract
Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferate in vitro and the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant of p53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center
| | - Liping Wen
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center
| | - Min Sun
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center
| | - Zuping He
- State Key Laboratory of Oncogenes and Related GenesRenji-Med X Clinical Stem Cell Research Center Shanghai Institute of AndrologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China Shanghai Key Laboratory of Assisted Reproduction and Reproductive GeneticsShanghai, China Shanghai Key Laboratory of Reproductive MedicineShanghai, China
| |
Collapse
|
104
|
Li L, Wang M, Wang M, Wu X, Geng L, Xue Y, Wei X, Jia Y, Wu X. A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis 2016; 7:e2140. [PMID: 26962690 PMCID: PMC4823932 DOI: 10.1038/cddis.2016.24] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022]
Abstract
Spermatogonial stem cells (SSCs) are unique male germline stem cells that support spermatogenesis and male fertility. Long non-coding RNAs (lncRNA) have been identified as key regulators of stem cell fate; however, their role in SSCs has not been explored. Here, we report that a novel spermatogonia-specific lncRNA (lncRNA033862) is essential for the survival of murine SSCs. LncRNA033862 is expressed in early spermatogonia including SSC and was among 805 lncRNAs identified by global expression profiling as responsive to glial cell-derived neurotrophic factor (GDNF), a growth factor required for SSC self-renewal and survival. LncRNA033862 is an antisense transcript of the GDNF receptor alpha1 (Gfra1) that lacks protein coding potential and regulates Gfra1 expression levels by interacting with Gfra1 chromatin. Importantly, lncRNA033862 knockdown severely impairs SSC survival and their capacity to repopulate recipient testes in a transplantation assay. Collectively, our data provide the first evidence that long non-coding RNAs (lncRNAs) regulate SSC fate.
Collapse
Affiliation(s)
- L Li
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - L Geng
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Xue
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Wei
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Jia
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine (SKLRM), Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
105
|
Spermatogonial cells: mouse, monkey and man comparison. Semin Cell Dev Biol 2016; 59:79-88. [PMID: 26957475 DOI: 10.1016/j.semcdb.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
In all mammals, spermatogonia are defined as constituting the mitotic compartment of spermatogenesis including stem, undifferentiated and differentiating cell types, possessing distinct morphological and molecular characteristics. Even though the real nature of the spermatogonial stem cell and its regulation is still debated the general consensus holds that in steady-state spermatogenesis the stem cell compartment needs to balance differentiation versus self-renewal. This review highlights current understanding of spermatogonial biology, the kinetics of amplification and the signals directing spermatogonial differentiation in mammals. The focus will be on relevant similarities and differences between rodents and non human and human primates.
Collapse
|
106
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
107
|
Sadeghian-Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, Aghajanpour S, Moore HD, Aflatoonian B. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Mol Reprod Dev 2016; 83:312-23. [PMID: 27077675 DOI: 10.1002/mrd.22620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Human male germ-line stem cells (hmGSCs) and human testis-derived embryonic stem cell-like (htESC-like) cells are claimed to be in vitro pluripotent counterparts of spermatogonial stem cells (SSCs), but the origin and pluripotency of human testis-derived cell cultures are still under debate. The aim of this study was to generate putative pluripotent stem cells in vitro from human testicular sperm-extracted (TESE) samples of infertile men, and to assess their pluripotency and capacity to differentiate. TESE samples were minced, enzymatically disaggregated and dispersed into single-cell or cluster suspensions, and then cultured. Initially, cell clusters resembled those described for hmGSCs and htESC-like cells, and were positive for markers such as OCT4/POU5F1, NANOG, and TRA-2-54. Prolonged propagation of cell clusters expressing pluripotency markers did not thrive; instead, the cells that emerged possessed characteristics of mesenchymal stromal cells (MSCs) such as STRO-1, CD105/EGLN1, CD13/ANPEP, SOX9, vimentin, and fibronectin. KIT, SOX2, and CD44 were not expressed by these MSCs. The multipotential differentiation capacity of these cells was confirmed using Oil Red-O and Alizarin Red staining after induction with specific culture conditions. It is therefore concluded that pluripotent stem cells could not be derived using the conditions previously reported to be successful for TESE samples.
Collapse
Affiliation(s)
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Borzouie
- Stem Cell Biology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Akyash
- Stem Cell Biology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Stem Cell Biology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Soleimani
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samaneh Aghajanpour
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Harry D Moore
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Sciences, The University of Sheffield, Western Bank, Alfred Denny Building, Sheffield, United Kingdom
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
108
|
Chen Z, Li Z, He Z. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine. Asian J Androl 2016; 17:367-72. [PMID: 25532577 PMCID: PMC4430934 DOI: 10.4103/1008-682x.143739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs), also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.
Collapse
Affiliation(s)
| | | | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Cancer, Shanghai 200127; Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
109
|
Zheng L, Zhu H, Mu H, Wu J, Song W, Zhai Y, Peng S, Li G, Hua J. CD49f promotes proliferation of male dairy goat germline stem cells. Cell Prolif 2016; 49:27-35. [PMID: 26841372 PMCID: PMC6495884 DOI: 10.1111/cpr.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES CD49f enhances multipotency and maintains stemness in embryonic stem cells (ESCs), however, whether it would be effective in mGSCs has remained unclear. Moreover, better standards for mGSC enrichment and purification are necessary. The present study was conducted to determine roles of CD49f in mGSC enrichment and regulation. MATERIALS AND METHODS CD49f expression patterns were investigated in dairy goats. CD49f positive cells were purified and enriched using magnetic-activated cell sorting (MACS), and characteristics of the cultured cells were assayed using alkaline phosphatase (AP) analysis, quantitative real-time PCR (QRT-PCR) and immunofluorescence analysis. Furthermore, the exogenous CD49f gene was transfected into mGSCs and its effects were analysed. RESULTS CD49f was found to be conserved in both mRNA and amino acid sequences and that it was an efficient marker for dairy goat mGSC identification, enrichment and purification. CD49f positive cells expressed higher levels of mGSC-specific markers, and proliferated faster than CD49f negative cells. Overexpression CD49f promoted proliferation of dairy goat mGSCs, and Oct4 expression was upregulated; histone H3-lysine 9 dimethylation (H3K9me2) was reduced. CONCLUSIONS Taken together, our data suggest that CD49f plays novel and dynamic roles in regulating maintenance of pluripotency in mGSCs via Oct4 crosstalk and histone methylation dynamics,which may provide new solutions for mGSCs stability in vitro.
Collapse
Affiliation(s)
- Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Yulin University, Shaanxi, 719000, China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
110
|
von Kopylow K, Schulze W, Salzbrunn A, Spiess AN. Isolation and gene expression analysis of single potential human spermatogonial stem cells. Mol Hum Reprod 2016; 22:229-39. [PMID: 26792870 DOI: 10.1093/molehr/gaw006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
STUDY HYPOTHESIS It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. STUDY FINDING We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. WHAT IS KNOWN ALREADY The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). STUDY DESIGN, SAMPLES/MATERIALS, METHODS We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. MAIN RESULTS AND THE ROLE OF CHANCE Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. LIMITATIONS, REASONS FOR CAUTION The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. WIDER IMPLICATIONS OF THE FINDINGS The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. STUDY FUNDING AND COMPETING INTERESTS The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests.
Collapse
Affiliation(s)
- K von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - W Schulze
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany MVZ Fertility Center Hamburg GmbH, amedes-group, 20095 Hamburg, Germany
| | - A Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A-N Spiess
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
111
|
Akbarinejad V, Tajik P, Movahedin M, Youssefi R. Effect of Removal of Spermatogonial Stem Cells (SSCs) from In Vitro Culture on Gene Expression of Niche Factors in Bovine. Avicenna J Med Biotechnol 2016; 8:133-8. [PMID: 27563426 PMCID: PMC4967547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Niche cells, regulating Spermatogonial Stem Cells (SSCs) fate are believed to have a reciprocal communication with SSCs. The present study was conducted to evaluate the effect of SSC elimination on the gene expression of Glial cell line-Derived Neurotrophic Factor (GDNF), Fibroblast Growth Factor 2 (FGF2) and Kit Ligand (KITLG), which are the main growth factors regulating SSCs development and secreted by niche cells, primarily Sertoli cells. METHODS Following isolation, bovine testicular cells were cultured for 12 days on extracellular matrix-coated plates. In the germ cell-removed group, the SSCs were removed from the in vitro culture using differential plating; however, in the control group, no intervention in the culture was performed. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of growth factors and spermatogonia markers were assessed using quantitative real time PCR. RESULTS SSCs colonies were developed in the control group but they were rarely observed in the germ cell-removed group; moreover, the expression of spermatogonia markers was detected in the control group while it was not observed in the germ cell-removed group, substantiating the success of SSCs removal. The expression of Gdnf and Fgf2 was greater in the germ cell-removed than control group (p<0.05), whereas the expression of Kitlg was lower in the germ cell-removed than control group (p< 0.05). CONCLUSION In conclusion, the results revealed that niche cells respond to SSCs removal by upregulation of GDNF and FGF2, and downregulation of KITLG in order to stimulate self-renewal and arrest differentiation.
Collapse
Affiliation(s)
- Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,Theriogenology Association, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Parviz Tajik
- Theriogenology Association, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,Corresponding author: Parviz Tajik, Ph.D., Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran, Tel/Fax: +98 21 61117001, E-mail:
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Youssefi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,Theriogenology Association, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
112
|
Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2015; 105:256-66. [PMID: 26746133 DOI: 10.1016/j.fertnstert.2015.12.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Infertility is a prevalent condition that has insidious impacts on the infertile individuals, their families, and society, which extend far beyond the inability to have a biological child. Lifestyle changes, fertility treatments, and assisted reproductive technology (ART) are available to help many infertile couples achieve their reproductive goals. All of these technologies require that the infertile individual is able to produce at least a small number of functional gametes (eggs or sperm). It is not possible for a person who does not produce gametes to have a biological child. This review focuses on the infertile man and describes several stem cell-based methods and gene therapy approaches that are in the research pipeline and may lead to new fertility treatment options for men with azoospermia.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
113
|
Yang H, Liu Y, Hai Y, Guo Y, Yang S, Li Z, Gao WQ, He Z. Efficient Conversion of Spermatogonial Stem Cells to Phenotypic and Functional Dopaminergic Neurons via the PI3K/Akt and P21/Smurf2/Nolz1 Pathway. Mol Neurobiol 2015; 52:1654-1669. [PMID: 25373443 DOI: 10.1007/s12035-014-8966-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/24/2014] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative syndrome characterized by loss of midbrain dopaminergic (DA) neurons. Generation of functional dopaminergic (DA) neurons is of unusual significance for treating Parkinson's disease (PD). However, direct conversion of spermatogonial stem cells (SSCs) to functional DA neurons without being reprogrammed to a pluripotent status has not been achieved. Here, we report an efficient approach to obtain morphological, phenotypic, and functional DA neurons from SSCs using a specific combination of olfactory ensheathing cell-conditioned medium (OECCM) and several defined growth factors (DGF). By following the current protocol, direct conversion of SSCs (both SSC line and primary SSCs) to neural cells and DA neurons was demonstrated by expression of numerous phenotypic genes and proteins for neural cells, as well as cell morphological features. More significantly, SSCs-derived DA neurons acquired neuronal functional properties such as synapse formation, electrophysiology activity, and dopamine secretion. Furthermore, PI3K/Akt pathway and p21/Nolz1 cascades were activated whereas Smurf2 was inactivated, leading to cell cycle exit during the conversion of SSCs into DA neurons. Collectively, this study could provide sufficient neural cells from SSCs for applications in the treatment of PD and offers novel insights into mechanisms underlying neural system development from the line of germ cells.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shi Yang
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shangdong Road, Shanghai, 200001, China
| | - Zheng Li
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shangdong Road, Shanghai, 200001, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shangdong Road, Shanghai, 200001, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
114
|
Hou J, Niu M, Liu L, Zhu Z, Wang X, Sun M, Yuan Q, Yang S, Zeng W, Liu Y, Li Z, He Z. Establishment and Characterization of Human Germline Stem Cell Line with Unlimited Proliferation Potentials and no Tumor Formation. Sci Rep 2015; 5:16922. [PMID: 26585066 PMCID: PMC4653657 DOI: 10.1038/srep16922] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) have significant applications in both reproductive and regenerative medicine. However, primary human SSCs are very rare, and a human SSC line has not yet been available. In this study, we have for the first time reported a stable human SSC line by stably expressing human SV40 large T antigen. RT-PCR, immunocytochemistry, and Western blots revealed that this cell line was positive for a number of human spermatogonial and SSC hallmarks, including VASA, DAZL, MAGEA4, GFRA1, RET, UCHL1, GPR125, PLZF and THY1, suggesting that these cells are human SSCs phenotypically. Proliferation analysis showed that the cell line could be expanded with significant increases of cells for 1.5 years, and high levels of PCNA, UCHL1 and SV40 were maintained for long-term culture. Transplantation assay indicated that human SSC line was able to colonize and proliferate in vivo in the recipient mice. Neither Y chromosome microdeletions of numerous genes nor tumor formation was observed in human SSC line although there was abnormal karyotype in this cell line. Collectively, we have established a human SSC line with unlimited proliferation potentials and no tumorgenesis, which could provide an abundant source of human SSCs for their mechanistic studies and translational medicine.
Collapse
Affiliation(s)
- Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Linhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Zijue Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, 145 Shangdong Road, Shanghai 200001, China
| | - Xiaobo Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, 145 Shangdong Road, Shanghai 200001, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Shi Yang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, 145 Shangdong Road, Shanghai 200001, China
| | - Wenxian Zeng
- Northwest Agricultural &Forest University, Shaanxi, 712100, China
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Zheng Li
- Department of Andrology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, 145 Shangdong Road, Shanghai 200001, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
115
|
|
116
|
|
117
|
Van Saen D, Pino Sánchez J, Ferster A, van der Werff ten Bosch J, Tournaye H, Goossens E. Is the protein expression window during testicular development affected in patients at risk for stem cell loss? Hum Reprod 2015; 30:2859-70. [PMID: 26405262 DOI: 10.1093/humrep/dev238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is the protein expression window during testicular development affected in prepubertal patients at risk for stem cell loss? SUMMARY ANSWER Nuclear ubiquitin carboxyl-terminal esterase L1 (UCHL1) expression in Sertoli cells and interstitial expression of inhibin α (INHA), sex-determining region Y-box 9 (SOX9) and steroidogenic acute regulatory protein (STAR) was affected in patients with Klinefelter syndrome. WHAT IS KNOWN ALREADY Some patients undergoing testicular tissue banking have already been treated before the testis biopsy is taken. These treatments include chemotherapy or hydroxyurea, which can have an influence on the stem cell number and function. A germinal loss occurs in Klinefelter patients, but its cause is currently unknown. STUDY DESIGN, SIZE, DURATION Parrafin-embedded testicular tissue from 5 fetuses, 25 prepubertal patients and 5 adults was used to characterize the spatial and temporal distribution of different testicular marker proteins during testicular development. Expression of the markers was evaluated in germ cells, Sertoli cell and interstitial cells. The integrity of this time window was analyzed in patients at risk for germ cell loss: patients treated with hydroxyurea (n = 7), patients treated with chemotherapy (n = 6) and patients affected by Klinefelter syndrome (n = 5). PARTICIPANTS/MATERIALS, SETTING, METHODS Immunohistochemistry was performed in normal fetal, prepubertal and adult testicular tissue to set up a timeline for the expression of melanoma antigen family A4 (MAGE-A4), ubiquitin carboxyl-terminal esterase L1 (UCHL1), octamer-binding transcription factor 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4), homeobox protein NANOG, INHA, anti-Müllerian hormone, androgen receptor (AR), SOX9 and STAR. The established timeline was used to evaluate whether the expression of these markers was altered in patients at risk for germ cell loss (patients treated for sickle cell disease (hydroxyurea) or cancer (chemotherapy) and patients with Klinefelter syndrome). MAIN RESULTS AND THE ROLE OF CHANCE A protein expression timeline was created using different markers expressed in different testicular cell types. Less positive tubules and less positive cells per tubule were observed for MAGE-A4 and UCHL1 expression in the KS compared with the non-treated group (P < 0.01). Higher nuclear UCHL1 Sertoli cell expression was observed in the KS group compared with the non-treated group (P < 0.05). Higher interstitial expression of INHA (P < 0.05), SOX9 (P < 0.01) and STAR (P < 0.05) was observed in KS compared with the non-treated group. LIMITATIONS, REASONS FOR CAUTION Important age variations exist in the prepubertal groups. Therefore, data were represented in three age groups. However, owing to the limited access to prepubertal tissue, no statistical comparison was possible between these groups. For the Klinefelter group, tissue was only available from patients older than 12 years. WIDER IMPLICATIONS OF THE FINDINGS The expression timeline can add knowledge to the process of spermatogenesis and be used to evaluate altered protein patterns in patients undergoing potentially gonadotoxic treatments, to monitor spermatogenesis established in vitro and to unravel causes of germ cell loss in Klinefelter patients.
Collapse
Affiliation(s)
- D Van Saen
- Department of Reproduction, Genetics and Regenerative Medicine/Research Laboratory Biology of the Testis, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090 Belgium
| | - J Pino Sánchez
- Department of Reproduction, Genetics and Regenerative Medicine/Research Laboratory Biology of the Testis, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090 Belgium
| | - A Ferster
- Pediatric Hemato-Oncology, Hôpital Universitaire des Enfants Reine Fabiola, Jean-Joseph Crocqlaan 15, Brussels, 1020 Belgium
| | - J van der Werff ten Bosch
- Department of Pediatrics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - H Tournaye
- Department of Reproduction, Genetics and Regenerative Medicine/Research Laboratory Biology of the Testis, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090 Belgium Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels 1090, Belgium
| | - E Goossens
- Department of Reproduction, Genetics and Regenerative Medicine/Research Laboratory Biology of the Testis, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090 Belgium
| |
Collapse
|
118
|
CHEN HUI, TANG QIULING, WU XIAOYING, XIE LICHUN, LIN LIMIN, HO GUYU, MA LIAN. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol Med Rep 2015; 12:819-28. [PMID: 25815600 PMCID: PMC4438948 DOI: 10.3892/mmr.2015.3528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 07/21/2014] [Indexed: 02/05/2023] Open
Abstract
Our previous study demonstrated that human umbilical cord mesenchymal stem cells (HUMSCs) were capable of differentiation into germ cells in vitro. To assess this potential in vivo, HUMSCs were microinjected into the lumen of seminiferous tubules of immunocompetent mice, which were treated with busulfan to destroy endogenous spermatogenesis. Bromodeoxyuridine labeling studies demonstrated that HUMSCs survived in the tubule for at least 120 days, exhibited a round cell shape typical of proliferating or differentiating germ cells, migrated to the basement of the tubule, where proliferating spermatogonia reside and returned to the luminal compartment, where differentiating spermatids and spermatozoa reside. The migration pattern resembled that of germ cell development in vivo. Immunohistochemical and colocalization studies revealed that transplanted HUMSCs expressed the germ cell markers octamer-binding transcription factor 4, α6 integrin, C-kit and VASA, confirming the germ cell differentiation. In addition, it was observed that tubules transplanted with HUMSCs exhibited marked improvement in the histological features damaged by the chemotherapeutic busulfan, as judged by morphology and quantitative histology. Taken together, these data demonstrated the capacity of HUMSCs to form germ cells in the testes and to repair testicular tissue. These findings suggest a potential utility of HUMSCs to treat the infertility and testicular insufficiency caused by cancer therapeutics.
Collapse
Affiliation(s)
- HUI CHEN
- Department of Neurosurgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - QIU-LING TANG
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - XIAO-YING WU
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-CHUN XIE
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-MIN LIN
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - GU-YU HO
- Department of Transformation Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LIAN MA
- Department of Pediatrics, Shenzhen Pingshan Maternal and Child Health Hospital, Shenzhen, Guangdong 518122, P.R. China
- Correspondence to: Professor Lian Ma, Department of Pediatrics, Shenzhen Pingshan Maternal and Child Health Hospital, 6 Longxing South Road, Shenzhen, Guangdong 518122, P.R. China, E-mail:
| |
Collapse
|
119
|
Guo Y, Liu L, Sun M, Hai Y, Li Z, He Z. Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways. Exp Biol Med (Maywood) 2015; 240:1112-22. [PMID: 26088866 DOI: 10.1177/1535370215590822] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) can differentiate into spermatids, reflecting that they could be used in reproductive medicine for treating male infertility. SSCs are able to become embryonic stem-like cells with the potentials of differentiating into numerous cell types of the three germ layers and they can transdifferentiate to mature and functional cells of other lineages, highlighting significant applications of human SSCs for treating human diseases. However, human SSCs are very rare and a long-term culture system of human SSCs has not yet established. This aim of study was to isolate, identify and culture human SSCs for a long period. We isolated GPR125-positive spermatogonia with high purity and viability from adult human testicular tissues utilizing the two-step enzymatic digestion and magnetic-activated cell sorting with antibody against GPR125. These freshly isolated cells expressed a number of markers for SSCs, including GPR125, PLZF, GFRA1, RET, THY1, UCHL1 and MAGEA4, but not the hallmarks for spermatocytes and spermatozoa, e.g. SYCP1, SYCP3, PRM1, and TNP1. The isolated human SSCs could be cultured for two months with a significant increase of cell number with the defined medium containing growth factors and hydrogel. Notably, the expression of numerous SSC markers was maintained during the cultivation of human SSCs. Furthermore, SMAD3 and AKT phosphorylation was enhanced during the culture of human SSCs. Collectively, these results suggest that human SSCs can be cultivated for a long period and expanded whilst retaining an undifferentiated status via the activation of SMAD3 and AKT pathways. This study could provide sufficient cells of SSCs for their basic research and clinic applications in reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Linhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Zheng Li
- Department of Urology, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China Department of Urology, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, China Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
120
|
Schneider F, Redmann K, Wistuba J, Schlatt S, Kliesch S, Neuhaus N. Comparison of enzymatic digestion and mechanical dissociation of human testicular tissues. Fertil Steril 2015; 104:302-11.e3. [PMID: 26056924 DOI: 10.1016/j.fertnstert.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/10/2015] [Accepted: 05/01/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To compare mechanical dissociation, employing the Medimachine system, and enzymatic digestion of human testicular tissues with respect to the proportion of spermatogonia and somatic cells, with the long-term objective of establishing human spermatogonial cultures. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Testicular tissues were obtained from patients with gender dysphoria on the day of sex reassignment surgery. On the basis of the histological evaluation, tissue samples with complete spermatogenesis (fresh, n = 6; cryopreserved, n = 7) and with meiotic arrest (cryopreserved, n = 4) were selected. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The composition of testicular cell suspensions was assessed performing quantitative real-time polymerase chain reaction (qPCR) analyses for germ cell-specific (FGFR3, SALL4, UTF1, MAGE-A4) and somatic marker genes (ACTA2 and VIM). Additionally, flow-cytometric analyses were used to evaluate the percentage of SALL4-and vimentin-positive cells. RESULT(S) While Medimachine dissociation yielded higher cell numbers in all patient groups, viability of cells was highly variable and correlated with the histological status of the tissue. Interestingly, qPCR analysis revealed a significantly decreased expression of the somatic marker genes ACTA2 and VIM and an increased expression of the spermatogonial marker genes FGFR3 and SALL4 after Medimachine dissociation. These findings were corroborated by flow-cytometric analyses that demonstrated that the proportion of SALL4-positive cells was up to 4 times higher after mechanical dissociation. CONCLUSION(S) Medimachine dissociation of human testicular tissues is comparably fast and leads to an enrichment of SALL4-positive spermatogonia. The use of this method may therefore constitute an advantage for the establishment of human spermatogonial cell cultures.
Collapse
Affiliation(s)
- Florian Schneider
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany; Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Klaus Redmann
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Joachim Wistuba
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Stefan Schlatt
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Sabine Kliesch
- Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Nina Neuhaus
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus, Münster, Germany.
| |
Collapse
|
121
|
Aponte PM. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 2015; 7:669-680. [PMID: 26029339 PMCID: PMC4444608 DOI: 10.4252/wjsc.v7.i4.669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.
Collapse
|
122
|
Wu J, Liao M, Zhu H, Kang K, Mu H, Song W, Niu Z, He X, Bai C, Li G, Li X, Hua J. CD49f-positive testicular cells in Saanen dairy goat were identified as spermatogonia-like cells by miRNA profiling analysis. J Cell Biochem 2015; 115:1712-23. [PMID: 24817091 DOI: 10.1002/jcb.24835] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 11/07/2022]
Abstract
miRNAs, a type of small RNA, play critical roles in mammalian spermatogenesis. Spermatogonia are the foundation of spermatogenesis and are valuable for the study of spermatogenesis. However, the expression profiling of the miRNAs in spermatogonia of dairy goats remains unclear. CD49f has been one of the surface markers used for spermatogonia enrichment by magnetic activated cell sorting (MACS). Therefore, we used a CD49f microbead antibody to purify CD49f-positive and -negative cells of dairy goat testicular cells by MACS and then analysed the miRNA expression in these cells in depth using Illumina sequencing technology. The results of miRNA expression profiling in purified CD49f-positive and -negative testicular cells showed that 933 miRNAs were upregulated in CD49f-positive cells and 916 miRNAs were upregulated in CD49f-negative cells with a twofold increase, respectively; several miRNAs and marker genes specific for spermatogonial stem cells (SSCs) in testis had a higher expression level in CD49f-positive testicular cells, including miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, and miR-21 and CD90, Gfra1, and Plzf. The bioinformatics analysis of differently expressed miRNAs indicated that the target genes of these miRNAs in CD49f-positive cells were involved in cell-cycle biological processes and the cell-cycle KEGG pathway. In conclusion, our comparative miRNAome data provide useful miRNA profiling data of dairy goat spermatogonia cells and suggest that CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs.
Collapse
Affiliation(s)
- Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Dores C, Rancourt D, Dobrinski I. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis. Andrology 2015; 3:590-7. [PMID: 25877677 DOI: 10.1111/andr.12031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling.
Collapse
Affiliation(s)
- C Dores
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - D Rancourt
- Department of Oncology, Biochemistry and Molecular Biology and Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - I Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
124
|
Kim KJ, Lee YA, Kim BJ, Kim YH, Kim BG, Kang HG, Jung SE, Choi SH, Schmidt JA, Ryu BY. Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 2015; 70:175-83. [DOI: 10.1016/j.cryobiol.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 01/15/2023]
|
125
|
Guo Y, Hai Y, Yao C, Chen Z, Hou J, Li Z, He Z. Long-term culture and significant expansion of human Sertoli cells whilst maintaining stable global phenotype and AKT and SMAD1/5 activation. Cell Commun Signal 2015; 13:20. [PMID: 25880873 PMCID: PMC4380114 DOI: 10.1186/s12964-015-0101-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sertoli cells play key roles in regulating spermatogenesis and testis development by providing structural and nutritional supports. Recent studies demonstrate that Sertoli cells can be converted into functional neural stem cells. Adult Sertoli cells have previously been considered the terminally differentiated cells with a fixed and unmodifiable population after puberty. However, this concept has been challenged. Since the number of adult human Sertoli cells is limited, it is essential to culture these cells for a long period and expand them to obtain sufficient cells for their basic research and clinic applications. Nevertheless, the studies on human Sertoli cells are restricted, because it is difficult to get access to human testis tissues. RESULTS Here we isolated adult human Sertoli cells with a high purity and viability from obstructive azoospermia patients with normal spermatogenesis. Adult human Sertoli cells were cultured with DMEM/F12 and fetal bovine serum for 2 months, and they could be expanded with a 59,049-fold increase of cell numbers. Morphology, phenotypic characteristics, and the signaling pathways of adult human Sertoli cells from different passages were compared. Significantly, adult human Sertoli cells assumed similar morphological features, stable global gene expression profiles and numerous proteins, and activation of AKT and SMAD1/5 during long-period culture. CONCLUSIONS This study demonstrates that adult human Sertoli cells can be cultured for a long period and expanded with remarkable increase of cell numbers whilst maintaining their primary morphology, phenotype and signaling pathways. This study could provide adequate human Sertoli cells for reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China.
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China. .,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
126
|
Sisakhtnezhad S, Bahrami AR, Matin MM, Dehghani H, Momeni-Moghaddam M, Boozarpour S, Farshchian M, Dastpak M. The molecular signature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cell Dev Biol Anim 2015; 51:415-25. [DOI: 10.1007/s11626-014-9843-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
|
127
|
McMillan M, Andronicos N, Davey R, Stockwell S, Hinch G, Schmoelzl S. Claudin-8 expression in Sertoli cells and putative spermatogonial stem cells in the bovine testis. Reprod Fertil Dev 2015; 26:633-44. [PMID: 23673210 DOI: 10.1071/rd12259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 04/16/2013] [Indexed: 12/25/2022] Open
Abstract
Adhesion molecules are expressed by both adult and embryonic stem cells, with different classes of adhesion molecules involved in cell-membrane and intercellular contacts. In this study the expression of the adhesion molecule claudin-8 (CLDN8), a tight-junction protein, was investigated as a potential marker for undifferentiated spermatogonia in the bovine testis. We found that CLDN8 was expressed by both spermatogonia and a subset of Sertoli cells in the bovine testis. We also showed co-expression of GFRα1 in testis cells with CLDN8 and with Dolichos biflorus agglutinin-fluorescein isothiocyanate (DBA-FITC) staining. We observed co-enrichment of spermatogonia and CLDN8-expressing Sertoli cells in DBA-FITC-assisted magnetic-activated cell sorting (MACS), an observation supported by results from fluorescence-activated cell sorting analysis, which showed CLDN8-expressing cells were over-represented in the MACS-positive cell fraction, leading to the hypothesis that CLDN8 may play a role in the spermatogonial stem-cell niche.
Collapse
Affiliation(s)
- Mary McMillan
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| | - Nicholas Andronicos
- CSIRO Animal, Food and Health Sciences, F. D. McMaster Laboratory, Armidale, NSW 2350, Australia
| | - Rhonda Davey
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| | - Sally Stockwell
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| | - Geoff Hinch
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sabine Schmoelzl
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| |
Collapse
|
128
|
Liu Y, Niu M, Yao C, Hai Y, Yuan Q, Liu Y, Guo Y, Li Z, He Z. Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling. Sci Rep 2015; 5:8084. [PMID: 25634318 PMCID: PMC5155379 DOI: 10.1038/srep08084] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022] Open
Abstract
Human spermatogenic cells have not yet been isolated, and notably, their global miRNA profiles remain unknown. Here we have effectively isolated human spermatogonia, pachytene spermatocytes and round spermatids using STA-PUT velocity sedimentation. RT-PCR, immunocytochemistry and meiosis spread assays revealed that the purities of isolated human spermatogonia, pachytene spermatocytes, and round spermatids were 90%, and the viability of these isolated cells was over 98%. MiRNA microarrays showed distinct global miRNA profiles among human spermatogonia, pachytene spermatocytes, and round spermatids. Thirty-two miRNAs were significantly up-regulated whereas 78 miRNAs were down-regulated between human spermatogonia and pachytene spermatocytes, suggesting that these miRNAs are involved in the meiosis and mitosis, respectively. In total, 144 miRNAs were significantly up-regulated while 29 miRNAs were down-regulated between pachytene spermatocytes and round spermatids, reflecting potential roles of these miRNAs in mediating spermiogenesis. A number of novel binding targets of miRNAs were further identified using various softwares and verified by real-time PCR. Our ability of isolating human spermatogonia, pachytene spermatocytes and round spermatids and unveiling their distinct global miRNA signatures and novel targets could provide novel small RNA regulatory mechanisms mediating three phases of human spermatogenesis and offer new targets for the treatment of male infertility.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, 145 Shangdong Road, Shanghai 200001, China
| | - Zuping He
- 1] State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China [2] Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, 145 Shangdong Road, Shanghai 200001, China [3] Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China [4] Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
129
|
Stukenborg JB, Kjartansdóttir KR, Reda A, Colon E, Albersmeier JP, Söder O. Male germ cell development in humans. Horm Res Paediatr 2015; 81:2-12. [PMID: 24356336 DOI: 10.1159/000355599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Germ cells are unique cells that possess the ability to transmit genetic information between generations. Detailed knowledge about the molecular and cellular mechanisms determining the fate of human male germ cells still remains sparse. This is partially due to ethical issues limiting the access to research material. Therefore, the mechanisms of proliferation, differentiation and apoptosis of human male germ cells still remain challenging study objectives. METHODS This review focuses on using English articles accessible in PubMed as well as personal files on the current knowledge of the molecular and cellular mechanisms connected with human testicular germ cell development, maturation failure and the possibility of fertility preservation in patients in whom there is a risk of gonadal failure. However, since rodents, particularly mice, offer the possibility of studying germ cell development by use of genetic modification techniques, some studies using animal models are also discussed. CONCLUSION This mini review focuses on the current knowledge about male germ cells. However, the reader is referred to two previous mini reviews focusing on testicular somatic cells, i.e. on Sertoli cells and Leydig cells.
Collapse
Affiliation(s)
- Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
130
|
Xie W, Sun J, Wu J. Construction and analysis of a protein-protein interaction network related to self-renewal of mouse spermatogonial stem cells. MOLECULAR BIOSYSTEMS 2015; 11:835-43. [PMID: 25566695 DOI: 10.1039/c4mb00579a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogonial stem cells (SSCs) are responsible for sustained spermatogenesis throughout the reproductive life of the male. Extensive studies of SSCs have identified dozens of genes that play important roles in sustaining or controlling the pool of SSCs in the mammalian testis. However, there is still limited knowledge of whether or how these key genes interact with each other during SSC self-renewal. Here, we constructed a protein-protein interaction (PPI) network for SSC self-renewal based on interactions between 23 genes essential for SSC self-renewal, which were obtained from a text mining system, and the interacting partners of the 23 key genes, which were differentially expressed in SSCs. The SSC self-renewal PPI network consisted of 246 nodes connected by 844 edges. Topological analyses of the PPI network were conducted to identify genes essential for maintenance of SSC self-renewal. The subnetwork of the SSC self-renewal network suggested that the 23 key genes involved in SSC self-renewal were connected together through other 94 genes. Clustering of the whole network and subnetwork of SSC self-renewal revealed several densely connected regions, implying significant molecular interaction modules essential for SSC self-renewal. Notably, we found the 23 genes to be responsible for SSC self-renewal by forming a continuous PPI network centered on Pou5f1. Our study indicates that it is feasible to explore important proteins and regulatory pathways in biological activities by combining a PPI database with the high-throughput data of gene expression profiles.
Collapse
Affiliation(s)
- Wenhai Xie
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
131
|
Skaznik-Wikiel ME, Gilbert SB, Meacham RB, Kondapalli LA. Fertility Preservation Options for Men and Women With Cancer. Rev Urol 2015. [PMID: 26839518 DOI: 10.3909/riu0666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Approximately 0.2% of Americans aged 20 to 39 years are childhood cancer survivors. Advances in cancer detection and therapy have greatly improved survival rates for young cancer patients; however, treatment of childhood cancers can adversely impact reproductive function. Many cancer patients report a strong desire to be informed of existing options for fertility preservation and future reproduction prior to initiation of gonadotoxic cancer therapies, including surgery, chemotherapy, and radiotherapy. This article discusses, in detail, the effects of cancer treatment on fertility in men and women, and outlines both current and experimental methods of fertility preservation among cancer patients.
Collapse
Affiliation(s)
| | - Sara Babcock Gilbert
- Department of Obstetrics and Gynecology, University of Colorado-Denver, Aurora, CO
| | | | | |
Collapse
|
132
|
Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 2014; 25:67-79. [PMID: 25475058 DOI: 10.1038/cr.2014.160] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022] Open
Abstract
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.
Collapse
|
133
|
Characterization and cardiac differentiation of chicken spermatogonial stem cells. Anim Reprod Sci 2014; 151:244-55. [DOI: 10.1016/j.anireprosci.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/22/2022]
|
134
|
Genome editing in mouse spermatogonial stem/progenitor cells using engineered nucleases. PLoS One 2014; 9:e112652. [PMID: 25409432 PMCID: PMC4237364 DOI: 10.1371/journal.pone.0112652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 01/09/2023] Open
Abstract
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse "GS" (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.
Collapse
|
135
|
Lee WY, Lee KH, Heo YT, Kim NH, Kim JH, Kim JH, Moon SH, Chung HJ, Yoon MJ, Song H. Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed in spermatogonial stem cells: A putative marker of boar spermatogonia. Anim Reprod Sci 2014; 150:115-24. [DOI: 10.1016/j.anireprosci.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
|
136
|
Hunter D, Anand-Ivell R, Danner S, Ivell R. Models of in vitro spermatogenesis. SPERMATOGENESIS 2014; 2:32-43. [PMID: 22553488 PMCID: PMC3341244 DOI: 10.4161/spmg.19383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms that lead to the differentiation of male germ cells from their spermatogonial stem cells through meiosis to give rise to mature haploid spermatozoa has been a major quest for many decades. Unlike most other cell types this differentiation process is more or less completely dependent upon the cells being located within the strongly structured niche provided by mature Sertoli cells within an intact seminiferous epithelium. While much new information is currently being obtained through the application and description of relevant gene mutations, there is still a considerable need for in vitro models with which to explore the mechanisms involved. Not only are systems of in vitro spermatogenesis important for understanding the basic science, they have marked pragmatic value in offering ex vivo systems for the artificial maturation of immature germ cells from male infertility patients, as well as providing opportunities for the transgenic manipulation of male germ cells. In this review, we have summarized literature relating to simplistic culturing of germ cells, co-cultures of germ cells with other cell types, especially with Sertoli cells, cultures of seminiferous tubule fragments, and briefly mention the opportunities of xenografting larger testicular pieces. The majority of methods are successful in allowing the differentiation of small steps in the progress of spermatogonia to spermatozoa; few tolerate the chromosomal reduction division through meiosis, and even fewer seem able to complete the complex morphogenesis which results in freely swimming spermatozoa. However, recent progress with complex culture environments, such as 3-d matrices, suggest that possibly success is now not too far away.
Collapse
|
137
|
Oltulu F, Aktug H, Uysal A, Turgan N, Oktem G, Erbas O, Yavasoglu NK, Yavasoglu A. Immunoexpressions of embryonic and nonembryonic stem cell markers (Nanog, Thy-1, c-kit) and cellular connections (connexin 43 and occludin) on testicular tissue in thyrotoxicosis rat model. Hum Exp Toxicol 2014; 34:601-11. [PMID: 25304966 DOI: 10.1177/0960327114551392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, possible thyrotoxicosis-related histological changes in testicular tissues of rats with experimentally induced thyrotoxicosis model were evaluated on cellular connections and stem cell markers. Two experimental groups, thyrotoxicosis and control, each consisting of eight animals were used. Rats in the thyrotoxicosis group were injected intraperitoneally with 3,3',5-triiodo-l-thyronine (50 µg/100 g body weight/day) for 10 days. At the end of the study, animals in both groups were anesthetized, and blood samples were collected for biochemical analyses. Their testes were dissected out and histological procedure was conducted to perform further histochemical, immunohistochemical analyses and tissue expression analysis by real-time polymerase chain reaction. Expression of the stem cell markers such as c-kit and Thy-1 significantly decreased in the testes of the thyrotoxicosis group compared with the control group; however, Nanog expression was not detected in any of the groups. Similarly, connexin 43 and occludin expressions were also found to be significantly lower in the thyrotoxicosis group. These results on cellular connections are supported with the tissue expression analysis. Our findings are indicative of supporting microenvironmental tissue decay rather than parenchyma damage, which has been actually ignored in the literature. In conclusion, experimental thyrotoxicosis model may have adverse effects on the cell junctional complexes, cell-cell interactions, and pluripotency capacity.
Collapse
Affiliation(s)
- F Oltulu
- Department of Histology and Embryology, Merkez Efendi Hospital, Manisa, Turkey
| | - H Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - A Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - N Turgan
- Department of Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - G Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - O Erbas
- Department of Physiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - A Yavasoglu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
138
|
Bellaïche J, Goupil AS, Sambroni E, Lareyre JJ, Le Gac F. Gdnf-Gfra1 Pathway Is Expressed in a Spermatogenetic-Dependent Manner and Is Regulated by Fsh in a Fish Testis1. Biol Reprod 2014; 91:94. [DOI: 10.1095/biolreprod.114.119834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
139
|
Altman E, Yango P, Moustafa R, Smith JF, Klatsky PC, Tran ND. Characterization of human spermatogonial stem cell markers in fetal, pediatric, and adult testicular tissues. Reproduction 2014; 148:417-27. [PMID: 25030892 PMCID: PMC4599365 DOI: 10.1530/rep-14-0123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autologous spermatogonial stem cell (SSC) transplantation is a potential therapeutic modality for patients with azoospermia following cancer treatment. For this promise to be realized, definitive membrane markers of prepubertal and adult human SSCs must be characterized in order to permit SSC isolation and subsequent expansion. This study further characterizes the markers of male gonocytes, prespermatogonia, and SSCs in humans. Human fetal, prepubertal, and adult testicular tissues were analyzed by confocal microscopy, fluorescence-activated cell sorting, and qRT-PCR for the expression of unique germ cell membrane markers. During male fetal development, THY1 and KIT (C-Kit) are transient markers of gonocytes but not in prespermatogonia and post-natal SSCs. Although KIT expression is detected in gonocytes, THY1 expression is also detected in the somatic component of the fetal testes in addition to gonocytes. In the third trimester of gestation, THY1 expression shifts exclusively to the somatic cells of the testes where it continues to be detected only in the somatic cells postnatally. In contrast, SSEA4 expression was only detected in the gonocytes, prespermatogonia, SSCs, and Sertoli cells of the fetal and prepubertal testes. After puberty, SSEA4 expression can only be detected in primitive spermatogonia. Thus, although THY1 and KIT are transient markers of gonocytes, SSEA4 is the only common membrane marker of gonocytes, prespermatogonia, and SSCs from fetal through adult human development. This finding is essential for the isolation of prepubertal and adult SSCs, which may someday permit fertility preservation and reversal of azoospermia following cancer treatment.
Collapse
Affiliation(s)
- Eran Altman
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Pamela Yango
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Radwa Moustafa
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - James F Smith
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Peter C Klatsky
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| | - Nam D Tran
- Department of ObstetricsGynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, USAHelen Schneider Hospital for WomenRabin Medical Center, Petah Tikva, IsraelDepartment of UrologyUniversity of California, San Francisco, San Francisco, California, USADepartment of Obstetrics and GynecologyAlbert Einstein University, Bronx, New York, USA
| |
Collapse
|
140
|
Zheng Y, Thomas A, Schmidt CM, Dann CT. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod 2014; 29:2497-511. [PMID: 25267789 DOI: 10.1093/humrep/deu232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? SUMMARY ANSWER Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1-2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. WHAT IS KNOWN ALREADY The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. STUDY DESIGN, SIZE, DURATION Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1-2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). MAIN RESULTS AND THE ROLE OF CHANCE UTF1, FGFR3, DAZL and ZBTB16 qRT-PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in early primary testicular cell cultures (1-2 weeks), their expression steadily declined over time in vitro. After 6 weeks in culture only somatic cells were detected. LIMITATIONS, REASONS FOR CAUTION Different groups attempting SSC culture have utilized different sources of human testes and minor differences in the preparation and maintenance of the testicular cell cultures. Differences in outcome may be explained by genetic background of the source tissue or technical differences. WIDER IMPLICATIONS OF THE FINDINGS The ability to propagate human SSCs in vitro is a prerequisite for proposed autologous transplantation therapy aimed at restoring fertility to men who have been treated for childhood cancer. By applying the assays validated here it will be possible to quantitatively compare human SSC culture conditions. The eventual development of conditions for long-term propagation of human SSCs in vitro will greatly facilitate learning about the basic biology of these cells and in turn the ability to use human SSCs in therapy. STUDY FUNDING/COMPETING INTERESTS The experiments presented in this manuscript were funded by a Project Development Team within the ICTSI NIH/NCRR Grant Number TR000006. The authors declare no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Y Zheng
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - A Thomas
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - C M Schmidt
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - C T Dann
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| |
Collapse
|
141
|
Yang S, Ping P, Ma M, Li P, Tian R, Yang H, Liu Y, Gong Y, Zhang Z, Li Z, He Z. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients. Stem Cell Reports 2014; 3:663-75. [PMID: 25358793 PMCID: PMC4223697 DOI: 10.1016/j.stemcr.2014.08.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022] Open
Abstract
Generation of functional spermatids from azoospermia patients is of unusual significance in the treatment of male infertility. Here, we report an efficient approach to obtain human functional spermatids from cryptorchid patients. Spermatogonia remained whereas meiotic germ cells were rare in cryptorchid patients. Expression of numerous markers for meiotic and postmeiotic male germ cells was enhanced in human spermatogonial stem cells (SSCs) of cryptorchidism patients by retinoic acid (RA) and stem cell factor (SCF) treatment. Meiotic spreads and DNA content assays revealed that RA and SCF induced a remarkable increase of SCP3-, MLH1-, and CREST-positive cells and haploid cells. Single-cell RNA sequencing analysis reflected distinct global gene profiles in embryos derived from round spermatids and nuclei of somatic cells. Significantly, haploid spermatids generated from human SSCs of cryptorchid patients possessed fertilization and development capacity. This study thus provides an invaluable source of autologous male gametes for treating male infertility in azoospermia patients. Spermatogonia remain whereas meiotic male germ cells are rare in cryptorchid patients Human SSCs of cryptorchid patients differentiate into phenotypic haploid spermatids Round spermatids derived from human SSCs have fertilization and development capacity Distinct gene profiles exist in embryos from round spermatid and somatic cell nuclei
Collapse
Affiliation(s)
- Shi Yang
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Ping Ping
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Meng Ma
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Peng Li
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Ruhui Tian
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Hao Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Yuehua Gong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Zheng Li
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200001, China.
| | - Zuping He
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200001, China.
| |
Collapse
|
142
|
Spermatogonial stem cell enrichment using simple grafting of testis and in vitro cultivation. Sci Rep 2014; 4:5923. [PMID: 25080919 PMCID: PMC4118148 DOI: 10.1038/srep05923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/15/2014] [Indexed: 01/15/2023] Open
Abstract
Enrichment of spermatogonial stem cells (SSCs) from the mammalian adult testis faces several limitations owing to their relatively low numbers among many types of advanced germ cells and somatic cells. The aim of the present study was to improve the isolation efficiency of SSCs using a simple tissue grafting method to eliminate the existing advanced germ cells. Sliced testis parenchyma obtained from adult ICR or EGFP-expressing transgenic mice were grafted heterotropically under the dorsal skin of nude mice. The most advanced germ cells disappeared in the grafted tissues after 2–4 weeks. Grafted tissues were dissociated enzymatically and plated in culture dishes. During in vitro culture, significantly more SSCs were obtained from the grafted testes than from non-grafted controls, and the isolated SSCs had proliferative potential and were successfully maintained. Additionally, EGFP-expressing SSCs derived from graft parenchyma were transplanted into bulsufan-treated recipient mice testes. Finally, we obtained EGFP-expressing pups after in vitro fertilization using spermatozoa derived from transplanted SSCs. These results suggest that subcutaneous grafting of testis parenchyma and the subsequent culture methods provide a simple and efficient isolation method to enrich for SSCs in adult testis without specific cell sorting methods and may be useful tools for clinical applications.
Collapse
|
143
|
Han NR, Park YH, Yun JI, Park HJ, Park MH, Kim MS, Choi JH, Lee E, Gong SP, Lim JM, Lee ST. Determination of Feeder Cell-Based Cellular Niches Supporting the Colonization and Maintenance of Spermatogonial Stem Cells from Prepubertal Domestic Cat Testes. Reprod Domest Anim 2014; 49:705-10. [DOI: 10.1111/rda.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- NR Han
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - YH Park
- Department of Agricultural Biotechnology; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - JI Yun
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - HJ Park
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - MH Park
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - MS Kim
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| | - JH Choi
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - E Lee
- College of Veterinary Medicine and Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - SP Gong
- Department of Marine Biomaterials and Aquaculture; Pukyong National University; Busan Korea
| | - JM Lim
- Department of Agricultural Biotechnology; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - ST Lee
- Department of Animal Biotechnology; College of Animal Life and Science; Kangwon National University; Chuncheon Korea
| |
Collapse
|
144
|
Langenstroth D, Kossack N, Westernströer B, Wistuba J, Behr R, Gromoll J, Schlatt S. Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 2014; 29:2018-31. [PMID: 24963164 DOI: 10.1093/humrep/deu157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Can primate spermatogonial cultures be optimized by application of separation steps and well defined culture conditions? SUMMARY ANSWER We identified the cell fraction which provides the best source for primate spermatogonia when prolonged culture is desired. WHAT IS KNOWN ALREADY Man and marmoset show similar characteristics in regard to germ cell development and function. Several protocols for isolation and culture of human testis-derived germline stem cells have been described. Subsequent analysis revealed doubts on the germline origin of these cells and characterized them as mesenchymal stem cells or fibroblasts. Studies using marmosets as preclinical model confirmed that the published isolation protocols did not lead to propagation of germline cells. STUDY DESIGN, SIZE, DURATION Testicular cells derived from nine adult marmoset monkeys (Callithrix jacchus) were cultured for 1, 3, 6 and 11 days and consecutively analyzed for the presence of spermatogonia, differentiating germ cells and testicular somatic cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular tissue of nine adult marmoset monkeys was enzymatically dissociated and subjected to two different cell culture approaches. In the first approach all cells were kept in the same dish (non-separate culture, n = 5). In the second approach the supernatant cells were transferred into a new dish 24 h after seeding and subsequently supernatant and attached cells were cultured separately (separate culture, n = 4). Real-time quantitative PCR and immunofluorescence were used to analyze the expression of reliable germ cell and somatic markers throughout the culture period. Germ cell transplantation assays and subsequent wholemount analyses were performed to functionally evaluate the colonization of spermatogonial cells. MAIN RESULTS AND THE ROLE OF CHANCE This is the first report revealing an efficient isolation and culture of putative marmoset spermatogonial stem cells with colonization ability. Our results indicate that a separation of spermatogonia from testicular somatic cells is a crucial step during cell preparation. We identified the overgrowth of more rapidly expanding somatic cells to be a major problem when establishing spermatogonial cultures. Initiating germ cell cultures from the supernatant and maintaining germ cells in suspension cultures minimized the somatic cell contamination and provided enriched germ cell fractions which displayed after 11 days of culture a significantly higher expression of germ cell markers genes (DDX-4, MAGE A-4; P < 0.05) compared with separately cultured attached cells. Additionally, germ cell transplantation experiments demonstrated a significantly higher absolute number of cells with colonization ability (P < 0.001) in supernatant cells after 11 days of separate culture. LIMITATIONS, REASONS FOR CAUTION This study presents a relevant aspect for the successful setup of spermatogonial cultures but provides limited data regarding the question of whether the long-term maintenance of spermatogonia can be achieved. Transfer of these preclinical data to man may require modifications of the protocol. WIDER IMPLICATIONS OF THE FINDINGS Spermatogonial cultures from rodents have become important and innovative tools for basic and applied research in reproductive biology and veterinary medicine. It is expected that spermatogonia-based strategies will be transformed into clinical applications for the treatment of male infertility. Our data in the marmoset monkey may be highly relevant to establish spermatogonial cultures of human testes. STUDY FUNDING/COMPETING INTERESTS Funding was provided by the DFG-Research Unit FOR 1041 Germ Cell Potential (SCHL394/11-2) and by the Graduate Program Cell Dynamics and Disease (CEDAD) together with the International Max Planck Research School - Molecular Biomedicine (IMPRS-MBM). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Daniel Langenstroth
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Nina Kossack
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Birgit Westernströer
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jörg Gromoll
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Stefan Schlatt
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
145
|
In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J Assist Reprod Genet 2014; 31:993-1001. [PMID: 24958548 DOI: 10.1007/s10815-014-0277-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/08/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop an efficient protocol for isolation, purification and long-term culture of spermatogonial stem cell (SSC) in goat. METHODS The isolation of SSC was performed by testicular disaggregation by enzymatic digestion using collagenase IV, trypsin and DNase I. Further SSCs were enriched using Percoll density gradient centrifugation. The purity of SSCs was assessed by immunocytochemistry (ICC) using α6 integrin. The SSCs were co-cultured on Sertoli cell feeder layer. The SSC colonies were characterized by studying the expression of SSC specific markers (viz., α6 integrin and PLZF) using ICC. The abundance of mRNAs encoding the markers of SSC (viz., β1 integrin and Oct-4) and Sertoli cells (viz., vimentin) was also assayed using quantitative real-time PCR (qPCR). RESULTS The viability of isolated testicular cells was > 90 % and the Percoll density gradient method resulted in 3.65 folds enrichment with a purity of 82.5 %. Co-culturing of SSCs with Sertoli cell feeder layer allowed the maintenance of stable SSC colonies even after one and half months of culture. The results of ICC analysis showed the expression of α6 integrin and PLZF in almost all the SSC colonies. qPCR analysis revealed a differential expression of mRNAs encoding β1 integrin, Oct-4 and vimentin markers. CONCLUSION Results of this study demonstrate a simple enzymatic digestion and Percoll density gradient method for isolation and enrichment of SSCs, and suitability of Sertoli cell feeder layer for long term in vitro culture of SSC in goats. Results also suggest the possible application of non-caprine antibodies against SSC specific markers for the identification and subsequent assessment of SSCs in goats.
Collapse
|
146
|
He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells 2014; 31:2205-17. [PMID: 23836497 DOI: 10.1002/stem.1474] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022]
Abstract
Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, USA; Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Sachs C, Robinson BD, Andres Martin L, Webster T, Gilbert M, Lo HY, Rafii S, Ng CK, Seandel M. Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology 2014; 2:607-14. [PMID: 24902969 DOI: 10.1111/j.2047-2927.2014.00226.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/13/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
Abstract
The optimal markers for human spermatogonial stem cells (SSCs) are not known. Among the genes recently linked to SSCs in mice and other animals are the basic helix-loop-helix transcription factor ID4 and the orphan G-protein-coupled receptor GPR125. While ID4 and GPR125 are considered putative markers for SSCs, they have not been evaluated for coexpression in human tissue. Furthermore, neither the size nor the character of the human spermatogonial populations that express ID4 and GPR125, respectively, are known. A major barrier to addressing these questions is the availability of healthy adult testis tissue from donors with no known reproductive health problems. To overcome this obstacle, we have employed healthy testicular tissue from a novel set of organ donors (n = 16; aged 17-68 years) who were undergoing post-mortem clinical organ procurement. Using immunolabelling, we found that ID4 and GPR125 are expressed on partially overlapping spermatogonial populations and are more broadly expressed in the normal adult human testis. In addition, we found that expression of ID4 remained stable during ageing. These findings suggest that ID4 and GPR125 could be efficacious for identifying previously unrecognized human spermatogonial subpopulations in conjunction with other putative human stem cell markers, both in younger and older donors.
Collapse
Affiliation(s)
- C Sachs
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102:566-580.e7. [PMID: 24890267 DOI: 10.1016/j.fertnstert.2014.04.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Karen A Peters
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Julia Donohue
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
149
|
Yu X, Riaz H, Dong P, Chong Z, Luo X, Liang A, Yang L. Identification and IVC of spermatogonial stem cells in prepubertal buffaloes. Theriogenology 2014; 81:1312-22. [DOI: 10.1016/j.theriogenology.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 01/15/2023]
|
150
|
Sadri-Ardekani H, Atala A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res Ther 2014; 5:68. [PMID: 25157677 PMCID: PMC4056749 DOI: 10.1186/scrt457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Male infertility management has made significant progress during the past three decades, especially after the introduction of intracytoplasmic sperm injection in 1992. However, many boys and men still suffer from primary testicular failure due to acquired or genetic causes. New and novel treatments are needed to address these issues. Spermatogenesis originates from spermatogonial stem cells (SSCs) that reside in the testis. Many of these men lack SSCs or have lost SSCs over time as a result of specific medical conditions or toxic exposures. Loss of SSCs is critical in prepubertal boys who suffer from cancer and are going through gonadotoxic cancer treatments, as there is no option of sperm cryopresrvation due to sexual immaturity. The development of SSC transplantation in a mouse model to repopulate spermatozoa in depleted testes has opened new avenues of research in other animal models, including non-human primates. Recent advances in cryopreservation and in vitro propagation of human SSCs offer promise for human SSC autotransplantation in the near future. Ongoing research is focusing on safety and technical issues of human SSC autotransplantation. This is the time to counsel parents and boys at risk of infertility on the possibility of cryopreserving and banking a small amount of testis tissue for potential future use in SSC transplantation.
Collapse
|