101
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [PMID: 25764371 DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Melatonin, the product of the pineal gland, possesses antioxidant, anti-inflammatory, and antitumor properties in different tissues, in addition to its role as regulator of biological rhythms. In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSCs) have been examined. Cell viability was studied using AlamarBlue® test. Cell-type specific markers and total amylase content were analyzed by immunocytochemistry and colorimetric methods, respectively. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The cellular red-ox state was monitored following CM-H2DCFDA-derived fluorescence. Determination of the activation of p44/42 mitogen-activated protein kinase (MAPK), SAPK/JNK and p38 was measured by Western blot analysis. Our results show that PSCs viability decreased in the presence of 100 μM or 1 mM melatonin. However, in the presence of 1 or 10 μM melatonin, no changes in cell viability were observed. Melatonin MT1 and MT2 receptors could not be detected. Melatonin induced Ca(2+) mobilization from intracellular pools. In the presence of melatonin, activation of crucial components of MAPKs pathway was noticed. Finally, the indole did not change the oxidative state of PSCs, but exerted a protective effect against H2O2-induced oxidation. We conclude that melatonin, at pharmacological concentrations, might regulate cellular proliferation of PSCs independently of specific plasma membrane receptors.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, E-10003, Caceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Gong J, Muñoz AR, Chan D, Ghosh R, Kumar AP. STAT3 down regulates LC3 to inhibit autophagy and pancreatic cancer cell growth. Oncotarget 2015; 5:2529-41. [PMID: 24796733 PMCID: PMC4058024 DOI: 10.18632/oncotarget.1810] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dismal 5-year survival (<5%) for pancreatic cancer (PanCA) underscores the need for developing effective therapeutic options. Recent studies from our laboratory have shown that Nexrutine® (Nx), a bark extract from Phellodendron amurense exhibits excellent anticancer activity in human pancreatic cancer cells through inhibition of inflammatory signaling via STAT3/NFκB/Cox-2. Given the apparent high oxidative stress and autophagic activity in pancreatic tumors, we investigated the potential of Nx to modulate autophagy, reactive oxygen species (ROS), and their crosstalk. Our results show that Nx inhibits autophagy and decreases ROS generation. Pharmacological inhibition of autophagy led to decreased ROS generation and proliferation with no significant effect on apoptosis. Further, using combination index analysis we also found that combination of late-stage autophagy inhibitor with Nx exhibited a moderate synergistic to additive effect. Additionally, genetic or pharmacological inactivation of STAT3 reduced LC3-II levels and expression indicating a possible role for STAT3 in transcriptional regulation of autophagy. Since both inflammatory and oxidative stress signaling activate STAT3, our data implicates that STAT3 plays a vital role in the regulation of autophagy through its contributions to the positive feedback loop between ROS and autophagy. Overall, our findings reveal an important role for STAT3/LC3/ROS in Nx-mediated anti-pancreatic cancer effects.
Collapse
Affiliation(s)
- Jingjing Gong
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX
| | | | | | | | - Addanki P Kumar
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
103
|
Abstract
The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma.
Collapse
Affiliation(s)
- Michael W Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA
| | - Janna K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA Departments of Anatomy, Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research UCSF, San Francisco, CA, USA UCSF Helen Diller Comprehensive Cancer Center UCSF, San Francisco, CA, USA
| |
Collapse
|
104
|
Translation in solid cancer: are size-based response criteria an anachronism? Clin Transl Oncol 2014; 17:1-10. [PMID: 25073600 DOI: 10.1007/s12094-014-1207-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/09/2014] [Indexed: 12/19/2022]
Abstract
The purpose of translation is the development of effective medicinal products based on validated science. A parallel objective is to obtain marketing authorization for the translated product. Unfortunately, in solid cancer, these two objectives are not mutually consistent as evidenced by the contrast between major advances in science and the continuing dismal record of pharmaceutical productivity. If the problem is unrelated to science, then the process of translation may require a closer examination, namely, the criteria for regulatory approval. This realization is important because, in this context, the objective of translation is regulatory approval, and science does not passively translate into useful medicinal products. Today, in solid cancer, response criteria related to tumor size are less useful than during the earlier cytotoxic drugs era; advanced imaging and biomarkers now allow for tracking of the natural history of the disease in the laboratory and the clinic. Also, it is difficult to infer clinical benefit from tumor shrinkage since it is rarely sustained. Accordingly, size-based response criteria may represent an anachronism relative to translation in solid cancer and it may be appropriate to align preclinical and clinical effort and shift the focus to local invasion and metastasis. The shift from a cancer cell-centric model to a stroma centric model offers novel opportunities not only to interupt the natural history of the disease, but also to rethink the relevance of outdated criteria of clinical response. Current evidence favors the opinion that, in solid cancer, a different, broader, and contextual approach may lead to interventions that could delay local invasion and metastasis. All elements supporting this shift, especially advanced imaging, are in place.
Collapse
|
105
|
Jhaveri DT, Zheng L, Jaffee EM. Specificity delivers: therapeutic role of tumor antigen-specific antibodies in pancreatic cancer. Semin Oncol 2014; 41:559-75. [PMID: 25440603 DOI: 10.1053/j.seminoncol.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most deadly cancers with less than 5% of the patients living beyond 5 years post-diagnosis. Lack of early diagnostic biomarkers and resistance to current therapies help explain these disappointing numbers. Thus, more effective and better-targeted therapies are needed quickly. Monoclonal antibodies offer an attractive alternative targeted therapy option for PDA because they are highly specific and potent. However, currently available monoclonal antibody therapies for PDA are still in their infancy with a low success rate and low likelihood of being approved. The challenges faced by these therapies include the following: lack of predictive and response biomarkers, unfavorable safety profiles, expression of targets not restricted to the cancer cells, flawed preclinical model systems, drug resistance, and PDA's complex nature. Additionally, discovery of novel PDA-specific antigen targets, present on the cell surface or in the extracellular matrix, is needed. Predictive and response markers also need to be determined for PDA patient subgroups so that the most appropriate effective therapy can be delivered. Serologic approaches, recombinant antibody-producing technologies, and advances in antibody engineering techniques will help to identify these predictive biomarkers and aid in the development of new therapeutic antibodies. A combinatorial approach simultaneously targeting antigens on the PDA cell, stroma, and immunosuppressive cells should be employed.
Collapse
Affiliation(s)
- Darshil T Jhaveri
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Elizabeth M Jaffee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
106
|
Lamarca A, Feliu J. Pancreatic biomarkers: Could they be the answer? World J Gastroenterol 2014; 20:7819-7829. [PMID: 24976720 PMCID: PMC4069311 DOI: 10.3748/wjg.v20.i24.7819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/11/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is known for its poor prognosis. Most of the patients are diagnosed with advanced stages, when no curative treatment is available. Currently, despite extensive clinical research on PDA, the median overall survival remains short. Diagnosis delay and primary chemo-resistance due to its intrinsic biological nature may explain the challenges to improve our results. Our knowledge about the molecular biology of PDA has exponentially increased during the last decades and its use for the development of biomarkers could help to reach better results in the clinical setting. These biomarkers could be the clue for the improvement in PDA clinical research by earlier detection strategies with diagnostic biomarkers, and by an individualization of treatment approach with prognostic and predictive biomarkers. This review summarizes the current knowledge about the molecular biology of PDA and the status of the most important prognostic and predictive biomarkers.
Collapse
|
107
|
Rucki AA, Zheng L. Pancreatic cancer stroma: Understanding biology leads to new therapeutic strategies. World J Gastroenterol 2014; 20:2237-2246. [PMID: 24605023 PMCID: PMC3942829 DOI: 10.3748/wjg.v20.i9.2237] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/14/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the deadliest cancers in the United States and in the world. Late diagnosis, early metastasis and lack of effective therapy are among the reasons why only 6% of patients diagnosed with PDA survive past 5 years. Despite development of targeted therapy against other cancers, little progression has been made in the treatment of PDA. Therefore, there is an urgent need for the development of new treatments. However, in order to proceed with treatments, the complicated biology of PDA needs to be understood first. Interestingly, majority of the tumor volume is not made of malignant epithelial cells but of stroma. In recent years, it has become evident that there is an important interaction between the stromal compartment and the less prevalent malignant cells, leading to cancer progression. The stroma not only serves as a growth promoting source of signals but it is also a physical barrier to drug delivery. Understanding the tumor-stroma signaling leading to development of desmoplastic reaction and tumor progression can lead to the development of therapies to decrease stromal activity and improve drug delivery. In this review, we focus on how the current understanding of biology of the pancreatic tumor microenvironment can be translated into the development of targeted therapy.
Collapse
|