101
|
Hajkova M, Javorkova E, Zajicova A, Trosan P, Holan V, Krulova M. A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. J Tissue Eng Regen Med 2015; 11:1456-1465. [PMID: 26118469 DOI: 10.1002/term.2044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/30/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The immunosuppressive effects of systemically administered mesenchymal stem cells (MSCs) and immunosuppressive drugs have been well documented. We analysed the mechanisms underlying the therapeutic effect of MSCs applied locally in combination with non-specific immunosuppression in a mouse model of allogeneic skin transplantation. The MSC-seeded and cyclosporine A (CsA)-loaded nanofibre scaffolds were applied topically to skin allografts in a mouse model and the local immune response was assessed and characterized. MSCs migrated from the scaffold into the side of injury and were detected in the graft region and draining lymph nodes (DLNs). The numbers of graft-infiltrating macrophages and the production of nitric oxide (NO) were significantly decreased in recipients treated with MSCs and CsA, and this reduction correlated with impaired production of IFNγ in the graft and DLNs. In contrast, the proportion of alternatively activated macrophages (F4/80+ CD206+ cells) and the production of IL-10 by intragraft macrophages were significantly upregulated. The ability of MSCs to alter the phenotype of macrophages from the M1 type into an M2 population was confirmed in a co-culture system in vitro. We suggest that the topical application of MSCs in combination with CsA induces a switch in macrophages to a population with an alternatively activated 'healing' phenotype and producing elevated levels of IL-10. These alterations in macrophage phenotype and function could represent one of the mechanisms of immunosuppressive action of MSCs applied in combination with CsA. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eliska Javorkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Transplantation Immunology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Peter Trosan
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Transplantation Immunology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimir Holan
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Transplantation Immunology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Transplantation Immunology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
102
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
103
|
Mesenchymal stromal cells to control donor-specific memory T cells in solid organ transplantation. Curr Opin Organ Transplant 2015; 20:79-85. [PMID: 25563995 DOI: 10.1097/mot.0000000000000145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSCs) represent a promising cell therapy to promote transplant tolerance, as they influence many cells involved in immune response. Herein, we review recent evidence on the ability of MSCs to inhibit antigen-induced memory T cell response in vitro and in preclinical studies as well as immunological studies in kidney transplant recipients highlighting the effects of MSC therapy on memory CD8 T-cell proliferation and function. RECENT FINDINGS MSCs are able to inhibit in-vitro proliferation and effector functions of memory T cells in response to auto-antigen and allo-antigen stimulation. MSC infusion in animal transplant models resulted in a skew of the balance between regulatory T cells and effector/memory T cells towards a pro-tolerogenic profile. MSC in clinical transplantation is in its infancy and limited numbers of clinical studies have performed immunomonitoring of MSC-treated patients. However, available data support the capability of MSCs to control effector/memory CD8 T-cell proliferation and donor-specific CD8 T-cell function long lasting in kidney transplant setting. SUMMARY Recent studies of MSCs in kidney transplantation highlight the anticipated add-on value of the immunomodulatory properties of bone marrow derived MSCs in persistently inhibiting donor-specific effector/memory CD8 T cells, an effect not shared by the current immunosuppressive drugs.
Collapse
|
104
|
Cheng PP, Liu XC, Ma PF, Gao C, Li JL, Lin YY, Shao W, Han S, Zhao B, Wang LM, Fu JZ, Meng LX, Li Q, Lian QZ, Xia JJ, Qi ZQ. iPSC-MSCs Combined with Low-Dose Rapamycin Induced Islet Allograft Tolerance Through Suppressing Th1 and Enhancing Regulatory T-Cell Differentiation. Stem Cells Dev 2015; 24:1793-804. [PMID: 25867817 DOI: 10.1089/scd.2014.0488] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cell (MSC) differentiation is dramatically reduced after long-term in vitro culture, which limits their application. MSCs derived from induced pluripotent stem cells (iPSCs-MSCs) represent a novel source of MSCs. In this study, we investigated the therapeutic effect of iPSC-MSCs on diabetic mice. Streptozocin-induced diabetic mice transplanted with 400 islets alone or with 1×10(6) iPSC-MSCs were examined following rapamycin injection (0.1 mg/kg/day, i.p., from days 0 to 9) after transplantation. Our results showed that iPSC-MSCs combined with rapamycin significantly prolonged islet allograft survival in the diabetic mice; 50% of recipients exhibited long-term survival (>100 days). Histopathological analysis revealed that iPSC-MSCs combined with rapamycin preserved the graft effectively, inhibited inflammatory cell infiltration, and resulted in substantial release of insulin. Flow cytometry results showed that the proportion of CD4(+) and CD8(+) T cells was significantly reduced, and the number of T regulatory cells increased in the spleen and lymph nodes in the iPSC-MSCs combined with the rapamycin group compared with the rapamycin-alone group. Production of the Th1 proinflammatory cytokines interleukin-2 (IL-2) and interferon-γ was reduced, and secretion of the anti-inflammatory cytokines IL-10 and transforming growth factor-β was enhanced compared with the rapamycin group, as determined using enzyme-linked immunosorbent assays. Transwell separation significantly weakened the immunosuppressive effects of iPSC-MSCs on the proliferation of Con A-treated splenic T cells, which indicated that the combined treatment exerted immunosuppressive effects through cell-cell contact and regulation of cytokine production. Taken together, these findings highlight the potential application of iPSC-MSCs in islet transplantation.
Collapse
Affiliation(s)
- Pan-Pan Cheng
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China .,2 Qingdao Municipal Centers for Disease Control and Prevention , Qingdao City, Shandong Province, People's Republic of China
| | - Xiao-Cun Liu
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Peng-Fei Ma
- 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai City, People's Republic of China
| | - Chang Gao
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Jia-Li Li
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Ying-Ying Lin
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Wei Shao
- 4 The Affiliated Chenggong Hospital of Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Shuo Han
- 4 The Affiliated Chenggong Hospital of Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Bin Zhao
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Lu-Min Wang
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Jia-Zhao Fu
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Lu-Xi Meng
- 5 The First Affiliated Hospital of Xiamen University , Xiamen City, Fujian Province, People's of Republic of China
| | - Qing Li
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Qi-Zhou Lian
- 6 Departments of Ophthalmology and Medicine, University of Hong Kong , Pokfulam, Hong Kong, People's Republic of China
| | - Jun-Jie Xia
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| | - Zhong-Quan Qi
- 1 Organ Transplantation Institute, Medical College, Xiamen University , Xiamen City, Fujian Province, People's Republic of China
| |
Collapse
|
105
|
Caliari-Oliveira C, Yaochite JNU, Ramalho LNZ, Palma PVB, Carlos D, Cunha FDQ, De Souza DA, Frade MAC, Covas DT, Malmegrim KCR, Oliveira MC, Voltarelli JC. Xenogeneic Mesenchymal Stromal Cells Improve Wound Healing and Modulate the Immune Response in an Extensive Burn Model. Cell Transplant 2015; 25:201-15. [PMID: 25955320 DOI: 10.3727/096368915x688128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Major skin burns are difficult to treat. Patients often require special care and long-term hospitalization. Besides specific complications associated with the wounds themselves, there may be impairment of the immune system and of other organs. Mesenchymal stromal cells (MSCs) are a recent therapeutic alternative to treat burns, mainly aiming to accelerate the healing process. Several MSC properties favor their use as therapeutic approach, as they promote angiogenesis, stimulate regeneration, and enhance the immunoregulatory function. Moreover, since patients with extensive burns require urgent treatment and because the expansion of autologous MSCs is a time-consuming process, in this present study we chose to evaluate the therapeutic potential of xenogeneic MSCs in the treatment of severe burns in rats. MSCs were isolated from mouse bone marrow, expanded in vitro, and intradermally injected in the periphery of burn wounds. MSC-treated rats presented higher survival rates (76.19%) than control animals treated with PBS (60.86%, p < 0.05). In addition, 60 days after the thermal injury, the MSC-treated group showed larger proportion of healed areas within the burn wounds (90.81 ± 5.05%) than the PBS-treated group (76.11 ± 3.46%, p = 0.03). We also observed that CD4(+) and CD8(+) T cells in spleens and in damaged skin, as well as the percentage of neutrophils in the burned area, were modulated by MSC treatment. Plasma cytokine (TGF-β, IL-10, IL-6, and CINC-1) levels were also altered in the MSC-treated rats, when compared to controls. Number of injected GFP(+) MSCs progressively decreased over time, and 60 days after injection, few MSCs were still detected in the skin of treated animals. This study demonstrates the therapeutic effectiveness of intradermal application of MSCs in a rat model of deep burns, providing basis for future regenerative therapies in patients suffering from deep burn injuries.
Collapse
Affiliation(s)
- Carolina Caliari-Oliveira
- Department of Biochemistry and Immunology, Basic and Applied Immunology Program, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med 2015; 10:287-304. [DOI: 10.2217/rme.15.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major goals of regenerative medicine is repair or replacement of diseased and damaged tissues by transfer of differentiated stem cells or stem cell-derived tissues. The possibility that these tissues will be destroyed by immunological rejection remains a challenge that can only be overcome through a better understanding of the nature and expression of potentially immunogenic molecules associated with cell replacement therapy and the mechanisms and pathways resulting in their immunologic rejection. This review draws on clinical experience of organ and tissue transplantation, and on transplantation immunology research to consider practical approaches for avoiding and overcoming the possibility of rejection of stem cell-derived tissues.
Collapse
Affiliation(s)
- Eleanor M Bolton
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John Andrew Bradley
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
107
|
Tsuji W, Schnider JT, McLaughlin MM, Schweizer R, Zhang W, Solari MG, Rubin JP, Marra KG, Plock JA, Gorantla VS. Effects of immunosuppressive drugs on viability and susceptibility of adipose- and bone marrow-derived mesenchymal stem cells. Front Immunol 2015; 6:131. [PMID: 25932028 PMCID: PMC4399413 DOI: 10.3389/fimmu.2015.00131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023] Open
Abstract
The immunomodulatory potential of cell therapies using adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) has been studied in vascularized composite allotransplantation (VCA). Most cell therapy-based experimental and clinical protocols integrate some degree of recipient conditioning/induction with antibodies or other immunosuppressive agents. We investigated the susceptibility of ASCs and BM-MSCs to anti-lymphocyte serum (ALS) and tacrolimus. Rat ASCs and BM-MSCs were exposed to varying concentrations of tacrolimus and ALS in vitro. Serum from ALS-treated animals was added to cell cultures. Viability, susceptibility, and cytotoxicity parameters were evaluated. ALS inhibited ASC and BM-MSC viability and susceptibility in vitro in a dose-dependent manner. ASCs were more susceptible to both ALS and tacrolimus than BM-MSCs. Trypsinized and adherent ASCs were significantly smaller than BM-MSCs. This is the first report on the viability and susceptibility characteristics of BM-MSCs or ASCs to collateral effects of ALS and tacrolimus. These in vitro insights may impact choice of cell type as well as concomitant conditioning agents and the logistical coordination of the timing, dosing, and frequency of drug or cell therapy in solid organ transplantation or VCA protocols.
Collapse
Affiliation(s)
- Wakako Tsuji
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, Shiga Medical Center for Adults , Moriyama , Japan
| | - Jonas T Schnider
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Meghan M McLaughlin
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | - Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Jan A Plock
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | - Vijay S Gorantla
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
108
|
New Steps in the Use of Mesenchymal Stem Cell in Solid Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
109
|
Luk F, de Witte SFH, Bramer WM, Baan CC, Hoogduijn MJ. Efficacy of immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Rev Clin Immunol 2015; 11:617-36. [DOI: 10.1586/1744666x.2015.1029458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
110
|
Jochmans I, O'Callaghan JM, Pirenne J, Ploeg RJ. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl Int 2015; 28:665-76. [PMID: 25630347 DOI: 10.1111/tri.12530] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/22/2015] [Indexed: 01/15/2023]
Abstract
Hypothermic machine perfusion (HMP) of kidneys is a long-established alternative to static cold storage and has been suggested to be a better preservation method. Today, as our deceased donor profile continues to change towards higher-risk kidneys of lower quality, we are confronted with the limits of cold storage. Interest in HMP as a preservation technique is on the rise. Furthermore, HMP also creates a window of opportunity during which to assess the viability and quality of the graft before transplantation. The technology might also provide a platform during which the graft could be actively repaired, making it particularly attractive for higher-risk kidneys. We review the current evidence on HMP in kidney transplantation and provide an outlook for the use of the technology in the years to come.
Collapse
Affiliation(s)
- Ina Jochmans
- Department of Microbiology and Immunology, Abdominal Transplantation, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - John M O'Callaghan
- Nuffield Department of Surgical Sciences, Biomedical Research Centre and Oxford Transplant Centre, University of Oxford, Oxford, UK.,Centre for Evidence in Transplantation, Royal College of Surgeons of England and London School of Hygiene and Tropical Medicine, London, UK
| | - Jacques Pirenne
- Department of Microbiology and Immunology, Abdominal Transplantation, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Biomedical Research Centre and Oxford Transplant Centre, University of Oxford, Oxford, UK
| |
Collapse
|
111
|
Sivanathan KN, Gronthos S, Rojas-Canales D, Thierry B, Coates PT. Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev Rep 2014; 10:351-75. [PMID: 24510581 DOI: 10.1007/s12015-014-9495-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) have unique immunomodulatory and reparative properties beneficial for allotransplantation cellular therapy. The clinical administration of autologous or allogeneic MSC with immunosuppressive drugs is able to prevent and treat allograft rejection in kidney transplant recipients, thus supporting the immunomodulatory role of MSC. Interferon-gamma (IFN-γ) is known to enhance the immunosuppressive properties of MSC. IFN-γ preactivated MSC (MSC-γ) directly or indirectly modulates T cell responses by enhancing or inducing MSC inhibitory factors. These factors are known to downregulate T cell activation, enhance T cell negative signalling, alter T cells from a proinflammatory to an anti-inflammatory phenotype, interact with antigen-presenting cells and increase or induce regulatory cells. Highly immunosuppressive MSC-γ with increased migratory and reparative capacities may aid tissue repair, prolong allograft survival and induce allotransplant tolerance in experimental models. Nevertheless, there are contradictory in vivo observations related to allogeneic MSC-γ therapy. Many studies report that allogeneic MSC are immunogenic due to their inherent expression of major histocompatibility (MHC) molecules. Enhanced expression of MHC in allogeneic MSC-γ may increase their immunogenicity and this can negatively impact allograft survival. Therefore, strategies to reduce MSC-γ immunogenicity would facilitate "off-the-shelf" MSC therapy to efficiently inhibit alloimmune rejection and promote tissue repair in allotransplantation. In this review, we examine the potential benefits of MSC therapy in the context of allotransplantation. We also discuss the use of autologous and allogeneic MSC and the issues associated with their immunogenicity in vivo, with particular focus on the use of enhanced MSC-γ cellular therapy.
Collapse
Affiliation(s)
- Kisha Nandini Sivanathan
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia,
| | | | | | | | | |
Collapse
|
112
|
Reinders MEJ, Bank JR, Dreyer GJ, Roelofs H, Heidt S, Roelen DL, Al Huurman V, Lindeman J, van Kooten C, Claas FHJ, Fibbe WE, Rabelink TJ, de Fijter JW. Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. J Transl Med 2014; 12:331. [PMID: 25491391 PMCID: PMC4273432 DOI: 10.1186/s12967-014-0331-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Kidney transplantation has improved survival and quality of life for patients with end-stage renal disease. Despite excellent short-term results due to better and more potent immunosuppressive drugs, long-term survival of transplanted kidneys has not improved accordingly in the last decades. Consequently there is a strong interest in immunosuppressive regimens that maintain efficacy for the prevention of rejection, whilst preserving renal structure and function. In this respect the infusion of mesenchymal stromal cells (MSCs) may be an interesting immune suppressive strategy. MSCs have immune suppressive properties and actively contribute to tissue repair. In experimental animal studies the combination of mammalian target of rapamycin (mTOR) inhibitor and MSCs was shown to attenuate allo immune responses and to promote allograft tolerance. The current study will test the hypothesis that MSC treatment, in combination with the mTOR inhibitor everolimus, facilitates tacrolimus withdrawal, reduces fibrosis and decreases the incidence of opportunistic infections compared to standard tacrolimus dose. Methods/design 70 renal allograft recipients, 18–75 years old, will be included in this Phase II, open label, randomized, non-blinded, prospective, single centre clinical study. Patients in the MSC treated group will receive two doses of autologous bone marrow derived MSCs IV (target 1,5x106, Range 1-2x106 million MSCs per/kg body weight), 7 days apart, 6 and 7 weeks transplantation in combination with everolimus and prednisolone. At the time of the second MSC infusion tacrolimus will be reduced to 50% and completely withdrawn 1 week later. Patients in the control group will receive everolimus, prednisolone and standard dose tacrolimus. The primary end point is to compare fibrosis by quantitative Sirius Red scoring of MSC treated and untreated groups at 6 months compared to 4 weeks post-transplant. Secondary end points include: composite end point efficacy failure (Biopsy Proven Acute Rejection, graft loss or death); renal function and proteinuria; opportunistic infections; immune monitoring and “subclinical” cardiovascular disease groups by assessing echocardiography in the different treatment groups. Discussion This study will provide information whether MSCs in combination with everolimus can be used for tacrolimus withdrawal, and whether this strategy leads to preservation of renal structure and function in renal recipients. Trial registration NCT02057965.
Collapse
|
113
|
Vandermeulen M, Grégoire C, Briquet A, Lechanteur C, Beguin Y, Detry O. Rationale for the potential use of mesenchymal stromal cells in liver transplantation. World J Gastroenterol 2014; 20:16418-16432. [PMID: 25469010 PMCID: PMC4248185 DOI: 10.3748/wjg.v20.i44.16418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing cells that reside essentially in the bone marrow as a non-hematopoietic cell population, but may also be isolated from the connective tissues of most organs. MSCs represent a heterogeneous population of adult, fibroblast-like cells characterized by their ability to differentiate into tissues of mesodermal lineages including adipocytes, chondrocytes and osteocytes. For several years now, MSCs have been evaluated for their in vivo and in vitro immunomodulatory and ‘tissue reconstruction’ properties, which could make them interesting in various clinical settings, and particularly in organ transplantation. This paper aims to review current knowledge on the properties of MSCs and their use in pre-clinical and clinical studies in solid organ transplantation, and particularly in the field of liver transplantation. The first available clinical data seem to show that MSCs are safe to use, at least in the medium-term, but more time is needed to evaluate the potential adverse effects of long-term use. Many issues must be resolved on the correct use of MSCs. Intensive in vitro and pre-clinical research are the keys to a better understanding of the way that MSCs act, and to eventually lead to clinical success.
Collapse
|
114
|
Jeon HJ, Yang J. Cell Therapy in Kidney Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2014. [DOI: 10.4285/jkstn.2014.28.3.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hee Jung Jeon
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
115
|
Lett B, Sivanathan KN, Coates PT. Mesenchymal stem cells for kidney transplantation. World J Clin Urol 2014; 3:87-95. [DOI: 10.5410/wjcu.v3.i2.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
The long term consequence of immunosuppressive therapy in kidney transplantation has prompted investigation of alternative means to modify the immune response to the allograft. Cell based therapies are potentially attractive as they may provide a long lasting immunomodulatory effect, may repair tissues and reduce the necessity to take immunosuppressive drug therapy. Of the current cell therapies, mesenchymal stem cells have now been trialled in small numbers of human kidney transplantation with apparent safety and potential efficacy. Many issues however need to be resolved before these cells will become mainstays of transplant immunosuppression including ex vivo modification to enhance immunomodulatory properties, cell number, route and frequency of administration as well as cellular source of origin.
Collapse
|
116
|
Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Fourth Meeting: lessons learned from first clinical trials. Transplantation 2014; 96:234-8. [PMID: 23759879 DOI: 10.1097/tp.0b013e318298f9fa] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Fourth Expert Meeting of the Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Consortium took place in Barcelona on October 19 and 20, 2012. This meeting focused on the translation of preclinical data into early clinical settings. This position paper highlights the main topics explored on the safety and efficacy of mesenchymal stem cells as a therapeutic agent in solid organ transplantation and emphasizes the issues (proper timing, concomitant immunossupression, source and immunogenicity of mesenchymal stem cells, and oncogenicity) that have been addressed and will be followed up by the MiSOT Consortium in future studies.
Collapse
|
117
|
Leuning DG, Reinders ME, de Fijter JW, Rabelink TJ. Clinical Translation of Multipotent Mesenchymal Stromal Cells in Transplantation. Semin Nephrol 2014; 34:351-64. [DOI: 10.1016/j.semnephrol.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
118
|
Using stem and progenitor cells to recapitulate kidney development and restore renal function. Curr Opin Organ Transplant 2014; 19:140-4. [PMID: 24480967 DOI: 10.1097/mot.0000000000000052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is considerable interest in the idea of generating stem and precursor cells that can differentiate into kidney cells and be used to treat kidney diseases. Within this field, we highlight recent research articles focussing on mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and kidney-derived stem/progenitor cells (KSPCs). RECENT FINDINGS In preclinical studies, MSCs ameliorate varied acute and chronic kidney diseases. Their efficacy depends on immunomodulatory and paracrine properties but MSCs do not differentiate into functional kidney epithelia. iPSCs can be derived from healthy individuals and from kidney patients by forced expression of precursor genes. Like ESCs, iPSCs are pluripotent and so theoretically they have the potential to form functional kidney epithelia when used therapeutically. KSPCs, existing as cell subsets within adult and developing kidneys, constitute attractive future therapeutic agents. SUMMARY Results from preclinical studies are encouraging but caution is required regarding potential human therapeutic applications because molecular, morphological and functional characterization of 'kidney cells' generated from ECSs, iPSCs, KSPCs have not been exhaustive. The long-term safety of renal stem and precursor cells needs more study, including potential negative effects on renal growth and their potential for tumor formation.
Collapse
|
119
|
Donor-derived Mesenchymal Stem Cells Combined with Low-dose Tacrolimus Prevent Acute Rejection After Renal Transplantation. Transplantation 2014. [DOI: 10.1097/tp.0000000000000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Abstract
PURPOSE OF REVIEW Cell therapy with mesenchymal stromal cells (MSC) has emerged as a promising tolerance-inducing strategy, as MSC are potent modifiers of immune cells within adaptive as well as innate arm of the immune system. Here, we review recent evidence on both the beneficial and deleterious effect of MSC in experimental models of solid organ transplantation as well as first clinical experiences of MSC therapy in kidney transplant recipients. RECENT FINDINGS MSC are able to reprogram macrophages toward an anti-inflammatory phenotype capable to regulate antigraft immune response. This interaction is mediated mainly by TNF-α-induced-protein-6. Conversely, MSC also take on a proinflammatory phenotype and actually could worsen graft outcome. MSC in clinical transplantation is in its infancy and nobody so far has attempted to or provided evidence that this cell-based therapy is capable to promote operational tolerance. There are, however, supporting data of the ex-vivo immunoregulatory activity of MSC in treated patients. SUMMARY MSC have a great potential as a tolerance-promoting cell therapy. Extensive investigations are still needed to dissect the mechanism(s) of action of MSC, particularly in the setting of a proinflammatory environment, and to establish specific assays for monitoring MSC-treated patients to define the protolerogenic potential of MSC-based therapy in kidney transplantation.
Collapse
|
121
|
Mesenchymal stromal cells for organ transplantation: different sources and unique characteristics? Curr Opin Organ Transplant 2014; 19:41-6. [PMID: 24275893 DOI: 10.1097/mot.0000000000000036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW In this review, recent findings on the effects of tissue and donor origin, culturing conditions and preconditioning regimens on the therapeutic effect of mesenchymal stem cells (MSC) in organ transplantation are discussed and the importance of understanding the characteristics of MSC for developing efficient therapy is stressed. RECENT FINDINGS MSC research in organ transplantation is currently moving from safety-feasibility studies to efficacy studies and finding the optimal MSC for therapy is therefore highly relevant. Although sharing basic properties, there are subtle differences between MSC from different tissue sources that may affect their efficacy. Furthermore, the use of MSC from diseased organ recipients, donor or third party may affect their therapeutic effect. The importance of these differences in MSC properties may however be overshadowed by the impact of culture conditions on MSC. Culture conditions dramatically change the characteristics of MSC, and this situation can be exploited by exposing MSC to preconditioning treatment to bring about the desired properties in MSC. As MSC appear to be short-lived after infusion, the specific characteristics of MSC are mostly relevant for short-term interactions between MSC and host cells, which will subsequently take over the effects of MSC. The multiple effects of MSC are by no means unique, but the full spectrum of the effects in combination with their easy isolation and expansion make MSC a suitable cell type for therapy. SUMMARY Tissue source, donor source and culture conditions affect the phenotypical and functional properties of MSC. The efficacy of MSC therapy will therefore depend on the source and manipulation of MSC.
Collapse
|
122
|
Autologous and allogeneic mesenchymal stem cells in organ transplantation: what do we know about their safety and efficacy? Curr Opin Organ Transplant 2014; 19:65-72. [PMID: 24370985 DOI: 10.1097/mot.0000000000000043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Recent developments toward the successful clinical application of autologous and allogeneic mesenchymal stem cells (MSCs) to organ transplantation are summarized with a focus on safety and efficacy. RECENT FINDINGS Clinical trials in organ transplantation and other conditions indicate that infusion of autologous or allogeneic MSCs is generally well tolerated. However, new studies also suggest that efficacy may be curtailed by sequestration in the lungs and early elimination. Safety concerns regarding autologous and/or allogeneic MSCs that have recently been investigated include transient proinflammatory effects, influences on opportunistic infections and cancers and alloantibody induction. Animal models indicate that autologous MSCs are likely to be efficacious in preventing or treating early intragraft inflammation and may reduce the risk of acute rejection - observations that have been borne out in a randomized controlled trial of living-donor kidney transplantation. The potential for donor-specific or third-party allogeneic MSCs to promote allograft tolerance is suggested by animal model studies but has not yet been proven in humans. SUMMARY Recent reports on the safety and efficacy of autologous MSCs for early posttransplant outcomes give cause for optimism. Benefits of allogeneic MSCs for long-term allograft survival and of MSCs for chronic transplant injury await clinical validation.
Collapse
|
123
|
Rationale and prospects of mesenchymal stem cell therapy for liver transplantation. Curr Opin Organ Transplant 2014; 19:60-4. [DOI: 10.1097/mot.0000000000000031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
124
|
Rakha A, Todeschini M, Casiraghi F. Assessment of anti-donor T cell proliferation and cytotoxic T lymphocyte-mediated lympholysis in living donor kidney transplant patients. Methods Mol Biol 2014; 1213:355-364. [PMID: 25173397 DOI: 10.1007/978-1-4939-1453-1_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Organ transplant recipients are at risk of allograft rejection, and remain dependent on lifelong immunosuppressive agents, with the attendant risks of infections, cancers, and drug toxicities. Mesenchymal stromal cells (MSCs) have emerged as an alternative to the current pharmacologic immunosuppressive therapy as these cells are immune privileged and possess immunomodulatory properties. However, clinical data are incomplete regarding the efficacy of MSC therapy to control alloimmune response of the transplant recipients. Coordinated efforts should now be directed towards assays for monitoring anti-donor T cell response of MSC-treated patients to establish the pro-tolerogenic potential of MSC-based therapy. Here, we describe two useful tools to monitor MSC-mediated immunomodulation: the assessment of T cell proliferation by carboxyfluorescein succinimidyl ester (CFSE) dilution assay and the evaluation of cytotoxic T lymphocyte (CTL)-mediated lysis of (51)Cr-labeled target cells (cell-mediated lympholysis; CML) following mixed lymphocyte cultures of peripheral blood mononuclear cells (PBMCs) from kidney donors and transplant recipients.
Collapse
Affiliation(s)
- Aruna Rakha
- Department of Translational and Regenerative Medicine, Research Block B, 5th Floor, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India,
| | | | | |
Collapse
|
125
|
Reinders ME, Hoogduijn MJ. NK Cells and MSCs: Possible Implications for MSC Therapy in Renal Transplantation. ACTA ACUST UNITED AC 2014; 4:1000166. [PMID: 24900946 PMCID: PMC4040539 DOI: 10.4172/2157-7633.1000166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marlies Ej Reinders
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Hoogduijn
- Transplantation and Nephrology, Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
126
|
Pileggi A, Xu X, Tan J, Ricordi C. Mesenchymal stromal (stem) cells to improve solid organ transplant outcome: lessons from the initial clinical trials. Curr Opin Organ Transplant 2013; 18:672-81. [PMID: 24220050 PMCID: PMC4391704 DOI: 10.1097/mot.0000000000000029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Discuss the recent progress on the clinical use of mesenchymal stromal (stem) cells (MSC) in solid organ transplantation (SOT). RECENT FINDINGS Tissue repair and immunomodulatory properties have been recognized for MSC obtained from different human tissues. MSC-based therapy has been proposed to reduce ischemia-reperfusion injury and to promote immune tolerance. The results of recent clinical trial support the safety and promising effects of autologous and allogeneic MSC in SOT. Collectively, the use of MSC in recipients of living donor kidney transplantation was associated with improved graft function, reduced rejection, ability to omit induction and/or lower maintenance immunosuppression regimen, as well as to treat rejection episodes. SUMMARY We are living in very exciting times with the implementation of novel clinical trials aimed at establishing safety, feasibility and efficacy of cellular therapies including MSC to improve SOT outcomes. The results of the initial clinical trials support the safety of MSC-based therapy and justifying cautious optimism for the immediate future.
Collapse
Affiliation(s)
- Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, Miami, FL 33136, USA
- The DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33136, USA
| | - Xiumin Xu
- Cell Transplant Center, Diabetes Research Institute, Miami, FL 33136, USA
| | - Jianming Tan
- Cell and Stem Cell Institute of Xiamen University, Fuzhou, Fujian 350025, P.R. China
- Affiliated Fuzhou General Hospital of Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, Miami, FL 33136, USA
- The DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
127
|
CD90- (Thy-1-) high selection enhances reprogramming capacity of murine adipose-derived mesenchymal stem cells. DISEASE MARKERS 2013; 35:573-9. [PMID: 24282338 PMCID: PMC3824355 DOI: 10.1155/2013/392578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/29/2022]
Abstract
Background. Mesenchymal stem cells (MSCs), including adipose tissue-derived mesenchymal stem cells (ADSC), are multipotent and can differentiate into various cell types possessing unique immunomodulatory features. Several clinical trials have demonstrated the safety and possible efficacy of MSCs in organ transplantation. Thus, stem cell therapy is promising for tolerance induction. In this study, we assessed the reprogramming capacity of murine ADSCs and found that CD90 (Thy-1), originally discovered as a thymocyte antigen, could be a useful marker for cell therapy. Method. Murine ADSCs were isolated from B6 mice, sorted using a FACSAria cell sorter by selection of CD90Hi or CD90Lo, and then transduced with four standard factors (4F; Oct4, Sox2, Klf4, and c-Myc). Results. Unsorted, CD90Hi-sorted, and CD90Lo-sorted murine ADSCs were reprogrammed using standard 4F transduction. CD90Hi ADSCs showed increased numbers of alkaline phosphatase-positive colonies compared with CD90Lo ADSCs. The relative reprogramming efficiencies of unsorted, CD90Hi-sorted, and CD90Lo-sorted ADSCs were 100%, 116.5%, and 74.7%, respectively. CD90Hi cells were more responsive to reprogramming. Conclusion. CD90Hi ADSCs had greater reprogramming capacity than CD90Lo ADSCs, suggesting that ADSCs have heterogeneous subpopulations. Thus, CD90Hi selection presents an effective strategy to isolate a highly suppressive subpopulation for stem cell-based tolerance induction therapy.
Collapse
|
128
|
Human mesenchymal stromal cell-mediated immunoregulation: mechanisms of action and clinical applications. BONE MARROW RESEARCH 2013; 2013:203643. [PMID: 24187625 PMCID: PMC3804286 DOI: 10.1155/2013/203643] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells found in connective tissues that can differentiate into bone, cartilage, and adipose tissue. Interestingly, they can regulate immune responses in a paracrine way and allogeneic MSCs do not elicit immune response. These properties have encouraged a number of clinical trials in a broad range of regenerative therapies. Although these trials were first focused on their differentiation properties, in the last years, the immunosuppressive features have gained most of the attention. In this review, we will summarize the up-to-date knowledge about the immunosuppressive mechanisms of MSCs in vivo and in vitro and the most promising approaches in clinical investigation.
Collapse
|
129
|
Cell therapy as a strategy to minimize maintenance immunosuppression in solid organ transplant recipients. Curr Opin Organ Transplant 2013; 18:408-15. [PMID: 23838645 DOI: 10.1097/mot.0b013e328363319d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a clinically focussed introduction to cell-based immunotherapy in solid organ transplantation. The potential benefits and risks of cell-based immunotherapeutics are critically discussed. RECENT FINDINGS The use of immunoregulatory cells as medicinal agents is very much in its infancy, but the field is expanding rapidly. In principle, this approach permits manipulation of specific immunological functions, opening new possibilities in the field of tolerance-promoting therapies. Several immunoregulatory cell types have reached the point of preclinical and clinical development that should allow them to be tested in early-phase clinical trials. Solid organ transplantation represents an important potential indication for the use of cell-based immunosuppressive agents because promoting immunological regulation towards allografts remains a promising strategy for preventing chronic rejection. SUMMARY Remarkable progress is being made in the implementation of novel cell-based immunotherapeutics in solid organ transplantation studies. It is hoped that these new immunoregulatory therapies will afford better long-term transplant outcomes by mitigating chronic graft injury.
Collapse
|
130
|
Perico N, Casiraghi F, Gotti E, Introna M, Todeschini M, Cavinato RA, Capelli C, Rambaldi A, Cassis P, Rizzo P, Cortinovis M, Noris M, Remuzzi G. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int 2013; 26:867-78. [PMID: 23738760 DOI: 10.1111/tri.12132] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/28/2013] [Accepted: 05/13/2013] [Indexed: 12/15/2022]
Abstract
Bone marrow-derived mesenchymal stromal cells (MSC) have emerged as useful cell population for immunomodulation therapy in transplantation. Moving this concept towards clinical application, however, should be critically assessed by a tailor-made step-wise approach. Here, we report results of the second step of the multistep MSC-based clinical protocol in kidney transplantation. We examined in two living-related kidney transplant recipients whether: (i) pre-transplant (DAY-1) infusion of autologous MSC protected from the development of acute graft dysfunction previously reported in patients given MSC post-transplant, (ii) avoiding basiliximab in the induction regimen improved the MSC-induced Treg expansion previously reported with therapy including this anti-CD25-antibody. In patient 3, MSC treatment was uneventful and graft function remained normal during 1 year follow-up. In patient 4, acute cellular rejection occurred 2 weeks post-transplant. Both patients had excellent graft function at the last observation. Circulating memory CD8(+) T cells and donor-specific CD8(+) T-cell cytolytic response were reduced in MSC-treated patients, not in transplant controls not given MSC. CD4(+) FoxP3(+) Treg expansion was comparable in MSC-treated patients with or without basiliximab induction. Thus, pre-transplant MSC no longer negatively affect kidney graft at least to the point of impairing graft function, and maintained MSC-immunomodulatory properties. Induction therapy without basiliximab does not offer any advantage on CD4(+) FoxP3(+) Treg expansion (ClinicalTrials.gov number: NCT 00752479).
Collapse
Affiliation(s)
- Norberto Perico
- Department of Immunology and Transplantation, Azienda Ospedaliera - IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Roemeling-van Rhijn M, Khairoun M, Korevaar SS, Lievers E, Leuning DG, Ijzermans JN, Betjes MG, Genever PG, van Kooten C, de Fijter HJ, Rabelink TJ, Baan CC, Weimar W, Roelofs H, Hoogduijn MJ, Reinders ME. Human Bone Marrow- and Adipose Tissue-derived Mesenchymal Stromal Cells are Immunosuppressive In vitro and in a Humanized Allograft Rejection Model. ACTA ACUST UNITED AC 2013; Suppl 6:20780. [PMID: 24672744 PMCID: PMC3963708 DOI: 10.4172/2157-7633.s6-001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recent studies with bone marrow (BM)-derived Mesenchymal Stromal Cells (MSC) in transplant recipients demonstrate that treatment with MSC is safe and clinically feasible. While BM is currently the preferred source of MSC, adipose tissue is emerging as an alternative. To develop efficient therapies, there is a need for preclinical efficacy studies in transplantation. We used a unique humanized transplantation model to study the in vivo immunosuppressive effect of human BM-MSC and adipose tissue-derived MSC (ASC). Methods Gene expression of BM-MSC and ASC and their capacity to inhibit activated PBMC proliferation was evaluated. The in vivo immunosuppressive effect of BM-MSC and ASC was studied in a humanized mouse model. SCID mice were transplanted with human skin grafts and injected with human allogeneic PBMC with or without administration of BM-MSC or ASC. The effect of MSC on skin graft rejection was studied by immunohistochemistry and PCR. Results BM-MSC and ASC expressed TGFβ, CXCL-10 and IDO. IDO expression and acitivity increased significantly in BM-MSC and ASC upon IFN-γ stimulation. IFN-γ stimulated BM-MSC and ASC inhibited the proliferation of activated PBMC in a significant and dose dependent manner. In our humanized mouse model, alloreactivity was marked by pronounced CD45+ T-cell infiltrates consisting of CD4+ and CD8+ T cells and increased IFN-γ expression in the skin grafts which were all significantly inhibited by both BM-MSC and ASC. Conclusion BM-MSC and ASC are immunosuppressive in vitro and suppress alloreactivity in a preclinical humanized transplantation model.
Collapse
Affiliation(s)
| | - Meriem Khairoun
- Nephrology, Leiden University Medical Center, The Netherlands
| | | | - Ellen Lievers
- Nephrology, Leiden University Medical Center, The Netherlands
| | | | | | | | - Paul G Genever
- Department of Biology, University of York, York, United Kingdom
| | - Cees van Kooten
- Nephrology, Leiden University Medical Center, The Netherlands
| | | | - Ton J Rabelink
- Nephrology, Leiden University Medical Center, The Netherlands
| | - Carla C Baan
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Willem Weimar
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Helene Roelofs
- Immunohematology and blood transfusion, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
132
|
Roemeling-van Rhijn M, Reinders ME, Franquesa M, Engela AU, Korevaar SS, Roelofs H, Genever PG, Ijzermans JN, Betjes MG, Baan CC, Weimar W, Hoogduijn MJ. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity. ACTA ACUST UNITED AC 2013; 3:004. [PMID: 24729944 PMCID: PMC3982127 DOI: 10.4172/2157-7633.s6-004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral Blood Mononuclear Cells (PBMC) were co-cultured with HLA-AB mismatched BM-MSC or ASC precultured with or without IFNy. After isolation via FACS sorting, the educated CD8+ T effector populations were exposed for 4 hours to Europium labeled MSC of the same HLA make up as in the co-cultures or with different HLA. Lysis of MSC was determined by spectrophotometric measurement of Europium release. Results CD8+ T cells educated with BM-MSC were capable of HLA specific lysis of BM-MSC. The maximum lysis was 24% in an effector:target (E:T) ratio of 40:1. Exposure to IFNγ increased HLA-I expression on BM-MSC and increased lysis to 48%. Co-culturing of PBMC with IFNγ-stimulated BM-MSC further increased lysis to 76%. Surprisingly, lysis induced by ASC was significantly lower. CD8+ T cells educated with ASC induced a maximum lysis of 13% and CD8+ T cells educated with IFNγ-stimulated ASC of only 31%. Conclusion Allogeneic BM-MSC, and to a lesser extend ASC, are capable of inducing HLA specific reactivity. These results should be taken into consideration when using allogeneic MSC for clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Anja U Engela
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Helene Roelofs
- Immunohematology and bloodtransfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul G Genever
- Department of Biology, University of York, York, United Kingdom
| | | | | | - Carla C Baan
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Willem Weimar
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|