101
|
Lee J, Brehm MA, Greiner D, Shultz LD, Kornfeld H. Engrafted human cells generate adaptive immune responses to Mycobacterium bovis BCG infection in humanized mice. BMC Immunol 2013; 14:53. [PMID: 24313934 PMCID: PMC3924189 DOI: 10.1186/1471-2172-14-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022] Open
Abstract
Background Currently used mouse models fail to fully reflect human immunity to tuberculosis (TB), which hampers progress in research and vaccine development. Bone marrow-liver-thymus (BLT) mice, generated by engrafting human fetal liver, thymus, and hematopoietic stem cells in severely immunodeficient NOD/SCID/IL-2Rγ-/- (NSG) mice, have shown potential to model human immunity to infection. We engrafted HLA-A2-positive fetal tissues into NSG mice transgenically expressing human leukocyte antigen (HLA)-A2.1 (NSG-A2) to generate NSG-A2-BLT mice and characterized their human immune response to Mycobacterium bovis bacillus Calmette-Guerin (BCG) infection to assess the utility of this model for investigating human TB. Results NSG-A2-BLT mice were infected intravenously with BCG and the immune response of engrafted human immune cells was characterized. After ex vivo antigenic stimulation of splenocytes, interferon (IFN)-γ-producing cells were detected by ELISPOT from infected, but not uninfected NSG-A2-BLT mice. However, the levels of secreted IFN-γ, determined by ELISA, were not significantly elevated by antigenic stimulation. NSG-A2-BLT mice were susceptible to BCG infection as determined by higher lung bacillary load than the non-engrafted control NSG-A2 mice. BCG-infected NSG-A2-BLT mice developed lung lesions composed mostly of human macrophages and few human CD4+ or CD8+ T cells. The lesions did not resemble granulomas typical of human TB. Conclusions Engrafted human immune cells in NSG-A2-BLT mice showed partial function of innate and adaptive immune systems culminating in antigen-specific T cell responses to mycobacterial infection. The lack of protection was associated with low IFN-γ levels and limited numbers of T cells recruited to the lesions. The NSG-A2-BLT mouse is capable of mounting a human immune response to M. tuberculosis in vivo but a quantitatively and possibly qualitatively enhanced effector response will be needed to improve the utility of this model for TB research.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | | | |
Collapse
|
102
|
Abstract
Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.
Collapse
Affiliation(s)
- Andreas Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California 95616
| | | |
Collapse
|
103
|
Gong M, Ma J, Guillemette R, Zhou M, Yang Y, Yang Y, Hock JM, Yu X. miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res 2013; 12:101-10. [PMID: 23966614 DOI: 10.1158/1541-7786.mcr-13-0136] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Small cell lung cancer (SCLC) is a rapidly progressing, incurable cancer that frequently spreads to bone. New insights are needed to identify therapeutic targets to prevent or retard SCLC metastatic progression. Human SCLC SBC-5 cells in mouse xenograft models home to skeletal and nonskeletal sites, whereas human SCLC SBC-3 cells only pervade nonskeletal sites. Because microRNAs (miRNA) often act as tumor regulators, we investigated their role in preclinical models of SCLC. miRNA expression profiling revealed selective and reduced expression of miRNA (miR)-335 and miR-29a in SBC-5 cells, compared with SBC-3 cells. In SBC-5 cells, miR-335 expression correlated with bone osteolytic lesions, whereas miR-29a expression did not. Overexpression of miR-335 in SBC-5 cells significantly reduced cell migration, invasion, proliferation, colony formation, and osteoclast induction in vitro. Importantly, in miR-335 overexpressing SBC-5 cell xenografts (n = 10), there were minimal osteolytic lesions in the majority of mice and none in three mice. Expression of RANK ligand (RANKL) and insulin-like growth factor-I receptor (IGF-IR), key mediators of bone metastases, were elevated in SBC-5 as compared with SBC-3 cells. Mechanistically, overexpression of miR-335 in SBC-5 cells reduced RANKL and IGF-IR expression. In conclusion, loss of miR-335 promoted SCLC metastatic skeletal lesions via deregulation of IGF-IR and RANKL pathways and was associated with metastatic osteolytic skeletal lesions. IMPLICATIONS These preclinical findings establish a need to pursue the role of miR-335 in human SCLC with metastatic skeletal disease.
Collapse
Affiliation(s)
- Meng Gong
- MD, PhD, Laboratory of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, Sichuan 610041, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Wu H, Wen D, Mahato RI. Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model. Mol Ther 2013; 21:1778-86. [PMID: 23765442 DOI: 10.1038/mt.2013.147] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/09/2013] [Indexed: 12/12/2022] Open
Abstract
Human islet transplantation can be a permanent treatment of type 1 diabetes if the immune rejection and primary nonfunction (PNF) of transplanted islet grafts were properly addressed. In this study, we determined whether cotransplantation of human bone marrow-derived mesenchymal stem cells (hBMSCs) could prevent immune rejection and improve human islet transplantation in a humanized NOD scid gamma (NSG) mouse model. Human immunity was rebuilt and maintained in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ (NSG) mice up to 13 weeks after intraperitoneal injection of mature human peripheral blood mononuclear cells (PBMCs). The blood glucose control and the levels of serum insulin and c-peptide clearly indicated a better outcome of islet transplantation when islets were cotransplanted with hBMSCs. hBMSCs actively interacted with interleukin-10 (IL-10)-producing CD14+ monocytes to suppress the proliferation and activation of T cells in the PBMC/hBMSC coculture and prevent the T cell recruitment into the transplantation site. hBMSCs also increased the percentage of immunosuppressive regulatory T cells (Tregs) and prevented the cytokine-induced loss-of-function of human islets. Taken together, our studies demonstrated that transplantation of islets with hBMSCs is a promising strategy to improve the outcome of human islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | |
Collapse
|
105
|
Lollini PL, De Giovanni C, Nanni P. Preclinical HER-2 Vaccines: From Rodent to Human HER-2. Front Oncol 2013; 3:151. [PMID: 23772419 PMCID: PMC3677144 DOI: 10.3389/fonc.2013.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022] Open
Abstract
Effective prevention of human cancer with vaccines against viruses, such as HBV and HPV, raises the question whether also non-virus related tumors could be prevented with immunological means. Studies in HER-2-transgenic mice showed that powerful anti-HER-2 vaccines, could almost completely prevent the onset of mammary carcinoma. Protective immune responses were orchestrated by T cells and their cytokines, and effected by antibodies against HER-2 gene product p185. Analogous findings were reported in a variety of other cancer immunoprevention systems, thus leading to the definition of oncoantigens, optimal target antigens that are causally involved in carcinogenesis and cancer progression. Prophylactic HER-2 vaccines were also effective in preventing metastasis outgrowth, indicating that concepts and approaches developed for cancer immunoprevention could prove fruitful in cancer immunotherapy as well. The availability of cancer-prone mice carrying a human HER-2 transgene is now fostering the design of novel vaccines against human p185. A further bridge toward human cancer was recently provided by novel immunodeficient models, like Rag2−/−;Il2rg−/− mice, which are permissive for metastatic spread of human HER-2+ cancer cells and can be engrafted with a functional human immune system, allowing for the first time the study of vaccines against oncoantigens to elicit human immune responses against human cancer cells in vivo.
Collapse
Affiliation(s)
- Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna , Bologna , Italy
| | | | | |
Collapse
|
106
|
A therapeutic strategy for metastatic malignant fibrous histiocytoma through mesenchymal stromal cell-mediated TRAIL production. Ann Surg 2013; 257:952-60. [PMID: 23108118 DOI: 10.1097/sla.0b013e3182710401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To overcome the therapeutic limitations of malignant fibrous histiocytoma (MFH), we evaluated human adipose tissue-derived mesenchymal stromal cells (MSCs) that secrete tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on metastatic MFH. BACKGROUND MFH is a highly malignant and metastatic type of sarcoma but surgical removal is the only effective method for treating MFH. MSCs are easily transduced to express a high level of transgene and can migrate toward cancer. For this reason, MSCs are a promising candidate for metastatic MFH therapies. METHODS In vitro sustainability of MSC-TRAIL against MFH-ino was analyzed by apoptosis assay. For preclinical study, anti-MFH effects of MSC-TRAILs were validated in murine models for local tumorigenesis and metastasis. Furthermore, a time-interval metastasis model of MFH was applied to confirm antimetastatic ability of MSC-TRAIL for preestablished metastatic MFH. RESULTS We found that MFH-ino is highly susceptible to recombinant TRAIL and MSC-TRAIL, which selectively induce apoptosis via caspase-8 activation in vitro. Moreover, not only MFH-ino but xenograft explants were also significantly inhibited by MSC-TRAIL in local tumorigenesis. In particular, the metastatic ability of MFH-ino was considerably reduced by MSC-TRAIL in metastasis murine model, particularly for preestablished metastatic MFH. CONCLUSIONS These results suggest that MSC-TRAIL is sufficiently effective in inhibiting MFH-ino metastasis and the application using MSC-TRAIL could be extended to other sarcomas and recurrent metastatic cancers for cell-mediated cancer therapy.
Collapse
|
107
|
Developability assessment as an early de-risking tool for biopharmaceutical development. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
108
|
Sanchez FM, Cuadra GI, Nielsen SJ, Tanner A, Berges BK. Production and characterization of humanized Rag2-/-γc -/- mice. Methods Mol Biol 2013; 1031:19-26. [PMID: 23824882 DOI: 10.1007/978-1-62703-481-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mice reconstituted with human immune cells represent a model to study the development and functionality of the human immune system. Recent improvements in humanized mice have resulted in multi-lineage hematopoiesis, prolonged human cell engraftment that is detectable in many mouse organs, and the ability to generate de novo human innate and adaptive immune responses. Here, we describe the methods used to produce and characterize humanized Rag2(-/-)γc(-/-) mice.
Collapse
Affiliation(s)
- Freddy M Sanchez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | | | | | | | | |
Collapse
|
109
|
Jurczyk A, diIorio P, Brostowin D, Leehy L, Yang C, Urano F, Harlan DM, Shultz LD, Greiner DL, Bortell R. Improved function and proliferation of adult human beta cells engrafted in diabetic immunodeficient NOD-scid IL2rγ(null) mice treated with alogliptin. Diabetes Metab Syndr Obes 2013; 6:493-9. [PMID: 24376359 PMCID: PMC3864939 DOI: 10.2147/dmso.s53154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Dipeptidyl-peptidase-4 (DPP-4) inhibitors are known to increase insulin secretion and beta cell proliferation in rodents. To investigate the effects on human beta cells in vivo, we utilize immunodeficient mice transplanted with human islets. The study goal was to determine the efficacy of alogliptin, a DPP-4 inhibitor, to enhance human beta cell function and proliferation in an in vivo context using diabetic immunodeficient mice engrafted with human pancreatic islets. METHODS Streptozotocin-induced diabetic NOD-scid IL2rγ(null) (NSG) mice were transplanted with adult human islets in three separate trials. Transplanted mice were treated daily by gavage with alogliptin (30 mg/kg/day) or vehicle control. Islet graft function was compared using glucose tolerance tests and non-fasting plasma levels of human insulin and C-peptide; beta cell proliferation was determined by bromodeoxyuridine (BrdU) incorporation. RESULTS Glucose tolerance tests were significantly improved by alogliptin treatment for mice transplanted with islets from two of the three human islet donors. Islet-engrafted mice treated with alogliptin also had significantly higher plasma levels of human insulin and C-peptide compared to vehicle controls. The percentage of insulin+BrdU+ cells in human islet grafts from alogliptin-treated mice was approximately 10-fold more than from vehicle control mice, consistent with a significant increase in human beta cell proliferation. CONCLUSION Human islet-engrafted immunodeficient mice treated with alogliptin show improved human insulin secretion and beta cell proliferation compared to control mice engrafted with the same donor islets. Immunodeficient mice transplanted with human islets provide a useful model to interrogate potential therapies to improve human islet function and survival in vivo.
Collapse
Affiliation(s)
- Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Philip diIorio
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Dean Brostowin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Linda Leehy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Chaoxing Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - David M Harlan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | | | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
- Correspondence: Rita Bortell, Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, AS7-2055, Worcester, MA, USA, Tel +1 508 856 3788, Fax +1 508 856 4093, Email
| |
Collapse
|
110
|
Shimizu K, Mizuno T, Shinga J, Asakura M, Kakimi K, Ishii Y, Masuda K, Maeda T, Sugahara H, Sato Y, Matsushita H, Nishida K, Hanada K, Dorrie J, Schaft N, Bickham K, Koike H, Ando T, Nagai R, Fujii SI. Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells. Cancer Res 2012; 73:62-73. [PMID: 23108144 DOI: 10.1158/0008-5472.can-12-0759] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both innate and adaptive immunity are crucial for cancer immunosurveillance, but precise therapeutic equations to restore immunosurveillance in patients with cancer patients have yet to be developed. In murine models, α-galactosylceramide (α-GalCer)-loaded, tumor antigen-expressing syngeneic or allogeneic cells can act as cellular adjuvants, linking the innate and adaptive immune systems. In the current study, we established human artificial adjuvant vector cells (aAVC) consisting of human HEK293 embryonic kidney cells stably transfected with the natural killer T (NKT) immune cell receptor CD1d, loaded with the CD1d ligand α-GalCer and then transfected with antigen-encoding mRNA. When administered to mice or dogs, these aAVC-activated invariant NKT (iNKT) cells elicited antigen-specific T-cell responses with no adverse events. In parallel experiments, using NOD/SCID/IL-2rγc(null)-immunodeficient (hDC-NOG) mouse model, we also showed that the human melanoma antigen, MART-1, expressed by mRNA transfected aAVCs can be cross-presented to antigen-specific T cells by human dendritic cells. Antigen-specific T-cell responses elicited and expanded by aAVCs were verified as functional in tumor immunity. Our results support the clinical development of aAVCs to harness innate and adaptive immunity for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Kanako Shimizu
- Research Unit for Cellular Immunotherapy, The Institute of Physical and Chemical Research (RIKEN), Research Center for Allergy and Immunology (RCAI), Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Scholbach J, Schulz A, Westphal F, Egger D, Wege AK, Patties I, Köberle M, Sack U, Lange F. Comparison of hematopoietic stem cells derived from fresh and cryopreserved whole cord blood in the generation of humanized mice. PLoS One 2012; 7:e46772. [PMID: 23071634 PMCID: PMC3469562 DOI: 10.1371/journal.pone.0046772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/05/2012] [Indexed: 11/17/2022] Open
Abstract
To study the function and maturation of the human hematopoietic and immune system without endangering individuals, translational human-like animal models are needed. We compare the efficiency of CD34+ stem cells isolated from cryopreserved cord blood from a blood bank (CCB) and fresh cord blood (FCB) in generating highly engrafted humanized mice in NOD-SCID IL2Rγnull (NSG) rodents. Interestingly, the isolation of CD34+ cells from CCB results in a lower yield and purity compared to FCB. The purity of CD34+ isolation from CCB decreases with an increasing number of mononuclear cells that is not evident in FCB. Despite the lower yield and purity of CD34+ stem cell isolation from CCB compared to FCB, the overall reconstitution with human immune cells (CD45) and the differentiation of its subpopulations e.g., B cells, T cells or monocytes is comparable between both sources. In addition, independent of the cord blood origin, human B cells are able to produce high amounts of human IgM antibodies and human T cells are able to proliferate after stimulation with anti-CD3 antibodies. Nevertheless, T cells generated from FCB showed increased response to restimulation with anti-CD3. Our study reveals that the application of CCB samples for the engraftment of humanized mice does not result in less engraftment or a loss of differentiation and function of its subpopulations. Therefore, CCB is a reasonable alternative to FCB and allows the selection of specific genotypes (or any other criteria), which allows scientists to be independent from the daily changing birth rate.
Collapse
Affiliation(s)
- Johanna Scholbach
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Mashimo T, Takizawa A, Kobayashi J, Kunihiro Y, Yoshimi K, Ishida S, Tanabe K, Yanagi A, Tachibana A, Hirose J, Yomoda JI, Morimoto S, Kuramoto T, Voigt B, Watanabe T, Hiai H, Tateno C, Komatsu K, Serikawa T. Generation and characterization of severe combined immunodeficiency rats. Cell Rep 2012; 2:685-94. [PMID: 22981234 DOI: 10.1016/j.celrep.2012.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 05/08/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
Severe combined immunodeficiency (SCID) mice, the most widely used animal model of DNA-PKcs (Prkdc) deficiency, have contributed enormously to our understanding of immunodeficiency, lymphocyte development, and DNA-repair mechanisms, and they are ideal hosts for allogeneic and xenogeneic tissue transplantation. Here, we use zinc-finger nucleases to generate rats that lack either the Prkdc gene (SCID) or the Prkdc and Il2rg genes (referred to as F344-scid gamma [FSG] rats). SCID rats show several phenotypic differences from SCID mice, including growth retardation, premature senescence, and a more severe immunodeficiency without "leaky" phenotypes. Double-knockout FSG rats show an even more immunocompromised phenotype, such as the abolishment of natural killer cells. Finally, xenotransplantation of human induced pluripotent stem cells, ovarian cancer cells, and hepatocytes shows that SCID and FSG rats can act as hosts for xenogeneic tissue grafts and stem cell transplantation and may be useful for preclinical testing of new drugs.
Collapse
Affiliation(s)
- Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Dodon MD, Villaudy J, Gazzolo L, Haines R, Lairmore M. What we are learning on HTLV-1 pathogenesis from animal models. Front Microbiol 2012; 3:320. [PMID: 22969759 PMCID: PMC3431546 DOI: 10.3389/fmicb.2012.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/16/2012] [Indexed: 11/24/2022] Open
Abstract
Isolated and identified more than 30 years ago, human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia/lymphoma, an aggressive lymphoproliferative disease of activated CD4+ T cells, and other inflammatory disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis. A variety of animal models have contributed to the fundamental knowledge of HTLV-1 transmission, pathogenesis, and to the design of novel therapies to treat HTLV-1-associated diseases. Small animal models (rabbits, rats, and mice) as well as large animal models (monkeys) have been utilized to significantly advance characterization of the viral proteins and of virus-infected cells in the early steps of infection, as well as in the development of leukemogenic and immunopathogenic processes. Over the past two decades, the creation of new immunocompromised mouse strains that are robustly reconstituted with a functional human immune system (HIS) after being transplanted with human tissues or progenitor cells has revolutionized the in vivo investigation of viral infection and pathogenesis. Recent observations obtained in HTLV-1-infected humanized HIS mice that develop lymphomas provide the opportunity to study the evolution of the proviral clonality in human T cells present in different lymphoid organs. Current progress in the improvement of those humanized models will favor the testing of drugs and the development of targeted therapies against HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Madeleine Duc Dodon
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon Lyon, France
| | | | | | | | | |
Collapse
|
114
|
Abstract
Background: Human immune system (HIS)-engrafted mice are new tools to investigate human immune responses. Here, we used HIS mice to study human immune responses against human HER-2-positive cancer cells and their ability to control tumour growth and metastasis. Methods: BALB/c Rag2−/−, Il2rg−/− mice were engrafted with CD34+ or CD133+ human cord blood hematopoietic stem cells (HSC) and vaccinated with human HER-2-positive cancer cells SK-OV-3 combined to human IL-12. Results: Both CD34+ or CD133+ human HSC gave long-term engraftment and differentiation, both in peripheral blood and in lymphoid organs, and production of human antibodies. Vaccinated mice produced specific anti-HER-2 human IgG. An s.c. SK-OV-3 challenge was significantly inhibited (but not abolished) in both vaccinated and non-vaccinated HIS mice. Tumours were heavily infiltrated with human and murine cells, mice showed NK cells and production of human interferon-γ, that could contribute to tumour growth inhibition. Vaccinated HIS mice showed significantly inhibited lung metastases when compared with non-vaccinated HIS mice and to non-HIS mice, along with higher levels of tumour-infiltrating human dendritic cells. Conclusion: Anti-HER-2 responses were elicited through an adjuvanted allogeneic cancer cell vaccine in HIS mice. Human immune responses elicited in HIS mice effectively inhibited lung metastases.
Collapse
|
115
|
Jaiswal S, Pazoles P, Woda M, Shultz LD, Greiner DL, Brehm MA, Mathew A. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology 2012; 136:334-43. [PMID: 22384859 DOI: 10.1111/j.1365-2567.2012.03585.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγ(null) mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections.
Collapse
Affiliation(s)
- Smita Jaiswal
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Garcia S, Freitas AA. Humanized mice: Current states and perspectives. Immunol Lett 2012; 146:1-7. [DOI: 10.1016/j.imlet.2012.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 01/08/2023]
|
117
|
Klymiuk N, van Buerck L, Bähr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61:1527-32. [PMID: 22522620 PMCID: PMC3357306 DOI: 10.2337/db11-1325] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a potential treatment for type 1 diabetes, but the shortage of donor organs limits its routine application. As potential donor animals, we generated transgenic pigs expressing LEA29Y, a high-affinity variant of the T-cell costimulation inhibitor CTLA-4Ig, under the control of the porcine insulin gene promoter. Neonatal islet cell clusters (ICCs) from INSLEA29Y transgenic (LEA-tg) pigs and wild-type controls were transplanted into streptozotocin-induced hyperglycemic NOD-scid IL2Rγ(null) mice. Cloned LEA-tg pigs are healthy and exhibit a strong β-cell-specific transgene expression. LEA-tg ICCs displayed the same potential to normalize glucose homeostasis as wild-type ICCs after transplantation. After adoptive transfer of human peripheral blood mononuclear cells, transplanted LEA-tg ICCs were completely protected from rejection, whereas reoccurrence of hyperglycemia was observed in 80% of mice transplanted with wild-type ICCs. In the current study, we provide the first proof-of-principle report on transgenic pigs with β-cell-specific expression of LEA29Y and their successful application as donors in a xenotransplantation model. This approach may represent a major step toward the development of a novel strategy for pig-to-human islet transplantation without side effects of systemic immunosuppression.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lelia van Buerck
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Andrea Bähr
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Monika Offers
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Annegret Wuensch
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Thormann
- Department of Cardiac Surgery, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katharina Lochner
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Meiji University, Kawasaki, Japan
| | - Nadja Herbach
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, Germany
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
- Corresponding authors: Eckhard Wolf, , and Jochen Seissler,
| |
Collapse
|
118
|
Gorantla S, Gendelman HE, Poluektova LY. Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J Neuroimmune Pharmacol 2012; 7:352-62. [PMID: 22222956 PMCID: PMC3782112 DOI: 10.1007/s11481-011-9335-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/14/2011] [Indexed: 01/22/2023]
Abstract
There is a rebirth of humanized mouse models in reflecting human immunodeficiency virus (HIV) pathobiology. This has allowed new investigations of viral diversity, immunity and developmental therapeutics. In the past, HIV infection and disease were, in part, mirrored in immune deficient mice reconstituted with human hematopoietic stem cells. What remained from early studies reflected the ability to mirror central nervous system (CNS) disease. As the wide spread use of combination antiretroviral therapies has changed the severity, but not prevalence, of HIV-associated neurocognitive disorders (HAND), mimicking such virus-induced CNS morbidities in humanized animals is essential for HIV/AIDS research activities. To this end, we now review the evidence for how and under what circumstances humanized mice may be utilized for studies of HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience and Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
119
|
Mucosal HIV-1 transmission and prevention strategies in BLT humanized mice. Trends Microbiol 2012; 20:268-74. [PMID: 22503637 DOI: 10.1016/j.tim.2012.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/10/2012] [Accepted: 03/15/2012] [Indexed: 01/01/2023]
Abstract
Clinical trials testing microbicides and related biomedical interventions to block HIV transmissions have produced contradictory results and to date it is unclear why. Further elucidation of the molecular basis of mucosal HIV transmission and extensive pharmacokinetic and pharmacodynamic analyses are essential to implementing effective prevention strategies. Animal models are of critical importance to this effort and bone marrow-liver-thymus (BLT) humanized mice have recently emerged as a powerful small animal research platform for in vivo efficacy evaluation of mucosal and parenteral HIV-1 prevention interventions. The availability of this validated system for the pre-clinical evaluation of HIV-1 prevention approaches will accelerate the implementation of the best candidate interventions into clinical trials.
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW To provide an update on animal models of antineutrophil cytoplasmic autoantibody (ANCA)-mediated vasculitis and highlight recent insights gained from studies in these models pertaining to immunopathogenesis. RECENT FINDINGS Animal models support the pathogenic potential of myeloperoxidase (MPO)-ANCA. Alternative pathway complement activation has been identified as a novel inflammatory pathway in disease induction and a potential target for intervention. Interventions targeting B cells, antibodies, and signal transduction pathways may hold promise as well. The role of T cells is beginning to be explored, and studies indicate a prominent role for Th17 responses. The link between infection and ANCA vasculitis is well established. In animal models, Toll-like receptor (TLR)4 ligation is involved in disease induction. Ligation of TLRs contributes to the initiation of anti-MPO autoimmune responses in which TLR2 activation induces a Th17 response and TLR9 activation directs a Th1 response. An animal model for PR3-ANCA vasculitis is not available yet but models with a humanized immune system are being developed and show promising first results. SUMMARY Animal models of MPO-ANCA vasculitis have contributed substantially to our understanding of disease immunopathogenesis and have illuminated novel targets for intervention. The development of PR3-ANCA animal models remains a challenge but recent observations in humanized model systems offer hope.
Collapse
|
121
|
Brehm MA, Shultz LD. Human allograft rejection in humanized mice: a historical perspective. Cell Mol Immunol 2012; 9:225-31. [PMID: 22327213 DOI: 10.1038/cmi.2011.64] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Basic research in transplantation immunology has relied primarily on rodent models. Experimentation with rodents has laid the foundation for our basic understanding of the biological events that precipitate rejection of non-self or allogeneic tissue transplants and supported the development of novel strategies to specifically suppress allogeneic immune responses. However, translation of these studies to the clinic has met with limited success, emphasizing the need for new models that focus on human immune responses to allogeneic tissues. Humanized mouse models are an exciting alternative that permits investigation of the rejection of human tissues mediated by human immune cells without putting patients at risk. However, the use of humanized mice is complicated by a diversity of protocols and approaches, including the large number of immunodeficient mouse strains available, the choice of tissue to transplant and the specific human immune cell populations that can be engrafted. Here, we present a historical perspective on the study of allograft rejection in humanized mice and discuss the use of these novel model systems in transplant biology.
Collapse
Affiliation(s)
- Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
122
|
Cachat A, Villaudy J, Rigal D, Gazzolo L, Duc Dodon M. [Mice are not Men and yet… how humanized mice inform us about human infectious diseases]. Med Sci (Paris) 2012; 28:63-8. [PMID: 22289832 DOI: 10.1051/medsci/2012281018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The study of human pathologies is often limited by the absence of animal models which are robust, cost-effective and reproduce the hallmarks of human infections. While mice have been frequently employed to study human diseases, many of important pathogens display unique human tropism. These last two decades the graft of human progenitor cells or tissues into -immunodeficient mice has allowed the elaboration of so called humanized mice. Humanized mouse technology has made rapid progress, and it is now possible to achieve high levels of human chimerism in various organs and tissues, particularly the immune system and the liver. The review briefly summarizes the different models of humanized mice available for in vivo experiments. With a focus on lymphotropic, monocytotropic and hepatotropic viruses, we here discuss the current status and future prospects of these models for studying the pathogenesis of infectious diseases. Furthermore, they provide a powerful tool for the development of innovative therapies.
Collapse
Affiliation(s)
- Anne Cachat
- Virologie humaine, INSERM-U758, École Normale Supérieure, France
| | | | | | | | | |
Collapse
|
123
|
Kawabata TT, Evans EW. Development of immunotoxicity testing strategies for immunomodulatory drugs. Toxicol Pathol 2012; 40:288-93. [PMID: 22228792 DOI: 10.1177/0192623311430238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ICH S8 immunotoxicity testing guideline for human pharmaceuticals was published in 2006 and was intended to provide guidance for assessing the immunotoxicity potential of low-molecular-weight drugs that are not intended to alter the immune system. For drugs intended to modulate the immune system, immunotoxicity testing strategies are generally developed on a case-by-case approach since the targets, intended patient population, and mechanisms of action of the test compound will determine the type of testing needed. Some of the general principles of ICH S8, however, may be applied to immunotoxicity testing strategies for immunomodulatory drugs. A weight-of-evidence approach using factors discussed in ICH S8 in concert with an assessment of the potential value of additional immunotoxicity testing should be considered. For most situations, immunotoxicity studies with immunomodulatory compounds evaluate off-target effects on the immune system and exaggerated pharmacology. The potential use of data from these studies and considerations such as translatability to humans are discussed.
Collapse
|
124
|
|
125
|
Characteristics of Borrelia hermsii infection in human hematopoietic stem cell-engrafted mice mirror those of human relapsing fever. Proc Natl Acad Sci U S A 2011; 108:20707-12. [PMID: 22143787 DOI: 10.1073/pnas.1108776109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rodents are natural reservoirs for a variety of species of Borrelia that cause relapsing fever (RF) in humans. The murine model of this disease recapitulates many of the clinical manifestations of the human disease and has revealed that T cell-independent antibody responses are required to resolve the bacteremic episodes. However, it is not clear whether such protective humoral responses are mounted in humans. We examined Borrelia hermsii infection in human hematopoietic stem cell-engrafted nonobese diabetic/SCID/IL-2Rγ(null) mice: "human immune system mice" (HISmice). Infection of these mice, which are severely deficient in lymphoid and myeloid compartments, with B. hermsii resulted in persistent bacteremia. In contrast, this infection in HISmice resulted in recurrent episodes of bacteremia, the hallmark of RF. The resolution of the primary episode of bacteremia was concurrent with the generation of B. hermsii-specific human IgM. Remarkably, HISmice generated antibody responses to the B. hermsii outer-membrane protein Factor H binding protein A. Sera from humans infected by B. hermsii have a similar reactivity, and studies in mice have shown that this response is generated by the B1b cell subset. HISmice contain several B-cell subsets, including those with the phenotype CD20(+)CD27(+)CD43(+)CD70(-), a proposed human equivalent of mouse B1 cells. Reduction of B cells by administration of anti-human CD20 antibody resulted in diminished anti-B. hermsii responses and persistent bacteremia in HISmice. These data indicate that analysis of B. hermsii infection in HISmice will serve as a model in which to study the cellular and molecular mechanisms involved in controlling human RF.
Collapse
|
126
|
Melton DA. Using stem cells to study and possibly treat type 1 diabetes. Philos Trans R Soc Lond B Biol Sci 2011; 366:2307-11. [PMID: 21727136 DOI: 10.1098/rstb.2011.0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stem cells with the potential to form many different cell types are actively studied for their possible use in cell replacement therapies for several diseases. In addition, the differentiated derivatives of stem cells are being used as reagents to test for drugs that slow or correct disease phenotypes found in several degenerative diseases. This paper explores these approaches in the context of type 1 or juvenile diabetes, pointing to recent successes as well as the technical and theoretical challenges that lie ahead in the path to new treatments and cures.
Collapse
Affiliation(s)
- D A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
127
|
DiLorenzo TP. Multiple antigens versus single major antigen in type 1 diabetes: arguing for multiple antigens. Diabetes Metab Res Rev 2011; 27:778-83. [PMID: 22069259 DOI: 10.1002/dmrr.1251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our recent review of the literature revealed that approximately 20 antigens are now known to be targeted by T cells in the NOD mouse model of the autoimmune disease type 1 diabetes. Of these, insulin has received considerable attention and has been described by some in the research community as an 'initiating' or 'single major' antigen in the disease. Insulin may indeed be worthy of these titles, at least in NOD mice and in the context of the particular major histocompatibility complex molecules expressed in this strain. However, here we present arguments in favour of viewing type 1 diabetes as a disease in which multiple antigens should be considered, rather than just one. In our view, other antigens may prove to be more worthy of these titles in humans, and the major histocompatibility complex molecules expressed may well be a determining factor. Furthermore, even if insulin is 'the initiating antigen' in type 1 diabetes, multiple pathogenic specificities are known to exist even during the prediabetic period and it is at our peril that we ignore them. The recent discovery of novel beta-cell antigens, e.g. ZnT8 and chromogranin A, has taught us that we still have much to learn about the targets of the autoimmune response in type 1 diabetes. Increased knowledge will promote a clearer picture of disease pathogenesis and will better position the field to be successful in its translational goals of immune monitoring and disease prevention and reversal.
Collapse
Affiliation(s)
- Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
128
|
Abstract
Type 1 diabetes is a T-cell-mediated autoimmune disease against pancreatic beta cells. T cells target various antigens such as insulin, chromogranin A, glutamic acid decarboxylase and islet-specific glucose-6-phosphatase catalytic subunit-related protein. Elimination of insulin dramatically prevents diabetes in the non-obese diabetic (NOD) mouse model and response to insulin occurs prior to that to other antigens. These findings suggest that insulin is a target antigen at the early stage of the disease and is likely to be essential to cause anti-islet autoimmunity in NOD mice. In this review, we discuss whether insulin is truly essential and is only the single essential autoantigen for NOD mice and potentially for man. Although the ultimate principle is still being addressed, it is certain that T-cell response to insulin is a major check point to develop type 1 diabetes in NOD mice. Given multiple similarities between diabetes of NOD mice and man, targeting insulin and insulin-reactive T cells may provide opportunities to develop robust immunotherapies.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
129
|
McMurray F, Cox RD. Mouse models and type 2 diabetes: translational opportunities. Mamm Genome 2011; 22:390-400. [PMID: 21713584 DOI: 10.1007/s00335-011-9345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/07/2011] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes prevalence is increasing worldwide. Treatments are available, but glycaemic control is not always effective in many patients. Better models are needed to create new and improved therapies and to expand our understanding of how type 2 diabetes begins and progresses. Translational research involves the transformation of knowledge from basic scientific discoveries to impacting on public health. This can allow identification of novel molecular mechanisms underlying the disease which can lead to preventative measures, biomarkers for diagnosis, or future therapies. Generation of genetically modified mice has allowed us to investigate the function of genes and develop reproducible models in which the phenotype of the animal can be tested. Mouse models have already given us insight into glucose metabolism and insulin secretion, identified novel pathways, and have been used to confirm genome-wide association studies. In this review we discuss the use of the mouse to clarify human genome-wide association study loci, understand genes and pathways involved in type 2 diabetes, and uncover novel targets for drug discovery.
Collapse
Affiliation(s)
- Fiona McMurray
- MRC Harwell, Metabolism and Inflammation, Harwell Oxford Campus, Oxfordshire, UK.
| | | |
Collapse
|
130
|
Hall SW, Cooke A. Autoimmunity and inflammation: murine models and translational studies. Mamm Genome 2011; 22:377-89. [PMID: 21688192 DOI: 10.1007/s00335-011-9338-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/26/2022]
Abstract
Autoimmune and inflammatory diseases, including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis, constitute an important and growing public health burden. However, in many cases our understanding of disease biology is limited and available therapies vary greatly in their efficacy and safety. Animal models of autoimmune and inflammatory diseases have provided valuable tools to researchers investigating their aetiology, pathology, and novel therapeutic strategies. Although such models vary in the degree to which they reflect human autoimmune and inflammatory diseases and caution is required in the extrapolation of animal data to the clinical setting, therapeutic approaches first evaluated in established animal models, including collagen-induced arthritis, experimental autoimmune encephalomyelitis, and the nonobese diabetic mouse, have successfully progressed to clinical investigation and practice. Similarly, these models have proven useful in providing support for basic hypotheses regarding the underlying causes and pathology of autoimmune and inflammatory diseases. Here we review selected murine models of autoimmunity and inflammation and efforts to translate findings from these models into both basic insights into disease biology and novel therapeutic strategies.
Collapse
Affiliation(s)
- Samuel W Hall
- Department of Pathology, University of Cambridge, UK.
| | | |
Collapse
|
131
|
Landrette SF, Xu T. Somatic genetics empowers the mouse for modeling and interrogating developmental and disease processes. PLoS Genet 2011; 7:e1002110. [PMID: 21814514 PMCID: PMC3140981 DOI: 10.1371/journal.pgen.1002110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
With recent advances in genomic technologies, candidate human disease genes are being mapped at an accelerated pace. There is a clear need to move forward with genetic tools that can efficiently validate these mutations in vivo. Murine somatic mutagenesis is evolving to fulfill these needs with tools such as somatic transgenesis, humanized rodents, and forward genetics. By combining these resources one is not only able to model disease for in vivo verification, but also to screen for mutations and pathways integral to disease progression and therapeutic intervention. In this review, we briefly outline the current advances in somatic mutagenesis and discuss how these new tools, especially the piggyBac transposon system, can be applied to decipher human biology and disease.
Collapse
Affiliation(s)
- Sean F. Landrette
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Tian Xu
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
- Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Center for Biomedical Research, School of Life Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
132
|
Denton PW, García JV. Humanized mouse models of HIV infection. AIDS Rev 2011; 13:135-148. [PMID: 21799532 PMCID: PMC3741405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Because of the limited tropism of HIV, in vivo modeling of this virus has been almost exclusively limited to other lentiviruses, such as simian immunodeficiency virus, that reproduce many important characteristics of HIV infection. However, there are significant genetic and biological differences among lentiviruses and some HIV-specific interventions are not effective against other lentiviruses in nonhuman hosts. For these reasons, much emphasis has recently been placed on developing alternative animal models that support HIV replication and recapitulate key aspects of HIV infection and pathogenesis in humans. Humanized mice, CD34+ hematopoietic progenitor cell transplanted immunodeficient mice, and in particular mice also implanted with human thymus/liver tissue (bone marrow liver thymus mice) that develop a functional human immune system, have been the focus of a great deal of attention as possible models to study virtually all aspects of HIV biology and pathogenesis. Humanized mice are systemically reconstituted with human lymphoid cells, offering rapid, reliable, and reproducible experimental systems for HIV research. Peripheral blood of humanized mice can be readily sampled longitudinally to assess reconstitution with human cells and to monitor HIV replication, permitting the evaluation of multiple parameters of HIV infection such as viral load levels, CD4+ T-cell depletion, immune activation, as well as the effects of therapeutic interventions. Of high relevance to HIV transmission is the extensive characterization and validation of the reconstitution with human lymphoid cells of the female reproductive tract and of the gastrointestinal tract of humanized bone marrow liver thymus mice that renders them susceptible to both vaginal and rectal HIV infection. Other important attributes of all types of humanized mice include: (i) their small size and cost that make them widely accessible; (ii) multiple cohorts of humanized mice can be made from multiple human donors and each cohort has identical human cells, permitting control of intragenetic variables; (iii) continuous de novo production of human immune cells from the transplanted CD34+ cells within each humanized mouse facilitates long-term experiments; (iv) both primary and laboratory HIV isolates can be used for experiments; and (v) in addition to therapeutic interventions, rectal and vaginal HIV prevention approaches can be studied. In summary, humanized mice can have an important role in virtually all aspects of HIV research, including the analysis of HIV replication, the evaluation of HIV restriction factors, the characterization of successful biomedical HIV prevention strategies, the evaluation of new treatment regimens, and the evaluation of novel HIV eradication strategies.
Collapse
Affiliation(s)
- Paul W Denton
- Division of Infectious Diseases, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, USA.
| | | |
Collapse
|
133
|
Keshtkar-Jahromi M, Kuhn JH, Christova I, Bradfute SB, Jahrling PB, Bavari S. Crimean-Congo hemorrhagic fever: Current and future prospects of vaccines and therapies. Antiviral Res 2011; 90:85-92. [DOI: 10.1016/j.antiviral.2011.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/04/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
134
|
Zhou ZN, Boimel PJ, Segall JE. Tumor-stroma: In vivo assays and intravital imaging to study cell migration and metastasis. DRUG DISCOVERY TODAY. DISEASE MODELS 2011; 8:95-112. [PMID: 22081771 PMCID: PMC3212048 DOI: 10.1016/j.ddmod.2011.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of metastatic disease is often correlated with poor patient outcome in a variety of different cancers. The metastatic cascade is a complex, multistep process that involves the growth of the primary tumor and angiogenesis, invasion into the local environment, intravasation into the vasculature, tumor cell survival in the circulation, extravasation from the vasculature and sustained growth at secondary organ sites to form metastases. Although in vitro assays of single cell types can provide information regarding cell autonomous mechanisms contributing to metastasis, the in vivo microenvironment entails a network of interactions between cells which is also important. Insight into the mechanisms underlying tumor cell migration, invasion and metastasis in vivo has been aided by development of multiphoton microscopy and in vivo assays, which we will review here.
Collapse
Affiliation(s)
| | | | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology
- Gruss Lipper Center for Biophotonics
| |
Collapse
|
135
|
Zhang J, Chen Z, Smith GN, Croy BA. Natural killer cell-triggered vascular transformation: maternal care before birth? Cell Mol Immunol 2011; 8:1-11. [PMID: 20711229 PMCID: PMC3079746 DOI: 10.1038/cmi.2010.38] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are found in lymphoid and non-lymphoid organs. In addition to important roles in immune surveillance, some NK cells contribute to angiogenesis and circulatory regulation. The uterus of early pregnancy is a non-lymphoid organ enriched in NK cells that are specifically recruited to placental attachment sites. In species with invasive hemochorial placentation, these uterine natural killer (uNK) cells, via secretion of cytokines, chemokines, mucins, enzymes and angiogenic growth factors, contribute to the physiological change of mesometrial endometrium into the unique stromal environment called decidua basalis. In humans, uNK cells have the phenotype CD56(bright)CD16(dim) and they appear in great abundance in the late secretory phase of the menstrual cycle and early pregnancy. Gene expression studies indicate that CD56(bright)CD16(dim) uterine and circulating cells are functionally distinct. In humans but not mice or other species with post-implantation decidualization, uNK cells may contribute to blastocyst implantation and are of interest as therapeutic targets in female infertility. Histological and genetic studies in mice first identified triggering of the process of gestation spiral arterial modification as a major uNK cell function, achieved via interferon (IFN)-γ secretion. During spiral arterial modification, branches from the uterine artery that traverse the endometrium/decidua transiently lose their muscular coat and ability to vasoconstrict. The expression of vascular markers changes from arterial to venous as these vessels dilate and become low-resistance, high-volume channels. Full understanding of the vascular interactions of human uNK cells is difficult to obtain because endometrial time-course studies are not possible in pregnant women. Here we briefly review key information concerning uNK cell functions from studies in rodents, summarize highlights concerning human uNK cells and describe our preliminary studies on development of a humanized, pregnant mouse model for in vivo investigations of human uNK cell functions.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
136
|
Issa F, Hester J, Goto R, Nadig S, Goodacre TE, Wood K. Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation 2010; 90:1321-7. [PMID: 21048528 PMCID: PMC3672995 DOI: 10.1097/tp.0b013e3181ff8772] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Composite tissue transplantation effectively reconstructs the most complex defects, but its use is limited because of harmful immunosuppression and the high susceptibility of skin to rejection. Development of tolerance is an ideal solution, and protocols using regulatory T cells (Tregs) to achieve this have been promising in experimental animal models. The aim of this study was to investigate the ability of human Tregs to regulate immune responses to a human skin allograft in vivo. METHODS We isolated and expanded naturally occurring CD127loCD25+CD4+ human Tregs from peripheral blood mononuclear cells (PBMCs) and examined their phenotype and suppressive activity in vitro. Using a clinically relevant chimeric humanized mouse system, we transplanted mice with human skin grafts followed by allogeneic populations of PBMCs with or without Tregs derived from the same PBMC donor. RESULTS Ex vivo-expanded Tregs maintain the appropriate Treg markers and retain suppressive activity against allostimulated and polyclonally stimulated autologous PBMCs in vitro. Mice receiving allogeneic PBMCs alone consistently reject human skin grafts, whereas those also receiving Tregs display stable long-term human skin transplant survival along with a reduction in the CD8+ human cellular graft infiltrate. CONCLUSIONS We show for the first time the unique ability of human Tregs to prevent the rejection of a skin allograft in vivo, highlighting the therapeutic potential of these cells clinically.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathryn Wood
- Address for Correspondence: Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Level 6, John Radcliffe Hospital OX3 9DU, UK
| |
Collapse
|
137
|
Todd JA. Etiology of type 1 diabetes. Immunity 2010; 32:457-67. [PMID: 20412756 DOI: 10.1016/j.immuni.2010.04.001] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 12/11/2022]
Abstract
Recent genetic mapping and gene-phenotype studies have revealed the genetic architecture of type 1 diabetes. At least ten genes so far can be singled out as strong causal candidates. The known functions of these genes indicate the primary etiological pathways of this disease, including HLA class II and I molecules binding to preproinsulin peptides and T cell receptors, T and B cell activation, innate pathogen-viral responses, chemokine and cytokine signaling, and T regulatory and antigen-presenting cell functions. This review considers research in the field of type 1 diabetes toward identifying disease mechanisms using genetic approaches. The expression and functions of these pathways, and, therefore, disease susceptibility, will be influenced by epigenetic and environmental factors. Certain inherited immune phenotypes will be early precursors of type 1 diabetes and could be useful in future clinical trials.
Collapse
Affiliation(s)
- John A Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|