101
|
Altered Gene Expression of RNF34 and PACAP Possibly Involved in Mechanism of Exercise-Induced Analgesia for Neuropathic Pain in Rats. Int J Mol Sci 2017; 18:ijms18091962. [PMID: 28902127 PMCID: PMC5618611 DOI: 10.3390/ijms18091962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 01/19/2023] Open
Abstract
Despite the availability of several modalities of treatment, including surgery, pharmacological agents, and nerve blocks, neuropathic pain is often unresponsive and sometimes progresses to intractable chronic pain. Although exercise therapy is a candidate for treatment of neuropathic pain, the mechanism underlying its efficacy has not been elucidated. To clarify the molecular mechanism for pain relief induced by exercise, we measured Rnf34 and Pacap mRNA levels in the spinal cord dorsal horn of SNL rats, a model of neuropathic pain. SNL model rats exhibited stable mechanical hyperalgesia for at least 6 weeks. When the rats were forced to exercise on a treadmill, mechanical and thermal hyperalgesia were significantly ameliorated compared with the non-exercise group. Accordingly, gene expression level of Rnf34 and Pacap were also significantly altered in the time course analysis after surgery. These results suggest that exercise therapy possibly involves pain relief in SNL rats by suppressing Rnf34 and Pacap expression in the spinal cord.
Collapse
|
102
|
Lima LV, DeSantana JM, Rasmussen LA, Sluka KA. Short-duration physical activity prevents the development of activity-induced hyperalgesia through opioid and serotoninergic mechanisms. Pain 2017; 158:1697-1710. [PMID: 28621702 PMCID: PMC5561491 DOI: 10.1097/j.pain.0000000000000967] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regular physical activity prevents the development of chronic muscle pain through the modulation of central mechanisms that involve rostral ventromedial medulla (RVM). We tested if pharmacological blockade or genetic deletion of mu-opioid receptors in physically active mice modulates excitatory and inhibitory systems in the RVM in an activity-induced hyperalgesia model. We examined response frequency to mechanical stimulation of the paw, muscle withdrawal thresholds, and expression of phosphorylation of the NR1 subunit of the N-methyl-D-aspartate receptor (p-NR1) and serotonin transporter (SERT) in the RVM. Mice that had performed 5 days of voluntary wheel running prior to the induction of the model were compared with sedentary mice. Sedentary mice showed significant increases in mechanical paw withdrawal frequency and a reduction in muscle withdrawal threshold; wheel running prevented the increase in paw withdrawal frequency. Naloxone-treated and MOR mice had increases in withdrawal frequency that were significantly greater than that in physically active control mice and similar to sedentary mice. Immunohistochemistry in the RVM showed increases in p-NR1 and SERT expression in sedentary mice 24 hours after the induction of the model. Wheel running prevented the increase in SERT, but not p-NR1. Physically active, naloxone-treated, and MOR mice showed significant increases in SERT immunoreactivity when compared with wild-type physically active control mice. Blockade of SERT in the RVM in sedentary mice reversed the activity-induced hyperalgesia of the paw and muscle. These results suggest that analgesia induced by 5 days of wheel running is mediated by mu-opioid receptors through the modulation of SERT, but not p-NR1, in RVM.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Gene Expression Regulation/physiology
- Hyperalgesia/etiology
- Hyperalgesia/prevention & control
- Male
- Medulla Oblongata/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/metabolism
- Pain Measurement
- Pain Threshold/physiology
- Physical Conditioning, Animal/methods
- Physical Stimulation/adverse effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Statistics, Nonparametric
- Time Factors
Collapse
Affiliation(s)
- Lucas V Lima
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju/Se, Brazil
| | - Josimari M DeSantana
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju/Se, Brazil
- Department of Physical Therapy, Federal University of Sergipe, Aracaju/Se, Brazil
| | - Lynn A Rasmussen
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
103
|
Nie B, Zhang S, Huang Z, Huang J, Chen X, Zheng Y, Bai X, Zeng W, Ouyang H. Synergistic Interaction Between Dexmedetomidine and Ulinastatin Against Vincristine-Induced Neuropathic Pain in Rats. THE JOURNAL OF PAIN 2017; 18:1354-1364. [PMID: 28690001 DOI: 10.1016/j.jpain.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022]
Abstract
Antimicrotubulin chemotherapeutic agents such as vincristine (VCR), often induce peripheral neuropathic pain. It is usually permanent and seriously harmful to cancer patients' quality of life and can result in the hampering of clinical treatments. Currently, there is no definitive therapy, and many of the drugs approved for the treatment of other neuropathic pain have shown little or no analgesic effect. It is therefore vital to find new and novel therapeutic strategies for patients suffering from chemotherapeutic agent-induced neuropathic pain to improve patients' quality of life. This study shows that intrathecal injections of dexmedetomidine (DEX), or intraperitoneally administered ulinastatin (UTI) significantly reduces Sprague Dawley rats' mechanical allodynia induced by VCR via upregulation of interleukin-10 expression and activating the α2-adrenergic receptor in dorsal root ganglion (DRG). Moreover, when combined there is a synergistic interaction between DEX and UTI, which acts against VCR-induced neuropathic pain. This synergistic interaction between DEX and UTI may be partly attributed to a common analgesic pathway in which the upregulation of interleukin -10 plays an important role via activating α2-adrenergic receptor in rat dorsal root ganglion. The combined use of DEX and UTI does not affect the rat's blood pressure, heart rate, sedation, motor score, spatial learning, or memory function. All of these show that the combined use of DEX and UTI is an effective method in relieving VCR-induced neuropathic pain in rats. PERSPECTIVE This article documents the synergistic interaction between 2 widely used drugs, DEX and UTI, against VCR-induced neuropathic pain. The results provide a potential target and novel drug administrated method for the clinical treatment of chemotherapy-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China; Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Subo Zhang
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, China; Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuxi Huang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaodi Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yaochao Zheng
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
104
|
Cormier J, Cone K, Lanpher J, Kinens A, Henderson T, Liaw L, Bilsky EJ, King T, Rosen CJ, Stevenson GW. Exercise reverses pain-related weight asymmetry and differentially modulates trabecular bone microarchitecture in a rat model of osteoarthritis. Life Sci 2017; 180:51-59. [PMID: 28504116 PMCID: PMC5549619 DOI: 10.1016/j.lfs.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/21/2022]
Abstract
There is great interest in developing and utilizing non-pharmacological/non-invasive forms of therapy for osteoarthritis (OA) pain including exercise and other physical fitness regimens. AIMS The present experiments determined the effects of prior wheel running on OA-induced weight asymmetry and trabecular bone microarchitecture. MAIN METHODS Wheel running included 7 or 21days of prior voluntary access to wheels followed by OA induction, followed by 21days post-OA access to wheels. OA was induced with monosodium iodoacetate (MIA), and weight asymmetry was measured using a hind limb weight bearing apparatus. Bone microarchitecture was characterized using ex vivo μCT. KEY FINDINGS Relative to saline controls, MIA (3.2mg/25μl) produced significant weight asymmetry measured on post-days (PDs) 3, 7, 14, 21 in sedentary rats. Seven days of prior running failed to alter MIA-induced weight asymmetry. In contrast, 21days of prior running resulted in complete reversal of MIA-induced weight asymmetry on all days tested. As a comparator, the opioid agonist morphine (3.2-10mg/kg) dose-dependently reversed weight asymmetry on PDs 3, 7, 14, but was ineffective in later-stage (PD 21) OA. In runners, Cohen's d (effect sizes) for OA vs. controls indicated large increases in bone volume fraction, trabecular number, trabecular thickness, and connective density in lateral compartment, and large decreases in the same parameters in medial compartment. In contrast, effect sizes were small to moderate for sedentary OA vs. CONTROLS SIGNIFICANCE Results indicate that voluntary exercise may protect against OA pain, the effect varies as a function of prior exercise duration, and is associated with distinct trabecular bone modifications.
Collapse
Affiliation(s)
- Jim Cormier
- Department of Psychology, University of New England, Biddeford, ME 04005, United States; Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States
| | - Katherine Cone
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Janell Lanpher
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Abigail Kinens
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Terry Henderson
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - Edward J Bilsky
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States; Department of Biomedical Sciences COM, Pacific Northwest University of Health Sciences, Yakima, WA 98901, United States
| | - Tamara King
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States; Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | - Glenn W Stevenson
- Department of Psychology, University of New England, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States.
| |
Collapse
|
105
|
Allen J, Imbert I, Havelin J, Henderson T, Stevenson G, Liaw L, King T. Effects of Treadmill Exercise on Advanced Osteoarthritis Pain in Rats. Arthritis Rheumatol 2017; 69:1407-1417. [PMID: 28320059 PMCID: PMC5489381 DOI: 10.1002/art.40101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Exercise is commonly recommended for patients with osteoarthritis (OA) pain. However, whether exercise is beneficial in ameliorating ongoing pain that is persistent, resistant to nonsteroidal antiinflammatory drugs (NSAIDs), and associated with advanced OA is unknown. METHODS Rats treated with intraarticular (IA) monosodium iodoacetate (MIA) or saline underwent treadmill exercise or remained sedentary starting 10 days postinjection. Tactile sensory thresholds and weight bearing were assessed, followed by radiography at weekly intervals. After 4 weeks of exercise, ongoing pain was assessed using conditioned place preference (CPP) to IA or rostral ventromedial medulla (RVM)-administered lidocaine. The possible role of endogenous opioids in exercise-induced pain relief was examined by systemic administration of naloxone. Knee joints were collected for micro-computed tomography (micro-CT) analysis to examine pathologic changes to subchondral bone and metaphysis of the tibia. RESULTS Treadmill exercise for 4 weeks reversed MIA-induced tactile hypersensitivity and weight asymmetry. Both IA and RVM lidocaine D35, administered post-MIA, induced CPP in sedentary but not exercised MIA-treated rats, indicating that exercise blocks MIA-induced ongoing pain. Naloxone reestablished weight asymmetry in MIA-treated rats undergoing exercise and induced conditioned place aversion, indicating that exercise-induced pain relief is dependent on endogenous opioids. Exercise did not alter radiographic evidence of OA. However, micro-CT analysis indicated that exercise did not block lateral subchondral bone loss or trabecular bone loss in the metaphysis, but did block MIA-induced medial bone loss. CONCLUSION These findings support the conclusion that exercise induces pain relief in advanced, NSAID-resistant OA, likely through increased endogenous opioid signaling. In addition, treadmill exercise blocked MIA-induced bone loss in this model, indicating a potential bone-stabilizing effect of exercise on the OA joint.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Arthralgia/physiopathology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/physiopathology
- Behavior, Animal/drug effects
- Disease Models, Animal
- Enzyme Inhibitors/toxicity
- Hyperalgesia/chemically induced
- Hyperalgesia/physiopathology
- Injections, Intra-Articular
- Iodoacetic Acid/toxicity
- Knee Joint/diagnostic imaging
- Knee Joint/drug effects
- Knee Joint/physiopathology
- Lidocaine/pharmacology
- Male
- Medulla Oblongata
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Osteoarthritis, Knee/chemically induced
- Osteoarthritis, Knee/diagnostic imaging
- Osteoarthritis, Knee/physiopathology
- Physical Conditioning, Animal
- Rats
- Rats, Sprague-Dawley
- Tibia/diagnostic imaging
- Weight-Bearing
- X-Ray Microtomography
Collapse
Affiliation(s)
- Joshua Allen
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
| | - Ian Imbert
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
| | - Joshua Havelin
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
| | - Terry Henderson
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Glenn Stevenson
- Department of Psychology, College of Arts and Sciences, University of New England, Biddeford ME
- Center for Excellence in the Neurosciences, University of New England, Biddeford ME
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford ME
- Center for Excellence in the Neurosciences, University of New England, Biddeford ME
| |
Collapse
|
106
|
Lima LV, Abner TSS, Sluka KA. Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. J Physiol 2017; 595:4141-4150. [PMID: 28369946 PMCID: PMC5491894 DOI: 10.1113/jp273355] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
Exercise is an integral part of the rehabilitation of patients suffering a variety of chronic musculoskeletal conditions, such as fibromyalgia, chronic low back pain and myofascial pain. Regular physical activity is recommended for treatment of chronic pain and its effectiveness has been established in clinical trials for people with a variety of pain conditions. However, exercise can also increase pain making participation in rehabilitation challenging for the person with pain. Animal models of exercise-induced pain have been developed and point to central mechanisms underlying this phenomena, such as increased activation of NMDA receptors in pain-modulating areas. Meanwhile, a variety of basic science studies testing different exercise protocols, show exercise-induced analgesia involves activation of central inhibitory pathways. Opioid, serotonin and NMDA mechanisms acting in rostral ventromedial medulla promote analgesia associated with exercise. This review explores and discusses current evidence on central mechanisms underlying exercised-induced pain and analgesia.
Collapse
Affiliation(s)
- Lucas V. Lima
- Department of Physical Therapy and Rehabilitation Science, Pain Research ProgramUniversity of IowaIowa CityIA52242USA
| | - Thiago S. S. Abner
- Department of Physical Therapy and Rehabilitation Science, Pain Research ProgramUniversity of IowaIowa CityIA52242USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research ProgramUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
107
|
King-Himmelreich TS, Möser CV, Wolters MC, Schmetzer J, Schreiber Y, Ferreirós N, Russe OQ, Geisslinger G, Niederberger E. AMPK contributes to aerobic exercise-induced antinociception downstream of endocannabinoids. Neuropharmacology 2017; 124:134-142. [PMID: 28479394 DOI: 10.1016/j.neuropharm.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Physical exercise has been repeatedly associated with decreased nociceptive responses but the underlying mechanisms have still not been fully clarified. In this study, we investigated exercise-induced effects after a single bout of treadmill running on the mouse model of formalin-induced inflammatory nociception. As potential molecular mediators, we focused on endogenous endocannabinoids as well as AMP-activated protein kinase (AMPK). Our results showed that wild type mice display a reduced nociceptive response in the formalin test after treadmill running, while exercise had no effect on inflammatory nociception in AMPKα2 knockout mice. Levels of the endocannabinoid anandamide (AEA) were increased after physical activity in both wild type and AMPKα2 knockout mice, in association with decreased expression of the AEA-hydrolyzing enzyme FAAH and an increased level of the cannabinoid receptor 1 (CB1). Accordingly, treatment of wild type mice with the CB1 inverse agonist AM251 prior to the treadmill running reversed exercise-induced antinociception. However, if mice received AM251 in combination with the AMPK activator 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR), the positive effect of treadmill running on inflammatory nociception was restored, indicating that AMPK affects exercise-induced antinociception downstream of endocannabinoids. This assumption was further supported by cell culture experiments showing AMPK activation after stimulation of neuronal cells with AEA. In conclusion, our data suggest that AMPK is an intermediate effector in endocannabinoid-mediated exercise-induced antinociception. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Tanya S King-Himmelreich
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Christine V Möser
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Miriam C Wolters
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Julia Schmetzer
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Yannik Schreiber
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Otto Q Russe
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
108
|
Byrnes K, Wu PJ, Whillier S. Is Pilates an effective rehabilitation tool? A systematic review. J Bodyw Mov Ther 2017; 22:192-202. [PMID: 29332746 DOI: 10.1016/j.jbmt.2017.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/26/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pilates is a system of exercise focusing upon controlled movement, stretching and breathing. Pilates is popular today not only for physical fitness but also for rehabilitation programs. This paper is a review of the literature on the effectiveness of Pilates as a rehabilitation tool in a wide range of conditions in an adult population. METHODS A systematic literature review was carried out according to the PRISMA guidelines. Electronic databases were searched for cohort studies or randomised controlled trials (RCTs), and inclusion and exclusion criteria were applied. The final RCTs were assessed using the PEDro and CONSORT 2010 checklists. RESULTS Twenty-three studies, published between 2005 and 2016, met the inclusion criteria. These papers assessed the efficacy of Pilates in the rehabilitation of low back pain, ankylosing spondylitis, multiple sclerosis, post-menopausal osteoporosis, non-structural scoliosis, hypertension and chronic neck pain. Nineteen papers found Pilates to be more effective than the control or comparator group at improving outcomes including pain and disability levels. When assessed using the CONSORT and PEDro scales, the quality of the papers varied, with more falling toward the upper end of the scale. CONCLUSION The majority of the clinical trials in the last five years into the use of Pilates as a rehabilitation tool have found it to be effective in achieving desired outcomes, particularly in the area of reducing pain and disability. It indicates the need for further research in these many areas, and especially into the benefits of particular Pilates exercises in the rehabilitation of specific conditions.
Collapse
Affiliation(s)
- Keira Byrnes
- Department of Chiropractic, Faculty of Science and Engineering, Macquarie University, Australia
| | - Ping-Jung Wu
- Department of Chiropractic, Faculty of Science and Engineering, Macquarie University, Australia
| | - Stephney Whillier
- Department of Chiropractic, Faculty of Science and Engineering, Macquarie University, Australia.
| |
Collapse
|
109
|
Hallman DM, Birk Jørgensen M, Holtermann A. Objectively measured physical activity and 12-month trajectories of neck–shoulder pain in workers: A prospective study in DPHACTO. Scand J Public Health 2017; 45:288-298. [DOI: 10.1177/1403494816688376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aims: This study aimed to investigate the association between objectively measured physical activity at work and leisure and the intensity (mean level and time course) of neck–shoulder pain (NSP) over 12 months among male and female blue collar workers. Methods: Data were obtained from 625 blue collar workers from the Danish cohort DPHACTO. Physical activity was measured objectively at baseline using accelerometers. The percentage of time spent in physical activity (walking, climbing stairs, running and cycling) was calculated for both work and leisure time. Longitudinal data on the intensity of NSP (numerical rating scale 0–10) were collected using text messages every fourth week over 12 months. Linear mixed models were used to investigate the associations between occupational physical activity (OPA) and leisure time physical activity (LTPA) and the trajectories of the intensity of NSP, adjusted for individual, biomechanical and psychosocial factors, and baseline pain. Results: OPA was not associated with the mean intensity of NSP over 12 months. LTPA was negatively associated with the mean intensity of NSP both among men ( B=−0.71, 95% CI −1.31 to −0.11) and women ( B=−0.85, 95% CI −1.57 to −0.13). Sex interactions on the 12-month trajectories of NSP showed that higher physical activity was associated with a slower reduction in NSP among men for OPA only ( B=0.03, 95% CI 0.01-0.05) and women for LTPA only ( B=0.05, 95% CI 0.00-0.09). Conclusions: We found that more time in LTPA was associated with a lower overall intensity of NSP over 12 months among blue collar workers. However, depending on sex and domain, high physical activity had an unfavourable effect on the course of NSP over 12 months.
Collapse
Affiliation(s)
- David M. Hallman
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Sweden
| | | | - Andreas Holtermann
- National Research Centre for the Working Environment, Denmark
- University of Southern Denmark, Denmark
| |
Collapse
|
110
|
Abstract
Exercise is known to exert a systemic anti-inflammatory influence, but whether its effects are sufficient to protect against subsequent neuropathic pain is underinvestigated. We report that 6 weeks of voluntary wheel running terminating before chronic constriction injury (CCI) prevented the full development of allodynia for the ∼3-month duration of the injury. Neuroimmune signaling was assessed at 3 and 14 days after CCI. Prior exercise normalized ipsilateral dorsal spinal cord expression of neuroexcitatory interleukin (IL)-1β production and the attendant glutamate transporter GLT-1 decrease, as well as expression of the disinhibitory P2X4R-BDNF axis. The expression of the macrophage marker Iba1 and the chemokine CCL2 (MCP-1), and a neuronal injury marker (activating transcription factor 3), was attenuated by prior running in the ipsilateral lumbar dorsal root ganglia. Prior exercise suppressed macrophage infiltration and/or injury site proliferation, given decreased presence of macrophage markers Iba1, iNOS (M1), and Arg-1 (M2; expression was time dependent). Chronic constriction injury-driven increases in serum proinflammatory chemokines were suppressed by prior running, whereas IL-10 was increased. Peripheral blood mononuclear cells were also stimulated with lipopolysaccharide ex vivo, wherein CCI-induced increases in IL-1β, nitrite, and IL-10 were suppressed by prior exercise. Last, unrestricted voluntary wheel running, beginning either the day of, or 2 weeks after, CCI, progressively reversed neuropathic pain. This study is the first to investigate the behavioral and neuroimmune consequences of regular exercise terminating before nerve injury. This study suggests that chronic pain should be considered a component of "the diseasome of physical inactivity," and that an active lifestyle may prevent neuropathic pain.
Collapse
|
111
|
Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation. THE JOURNAL OF PAIN 2017; 18:687-701. [PMID: 28185925 DOI: 10.1016/j.jpain.2017.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 11/23/2022]
Abstract
Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. PERSPECTIVE Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals.
Collapse
|
112
|
Jones MD, Taylor JL, Booth J, Barry BK. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials. Front Physiol 2016; 7:581. [PMID: 27965587 PMCID: PMC5126702 DOI: 10.3389/fphys.2016.00581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/11/2016] [Indexed: 01/10/2023] Open
Abstract
Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1–SEPs; Experiment 2–LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = −0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = −0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = −0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = −0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.
Collapse
Affiliation(s)
- Matthew D Jones
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - Janet L Taylor
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - John Booth
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Benjamin K Barry
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
113
|
Bernal L, Alvarado-Vázquez A, Ferreira DW, Paige CA, Ulecia-Morón C, Hill B, Caesar M, Romero-Sandoval EA. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions. Immunobiology 2016; 222:399-408. [PMID: 27615510 DOI: 10.1016/j.imbio.2016.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes.
Collapse
Affiliation(s)
- Laura Bernal
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Systems' Biology, School of Medicine, University of Alcala. Campus Universitario - C/ 19, Carretera Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Abigail Alvarado-Vázquez
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - David Wilson Ferreira
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Pharmacology, Ribeirao Preto Medical School-University of Sao Paulo, 3900 Bandeirantes Ave., Ribeirão Preto, SP, 14049-900, Brazil.
| | - Candler A Paige
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - Cristina Ulecia-Morón
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA; Department of Physiology, Anatomy and Cellular Biology, University Pablo de Olavide de Sevilla, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| | - Bailey Hill
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - Marina Caesar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| | - E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, 307 N. Broad St, Clinton, SC 29325, USA.
| |
Collapse
|
114
|
Resident Macrophages in Muscle Contribute to Development of Hyperalgesia in a Mouse Model of Noninflammatory Muscle Pain. THE JOURNAL OF PAIN 2016; 17:1081-1094. [PMID: 27377621 DOI: 10.1016/j.jpain.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Macrophages play a role in innate immunity within the body, are located in muscle tissue, and can release inflammatory cytokines that sensitize local nociceptors. In this study we investigate the role of resident macrophages in the noninflammatory muscle pain model induced by 2 pH 4.0 preservative-free sterile saline (pH 4.0) injections 5 days apart in the gastrocnemius muscle. We showed that injecting 2 pH 4.0 injections into the gastrocnemius muscle increased the number of local muscle macrophages, and depleting muscle macrophages with clodronate liposomes before acid injections attenuated the hyperalgesia produced by this model. To further examine the contribution of local macrophages to this hyperalgesia, we injected mice intramuscularly with C34, a toll-like receptor 4 (TLR4) antagonist. When given before the first pH 4.0 injection, C34 attenuated the muscle and tactile hyperalgesia produced by the model. However, when given before the second injection C34 had no effect on the development of hyperalgesia. Then to test whether activation of local macrophages sensitizes nociceptors to normally non-nociceptive stimuli we replaced either the first or second acid injection with the immune cell activator lipopolysaccharide, or the inflammatory cytokine interleukin (IL)-6. Injecting LPS or IL-6 instead of the either the first or second pH 4.0 injection resulted in a dose-dependent increase in paw withdrawal responses and decrease in muscle withdrawal thresholds. The highest doses of LPS and IL-6 resulted in development of hyperalgesia bilaterally. The present study showed that resident macrophages in muscle are key to development of chronic muscle pain. PERSPECTIVE This article presents evidence for the role of macrophages in the development of chronic muscle pain using a mouse model. These data suggest that macrophages could be a potential therapeutic target to prevent transition of acute to chronic muscle pain particularly in tissue acidosis conditions.
Collapse
|
115
|
Gong X, Jiang J, Zhang M. Exercise preconditioning reduces neonatal incision surgery-induced enhanced hyperalgesia via inhibition of P38 mitogen-activated protein kinase and IL-1β, TNF-α release. Int J Dev Neurosci 2016; 52:46-54. [PMID: 27235543 DOI: 10.1016/j.ijdevneu.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/03/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Neonatal surgery leads to enhanced hyperalgesia to noxious stimulation in adulthood via a mechanism caused by enhanced phosphorylated (p)-p38 expression in microglia. We tested the effect of exercise on reducing enhanced hypersensitivity primed by neonatal incision surgery. Adult female Wistar rats, with or without neonatal incision surgery at postnatal day (P) 3, received right hind paw plantar incision surgery under anesthesia at P44. The rats performed wheel-running exercise from P22 to P41. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured and ipsilateral spinal cords were collected for protein quantification. For PWT and PWL, exercise reduced the pain index after incision surgery at P44 in rats with neonatal surgery (P<0.01). Western blots showed that exercise suppressed P-p38 expression relative to adult rats without neonatal surgery (P<0.05). Results of ELISA showed that exercise reduced IL-1β and TNF-α (P<0.05) concentration in the ipsilateral spinal cord. Exercise preconditioning is an effective approach to reducing enhanced adult hyperalgesia primed by neonatal surgery. The mechanism may be explained by exercise-induced inhibition of P-p38 activation and IL-1β, TNF-α release.
Collapse
Affiliation(s)
- Xingrui Gong
- Department of Anesthesiology & Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Jiang
- Department of Anesthesiology & Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mazhong Zhang
- Department of Anesthesiology & Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|