101
|
Ha S, Shin B, Park W. Lack of glyoxylate shunt dysregulates iron homeostasis in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:587-599. [PMID: 29465342 DOI: 10.1099/mic.0.000623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aceA and glcB genes, encoding isocitrate lyase (ICL) and malate synthase, respectively, are not in an operon in many bacteria, including Pseudomonas aeruginosa, unlike in Escherichia coli. Here, we show that expression of aceA in P. aeruginosa is specifically upregulated under H2O2-induced oxidative stress and under iron-limiting conditions. In contrast, the addition of exogenous redox active compounds or antibiotics increases the expression of glcB. The transcriptional start sites of aceA under iron-limiting conditions and in the presence of iron were found to be identical by 5' RACE. Interestingly, the enzymatic activities of ICL and isocitrate dehydrogenase had opposite responses under different iron conditions, suggesting that the glyoxylate shunt (GS) might be important under iron-limiting conditions. Remarkably, the intracellular iron concentration was lower while the iron demand was higher in the GS-activated cells growing on acetate compared to cells growing on glucose. Absence of GS dysregulated iron homeostasis led to changes in the cellular iron pool, with higher intracellular chelatable iron levels. In addition, GS mutants were found to have higher cytochrome c oxidase activity on iron-supplemented agar plates of minimal media, which promoted the growth of the GS mutants. However, deletion of the GS genes resulted in higher sensitivity to a high concentration of H2O2, presumably due to iron-mediated killing. In conclusion, the GS system appears to be tightly linked to iron homeostasis in the promotion of P. aeruginosa survival under oxidative stress.
Collapse
Affiliation(s)
- Sunhee Ha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
102
|
Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals (Basel) 2018; 11:ph11010014. [PMID: 29389876 PMCID: PMC5874710 DOI: 10.3390/ph11010014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/16/2022] Open
Abstract
Persistence is a phenomenon during which a small fraction of a total bacterial population survives treatment with high concentrations of antibiotics for an extended period of time. In conjunction with biofilms, antibiotic persisters represent a major cause of recalcitrant and recurring infections, resulting in significant morbidity and mortality. In this review, we discuss the clinical significance of persister cells and the central role of bacterial metabolism in their formation, specifically with respect to carbon catabolite repression, sugar metabolism, and growth regulation. Additionally, we will examine persister formation as an evolutionary strategy used to tolerate extended periods of stress and discuss some of the response mechanisms implicated in their formation. To date, the vast majority of the mechanistic research examining persistence has been conducted in artificial in vitro environments that are unlikely to be representative of host conditions. Throughout this review, we contextualize the existing body of literature by discussing how in vivo conditions may create ecological niches that facilitate the development of persistence. Lastly, we identify how the development of next-generation sequencing and other “big data” tools may enable researchers to examine persistence mechanisms within the host to expand our understanding of their clinical importance.
Collapse
|
103
|
Klonowska A, Melkonian R, Miché L, Tisseyre P, Moulin L. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics 2018; 19:105. [PMID: 29378510 PMCID: PMC5789663 DOI: 10.1186/s12864-018-4487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France
| | - Lucie Miché
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France.,Present address: Aix Marseille University, University of Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Lionel Moulin
- IRD, Cirad, University of Montpellier, IPME, Montpellier, France.
| |
Collapse
|
104
|
Monoterpenoid perillyl alcohol impairs metabolic flexibility of Candida albicans by inhibiting glyoxylate cycle. Biochem Biophys Res Commun 2018; 495:560-566. [DOI: 10.1016/j.bbrc.2017.11.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/27/2023]
|
105
|
Hernández-Chinea C, Maimone L, Campos Y, Mosca W, Romero PJ. Apparent isocitrate lyase activity in Leishmania amazonensis. Acta Parasitol 2017; 62:701-707. [PMID: 29035856 DOI: 10.1515/ap-2017-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/23/2017] [Indexed: 11/15/2022]
Abstract
Early reports have demonstrated the occurrence of glyoxylate cycle enzymes in several Leishmania species. However, these results have been underestimated because genes for the two key enzymes of the cycle, isocitrate lyase (ICL) and malate synthase (MS), are not annotated in Leishmania genomes. We have re-examined this issue in promastigotes of Leishmania amazonensis. Enzyme activities were assayed spectrophotometrically in cellular extracts and characterized partially. A 40 kDa band displaying ICL activity was visualized on zymograms of the extracts. By immunoblotting with mouse antibodies against ICL from Bacillus stearothermophilus, a band of approximately 40 kDa was identified, coincident with the relative molecular mass of the activity band revealed on zymograms. Indirect immunofluorescence of intact promastigotes showed that the recognized antigen is distributed as a punctuated pattern, mainly distributed beneath the subpellicular microtubules, over a diffused cytoplasmic stain. These results clearly demonstrate the existence of an apparent ICL activity in L. amazonensis promastigotes, which is associated to a 40 kDa polypeptide and distributed both diffused and as punctuate aggregates in the cytoplasm. The relevance of this activity is discussed.
Collapse
|
106
|
Yamashita S, Nakagawa H, Sakaguchi T, Arima TH, Kikoku Y. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus. Lett Appl Microbiol 2017; 66:86-92. [PMID: 29108110 DOI: 10.1111/lam.12818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/29/2022]
Abstract
Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. SIGNIFICANCE AND IMPACT OF THE STUDY Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage production.
Collapse
Affiliation(s)
- S Yamashita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - H Nakagawa
- R & D Center, Aohata Corporation, Takehara, Hiroshima, Japan
| | - T Sakaguchi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - T-H Arima
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Y Kikoku
- R & D Center, Aohata Corporation, Takehara, Hiroshima, Japan
| |
Collapse
|
107
|
Shanmugam G, Jeon J. Computer-Aided Drug Discovery in Plant Pathology. THE PLANT PATHOLOGY JOURNAL 2017; 33:529-542. [PMID: 29238276 PMCID: PMC5720600 DOI: 10.5423/ppj.rw.04.2017.0084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 05/31/2023]
Abstract
Control of plant diseases is largely dependent on use of agrochemicals. However, there are widening gaps between our knowledge on plant diseases gained from genetic/mechanistic studies and rapid translation of the knowledge into target-oriented development of effective agrochemicals. Here we propose that the time is ripe for computer-aided drug discovery/design (CADD) in molecular plant pathology. CADD has played a pivotal role in development of medically important molecules over the last three decades. Now, explosive increase in information on genome sequences and three dimensional structures of biological molecules, in combination with advances in computational and informational technologies, opens up exciting possibilities for application of CADD in discovery and development of agrochemicals. In this review, we outline two categories of the drug discovery strategies: structure- and ligand-based CADD, and relevant computational approaches that are being employed in modern drug discovery. In order to help readers to dive into CADD, we explain concepts of homology modelling, molecular docking, virtual screening, and de novo ligand design in structure-based CADD, and pharmacophore modelling, ligand-based virtual screening, quantitative structure activity relationship modelling and de novo ligand design for ligand-based CADD. We also provide the important resources available to carry out CADD. Finally, we present a case study showing how CADD approach can be implemented in reality for identification of potent chemical compounds against the important plant pathogens, Pseudomonas syringae and Colletotrichum gloeosporioides.
Collapse
Affiliation(s)
| | - Junhyun Jeon
- Corresponding author. Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail)
| |
Collapse
|
108
|
Fang D, Yang W, Deng Z, An X, Zhao L, Hu Q. Proteomic Investigation of Metabolic Changes of Mushroom (Flammulina velutipes) Packaged with Nanocomposite Material during Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10368-10381. [PMID: 29111700 DOI: 10.1021/acs.jafc.7b04393] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metabolic changes of mushroom (Flammulina velutipes) applied with polyethylene (PE) material (Normal-PM) or nanocomposite reinforced PE packaging material (Nano-PM) were monitored using tandem mass tags (TMT) labeling combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique. A total of 429 proteins were investigated as differentially expressed proteins (DEPs) among treatments after a cold storage period. A total of 232 DEPs were up-regulated and 65 DEPs were down-regulated in Nano-PM packed F. velutipes compared to that of Normal-PM. The up-regulated DEPs were mainly involved in amino acid synthesis and metabolism, signal transduction, and response to stress while the down-regulated DEPs were largely located in mitochondrion and participated in carbohydrate metabolic, amino acid synthesis and metabolism, and organic acid metabolic. It was also revealed that Nano-PM could inhibit the carbohydrate and energy metabolism bioprocess, promote amino acids biosynthesis, enhance antioxidant system, and improve its resistance to stress, resulting in a further extended shelf life of F. velutipes.
Collapse
Affiliation(s)
- Donglu Fang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, P.R. China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics , Nanjing, Jiangsu 210046, P.R. China
| | - Zilong Deng
- Department of Food Science & Technology, Oregon State University , Corvallis, Oregon 97331-6602, United States
| | - Xinxin An
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, P.R. China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, P.R. China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
109
|
McVey AC, Medarametla P, Chee X, Bartlett S, Poso A, Spring DR, Rahman T, Welch M. Structural and Functional Characterization of Malate Synthase G from Opportunistic Pathogen Pseudomonas aeruginosa. Biochemistry 2017; 56:5539-5549. [PMID: 28985053 DOI: 10.1021/acs.biochem.7b00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization because of the dwindling number of effective therapies available to treat infections. Over the past decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologues found in other clinically relevant microorganisms. It is also dependent on Mg2+ for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg2+. We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.
Collapse
Affiliation(s)
- Alyssa C McVey
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| | | | - Xavier Chee
- Department of Pharmacology, University of Cambridge , Cambridge CB2 1PD, U.K
| | - Sean Bartlett
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland , 70211 Kuopio, Finland.,Department of Internal Medicine VIII, University Hospital Tübingen , 72076 Tübingen, Germany
| | - David R Spring
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge , Cambridge CB2 1PD, U.K
| | - Martin Welch
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| |
Collapse
|
110
|
Birhanu AG, Yimer SA, Holm-Hansen C, Norheim G, Aseffa A, Abebe M, Tønjum T. N ε- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains: Proteins Involved in Bioenergetics, Virulence, and Antimicrobial Resistance Are Acetylated. J Proteome Res 2017; 16:4045-4059. [PMID: 28920697 DOI: 10.1021/acs.jproteome.7b00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence demonstrates that lysine acetylation is involved in Mycobacterium tuberculosis (Mtb) virulence and pathogenesis. However, previous investigations in Mtb have only monitored acetylation at lysine residues using selected reference strains. We analyzed the global Nε- and O-acetylation of three Mtb isolates: two lineage 7 clinical isolates and the lineage 4 H37Rv reference strain. Quantitative acetylome analysis resulted in identification of 2490 class-I acetylation sites, 2349 O-acetylation and 141 Nε-acetylation sites, derived from 953 unique proteins. Mtb O-acetylation was thereby significantly more abundant than Nε-acetylation. The acetylated proteins were found to be involved in central metabolism, translation, stress responses, and antimicrobial drug resistance. Notably, 261 acetylation sites on 165 proteins were differentially regulated between lineage 7 and lineage 4 strains. A total of 257 acetylation sites on 161 proteins were hypoacetylated in lineage 7 strains. These proteins are involved in Mtb growth, virulence, bioenergetics, host-pathogen interactions, and stress responses. This study provides the first global analysis of O-acetylated proteins in Mtb. This quantitative acetylome data expand the current understanding regarding the nature and diversity of acetylated proteins in Mtb and open a new avenue of research for exploring the role of protein acetylation in Mtb physiology.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Addis Ababa University , Institute of Biotechnology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Carol Holm-Hansen
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Gunnstein Norheim
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
111
|
McCarthy MW, Kontoyiannis DP, Cornely OA, Perfect JR, Walsh TJ. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J Infect Dis 2017; 216:S474-S483. [PMID: 28911042 DOI: 10.1093/infdis/jix130] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The emergence of drug-resistant fungi poses a major threat to human health. Despite advances in preventive, diagnostic, and therapeutic interventions, resistant fungal infections continue to cause significant morbidity and mortality in patients with compromised immunity, underscoring the urgent need for new antifungal agents. In this article, we review the challenges associated with identifying broad-spectrum antifungal drugs and highlight novel targets that could enhance the armamentarium of agents available to treat drug-resistant invasive fungal infections.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Division of General Internal Medicine, Weill Cornell Medicine, New York, New York
| | | | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Department I of Internal Medicine, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases, Duke University, Durham, North Carolina
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York
| |
Collapse
|
112
|
Lee YV, Choi SB, Wahab HA, Choong YS. Active Site Flexibility of Mycobacterium tuberculosis Isocitrate Lyase in Dimer Form. J Chem Inf Model 2017; 57:2351-2357. [PMID: 28820943 DOI: 10.1021/acs.jcim.7b00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3 bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.
Collapse
Affiliation(s)
- Yie-Vern Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Sy Bing Choi
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| |
Collapse
|
113
|
Park C, Shin B, Jung J, Lee Y, Park W. Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation. Microb Biotechnol 2017; 10:1809-1823. [PMID: 28857443 PMCID: PMC5658608 DOI: 10.1111/1751-7915.12852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/28/2022] Open
Abstract
Acinetobacter oleivorans DR1 can utilize C12–C30 alkanes as a sole carbon source but not short‐chain alkanes (C6, C10). Two copies of each alkB‐, almA‐ and ladA‐type alkane hydroxylase (AH) are present in the genome of DR1 cells. Expression and mutational analyses of AHs showed that alkB1 and alkB2 are the major AH‐encoding genes under C12–C30, and the roles of other almA‐ and ladA genes are negligible. Our data suggested that AlkB1 is responsible for long‐chain alkane utilization (C24–C26), and AlkB2 is important for medium‐chain alkane (C12–C16) metabolism. Phylogenetic analyses revealed large incongruities between phylogenies of 16S rRNA and each AH gene, which implies that A. oleivorans DR1 has acquired multiple alkane hydroxylases through horizontal gene transfer. Transcriptomic and qRT‐PCR analyses suggested that genes participating in the synthesis of siderophore, trehalose and poly 3‐hydroxybutyrate (PHB) were expressed at much higher levels when cells used C30 than when used succinate as a carbon source. The following biochemical assays supported our gene expression analyses: (i) quantification of siderophore, (ii) measurement of trehalose and (iii) observation of PHB storage. Interestingly, highly induced both ackA gene encoding an acetate kinase A and pta gene encoding a phosphotransacetylase suggested unusual ATP synthesis during C30 alkane degradation, which was demonstrated by ATP measurement using the ΔackA mutant. Impaired growth of the ΔaceA mutant indicated that the glyoxylate shunt pathway is important when C30 alkane is utilized. Our data provide insight into long‐chain alkane degradation in soil microorganisms.
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea
| | - Jaejoon Jung
- National Marine Biodiversity Institute of Korea, Chungcheongnam-Do, 33662, Korea
| | - Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea
| |
Collapse
|
114
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|
115
|
Flynn JM, Phan C, Hunter RC. Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin. Infect Immun 2017; 85:e00182-17. [PMID: 28507068 PMCID: PMC5520445 DOI: 10.1128/iai.00182-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
Chronic airway infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. Although this bacterium has been extensively studied for its virulence determinants, biofilm growth, and immune evasion mechanisms, comparatively little is known about the nutrient sources that sustain its growth in vivo Respiratory mucins represent a potentially abundant bioavailable nutrient source, although we have recently shown that canonical pathogens inefficiently use these host glycoproteins as a growth substrate. However, given that P. aeruginosa, particularly in its biofilm mode of growth, is thought to grow slowly in vivo, the inefficient use of mucin glycoproteins may be relevant to its persistence within the CF airways. To this end, we used whole-genome fitness analysis, combining transposon mutagenesis with high-throughput sequencing, to identify genetic determinants required for P. aeruginosa growth using intact purified mucins as a sole carbon source. Our analysis reveals a biphasic growth phenotype, during which the glyoxylate pathway and amino acid biosynthetic machinery are required for mucin utilization. Secondary analyses confirmed the simultaneous liberation and consumption of acetate during mucin degradation and revealed a central role for the extracellular proteases LasB and AprA. Together, these studies describe a molecular basis for mucin-based nutrient acquisition by P. aeruginosa and reveal a host-pathogen dynamic that may contribute to its persistence within the CF airways.
Collapse
Affiliation(s)
- Jeffrey M Flynn
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chi Phan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
116
|
Mechanism-based inactivator of isocitrate lyases 1 and 2 from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2017; 114:7617-7622. [PMID: 28679637 DOI: 10.1073/pnas.1706134114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Isocitrate lyase (ICL, types 1 and 2) is the first enzyme of the glyoxylate shunt, an essential pathway for Mycobacterium tuberculosis (Mtb) during the persistent phase of human TB infection. Here, we report 2-vinyl-d-isocitrate (2-VIC) as a mechanism-based inactivator of Mtb ICL1 and ICL2. The enzyme-catalyzed retro-aldol cleavage of 2-VIC unmasks a Michael substrate, 2-vinylglyoxylate, which then forms a slowly reversible, covalent adduct with the thiolate form of active-site Cys191 2-VIC displayed kinetic properties consistent with covalent, mechanism-based inactivation of ICL1 and ICL2 with high efficiency (partition ratio, <1). Analysis of a complex of ICL1:2-VIC by electrospray ionization mass spectrometry and X-ray crystallography confirmed the formation of the predicted covalent S-homopyruvoyl adduct of the active-site Cys191.
Collapse
|
117
|
Campilongo R, Fung RKY, Little RH, Grenga L, Trampari E, Pepe S, Chandra G, Stevenson CEM, Roncarati D, Malone JG. One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genet 2017; 13:e1006839. [PMID: 28658302 PMCID: PMC5489143 DOI: 10.1371/journal.pgen.1006839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/26/2017] [Indexed: 12/04/2022] Open
Abstract
Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate. Here we show how Pseudomonas controls multiple different primary carbon metabolism pathways by sensing levels of KDPG, an Entner Doudoroff (ED) pathway intermediate. KDPG binds to two highly similar transcription factors; the ED regulator HexR and the previously uncharacterised protein RccR. RccR inversely controls the glyoxylate shunt, gluconeogenesis and pyruvate metabolism, suppressing the first two pathways as pyruvate metabolism genes are expressed, and vice versa. This complex regulation is enabled by two distinct RccR-binding consensus sequences in the RccR regulon promoters. KDPG binding simultaneously increases RccR affinity for the glyoxylate shunt and gluconeogenesis promoters, and releases repression of pyruvate metabolism. This elegant two-regulator circuit allows Pseudomonas to rapidly respond to carbon source availability by sensing a single key intermediate, KDPG.
Collapse
Affiliation(s)
- Rosaria Campilongo
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- Istituto Pasteur- Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘C. Darwin”, Sapienza Universita`di Roma, Roma, Italy
| | - Rowena K. Y. Fung
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Richard H. Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Eleftheria Trampari
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Simona Pepe
- Alma Mater Studiorum - University of Bologna, Department of Pharmacy and Biotechnology – FaBiT, Bologna, Italy
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | | - Davide Roncarati
- Alma Mater Studiorum - University of Bologna, Department of Pharmacy and Biotechnology – FaBiT, Bologna, Italy
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
118
|
Gupta S, Bhar A, Chatterjee M, Ghosh A, Das S. Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. PLoS One 2017; 12:e0178164. [PMID: 28542579 PMCID: PMC5460890 DOI: 10.1371/journal.pone.0178164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Plants' reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions. Present study reported the molecular complexities in chickpea during Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) infection. Transcriptomic dissections using RNA-seq showed significantly differential expression of molecular transcripts between infected and control plants of both susceptible and resistant genotypes. Radar plot analyses showed maximum expressional undulations after infection in both susceptible and resistant plants. Gene ontology and functional clustering showed large number of transcripts controlling basic metabolism of plants. Network analyses demonstrated defense components like peptidyl cis/trans isomerase, MAP kinase, beta 1,3 glucanase, serine threonine kinase, patatin like protein, lactolylglutathione lyase, coproporphyrinogen III oxidase, sulfotransferases; reactive oxygen species regulating components like respiratory burst oxidase, superoxide dismutases, cytochrome b5 reductase, glutathione reductase, thioredoxin reductase, ATPase; metabolism regulating components, myo inositol phosphate, carboxylate synthase; transport related gamma tonoplast intrinsic protein, and structural component, ubiquitins to serve as important nodals of defense signaling network. These nodal molecules probably served as hub controllers of defense signaling. Functional characterization of these hub molecules would not only help in developing better understanding of chickpea-Foc1 interaction but also place them as promising candidates for resistance management programs against vascular wilt of legumes.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Anirban Bhar
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Moniya Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Amartya Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, India
| |
Collapse
|
119
|
Gründel M, Knoop H, Steuer R. Activity and functional properties of the isocitrate lyase in the cyanobacterium Cyanothece sp. PCC 7424. MICROBIOLOGY-SGM 2017; 163:731-744. [PMID: 28516845 DOI: 10.1099/mic.0.000459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are ubiquitous photoautotrophs that assimilate atmospheric CO2 as their main source of carbon. Several cyanobacteria are known to be facultative heterotrophs that are able to grow on diverse carbon sources. For selected strains, assimilation of organic acids and mixotrophic growth on acetate has been reported for decades. However, evidence for the existence of a functional glyoxylate shunt in cyanobacteria has long been contradictory and unclear. Genes coding for isocitrate lyase (ICL) and malate synthase were recently identified in two strains of the genus Cyanothece, and the existence of the complete glyoxylate shunt was verified in a strain of Chlorogloeopsis fritschii. Here, we report that the gene PCC7424_4054 of the strain Cyanothece sp. PCC 7424 encodes an enzymatically active protein that catalyses the reaction of ICL, an enzyme that is specific for the glyoxylate shunt. We demonstrate that ICL activity is induced under alternating day/night cycles and acetate-supplemented cultures exhibit enhanced growth. In contrast, growth under constant light did not result in any detectable ICL activity or enhanced growth of acetate-supplemented cultures. Furthermore, our results indicate that, despite the presence of a glyoxylate shunt, acetate does not support continued heterotrophic growth and cell proliferation. The functional validation of the ICL is supplemented with a bioinformatics analysis of enzymes that co-occur with the glyoxylate shunt. We hypothesize that the glyoxylate shunt in Cyanothece sp. PCC 7424, and possibly other nitrogen-fixing cyanobacteria, is an adaptation to a specific ecological niche and supports assimilation of nitrogen or organic compounds during the night phase.
Collapse
Affiliation(s)
- Marianne Gründel
- Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, 10115 Berlin, Germany
| | - Henning Knoop
- Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| | - Ralf Steuer
- Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
120
|
Oakley CA, Durand E, Wilkinson SP, Peng L, Weis VM, Grossman AR, Davy SK. Thermal Shock Induces Host Proteostasis Disruption and Endoplasmic Reticulum Stress in the Model Symbiotic Cnidarian Aiptasia. J Proteome Res 2017; 16:2121-2134. [PMID: 28474894 DOI: 10.1021/acs.jproteome.6b00797] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.
Collapse
Affiliation(s)
- Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| | - Elysanne Durand
- Department of Ecology and Environmental Sciences, Université Pierre et Marie Curie , Paris 75005, France
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University , Corvallis, Oregon 97331, United States
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science , Stanford, California 94305, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington , Wellington 6012, New Zealand
| |
Collapse
|
121
|
Banerjee D, Parmar D, Bhattacharya N, Ghanate AD, Panchagnula V, Raghunathan A. A scalable metabolite supplementation strategy against antibiotic resistant pathogen Chromobacterium violaceum induced by NAD +/NADH + imbalance. BMC SYSTEMS BIOLOGY 2017; 11:51. [PMID: 28446174 PMCID: PMC5405553 DOI: 10.1186/s12918-017-0427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The leading edge of the global problem of antibiotic resistance necessitates novel therapeutic strategies. This study develops a novel systems biology driven approach for killing antibiotic resistant pathogens using benign metabolites. RESULTS Controlled laboratory evolutions established chloramphenicol and streptomycin resistant pathogens of Chromobacterium. These resistant pathogens showed higher growth rates and required higher lethal doses of antibiotic. Growth and viability testing identified malate, maleate, succinate, pyruvate and oxoadipate as resensitising agents for antibiotic therapy. Resistant genes were catalogued through whole genome sequencing. Intracellular metabolomic profiling identified violacein as a potential biomarker for resistance. The temporal variance of metabolites captured the linearized dynamics around the steady state and correlated to growth rate. A constraints-based flux balance model of the core metabolism was used to predict the metabolic basis of antibiotic susceptibility and resistance. CONCLUSIONS The model predicts electron imbalance and skewed NAD/NADH ratios as a result of antibiotics - chloramphenicol and streptomycin. The resistant pathogen rewired its metabolic networks to compensate for disruption of redox homeostasis. We foresee the utility of such scalable workflows in identifying metabolites for clinical isolates as inevitable solutions to mitigate antibiotic resistance.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| | | | | | - Avinash D. Ghanate
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| | | | - Anu Raghunathan
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
122
|
Beattie SR, Mark KMK, Thammahong A, Ries LNA, Dhingra S, Caffrey-Carr AK, Cheng C, Black CC, Bowyer P, Bromley MJ, Obar JJ, Goldman GH, Cramer RA. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathog 2017; 13:e1006340. [PMID: 28423062 PMCID: PMC5411099 DOI: 10.1371/journal.ppat.1006340] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022] Open
Abstract
Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is not required for pulmonary infection establishment, loss of CCR inhibits fungal metabolic plasticity and the ability to thrive in the dynamic infection microenvironment. Our results suggest a model whereby CCR in an environmental filamentous fungus is dispensable for initiation of pulmonary infection but essential for infection maintenance and disease progression. Conceptually, we argue these data provide a foundation for additional studies on fungal factors required to support fungal fitness and disease progression and term such genes and factors, DPFs (disease progression factors).
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kenneth M. K. Mark
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Arsa Thammahong
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | | | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Alayna K. Caffrey-Carr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Candice C. Black
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Paul Bowyer
- Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael J. Bromley
- Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
123
|
Functional characterization and transcriptional analysis of icd2 gene encoding an isocitrate dehydrogenase of Xanthomonas campestris pv. campestris. Arch Microbiol 2017; 199:917-929. [DOI: 10.1007/s00203-017-1370-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
124
|
Environmental Viral Genomes Shed New Light on Virus-Host Interactions in the Ocean. mSphere 2017; 2:mSphere00359-16. [PMID: 28261669 PMCID: PMC5332604 DOI: 10.1128/msphere.00359-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 11/27/2022] Open
Abstract
Viruses are diverse and play significant ecological roles in marine ecosystems. However, our knowledge of genome-level diversity in viruses is biased toward those isolated from few culturable hosts. Here, we determined 1,352 nonredundant complete viral genomes from marine environments. Lifting the uncertainty that clouds short incomplete sequences, whole-genome-wide analysis suggests that these environmental genomes represent hundreds of putative novel viral genera. Predicted hosts include dominant groups of marine bacteria and archaea with no isolated viruses to date. Some of the viral genomes encode many functionally related enzymes, suggesting a strong selection pressure on these marine viruses to control cellular metabolisms by accumulating genes. Metagenomics has revealed the existence of numerous uncharacterized viral lineages, which are referred to as viral “dark matter.” However, our knowledge regarding viral genomes is biased toward culturable viruses. In this study, we analyzed 1,600 (1,352 nonredundant) complete double-stranded DNA viral genomes (10 to 211 kb) assembled from 52 marine viromes. Together with 244 previously reported uncultured viral genomes, a genome-wide comparison delineated 617 genus-level operational taxonomic units (OTUs) for these environmental viral genomes (EVGs). Of these, 600 OTUs contained no representatives from known viruses, thus putatively corresponding to novel viral genera. Predicted hosts of the EVGs included major groups of marine prokaryotes, such as marine group II Euryarchaeota and SAR86, from which no viruses have been isolated to date, as well as Flavobacteriaceae and SAR116. Our analysis indicates that marine cyanophages are already well represented in genome databases and that one of the EVGs likely represents a new cyanophage lineage. Several EVGs encode many enzymes that appear to function for an efficient utilization of iron-sulfur clusters or to enhance host survival. This suggests that there is a selection pressure on these marine viruses to accumulate genes for specific viral propagation strategies. Finally, we revealed that EVGs contribute to a 4-fold increase in the recruitment of photic-zone viromes compared with the use of current reference viral genomes. IMPORTANCE Viruses are diverse and play significant ecological roles in marine ecosystems. However, our knowledge of genome-level diversity in viruses is biased toward those isolated from few culturable hosts. Here, we determined 1,352 nonredundant complete viral genomes from marine environments. Lifting the uncertainty that clouds short incomplete sequences, whole-genome-wide analysis suggests that these environmental genomes represent hundreds of putative novel viral genera. Predicted hosts include dominant groups of marine bacteria and archaea with no isolated viruses to date. Some of the viral genomes encode many functionally related enzymes, suggesting a strong selection pressure on these marine viruses to control cellular metabolisms by accumulating genes.
Collapse
|
125
|
Xie L, Li J, Deng W, Yu Z, Fang W, Chen M, Liao W, Xie J, Pan W. Proteomic analysis of lysine succinylation of the human pathogen Histoplasma capsulatum. J Proteomics 2017; 154:109-117. [PMID: 28063982 DOI: 10.1016/j.jprot.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023]
Abstract
Histoplasma capsulatum, the causative agent of histoplasmosis (also called "Darling's disease"), can affect both immunocompetent and immunocompromised hosts. Post-translational protein modification by lysine succinylation (Ksuc) is a frequent occurrence in eukaryote and prokaryote. Recently, the roles of succinylation and its regulatory enzymes in regulating metabolic pathway in bacteria, mammalian and fungus were highlighted. Here, we report the first global profiling of lysine succinylation, with 463 modification sites in 202 proteins from H. capsulatum NAM1 identified, coupling immune-affinity enrichment using an anti-succinyllysine antibody with mass spectrometry. The bioinformatics results including GO functional and enrichment analysis showed that these succinylated proteins are mainly involved in central metabolism and protein synthesis, consistent with previous reports. 13 lysine succinylation sites on histones including H2A, H2B, H3 and H4 in H. capsulatum were firstly reported. The data is a good resource for further functional characterization of lysine succinylation in H. capsulatum. BIOLOGICAL SIGNIFICANCE H. capsulatum is the causative agent of lung disease histoplasmosis. The ability of H. capsulatum yeasts to infect and proliferate within macrophages as an intracellular pathogen can be contributed to several virulence factors and metabolic regulation. Lysine succinylation was recently shown to play a critical role in the metabolism regulation of Candida albicans. H. capsulatum succinylated proteins were firstly characterized in this work, and bioinformatics results showed that this modification may also be relevant with central metabolism in H. capsulatum. New succinylation sites on histones were reported. This represents an important resource to address the function of H. capsulatum lysine succinylation.
Collapse
Affiliation(s)
- Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Juan Li
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Zhaoxiao Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
126
|
Mangwanda R, Zwart L, van der Merwe NA, Moleleki LN, Berger DK, Myburg AA, Naidoo S. Localization and Transcriptional Responses of Chrysoporthe austroafricana in Eucalyptus grandis Identify Putative Pathogenicity Factors. Front Microbiol 2016; 7:1953. [PMID: 28008326 PMCID: PMC5143476 DOI: 10.3389/fmicb.2016.01953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Chrysoporthe austroafricana is a fungal pathogen that causes the development of stem cankers on susceptible Eucalyptus grandis trees. Clones of E. grandis that are partially resistant and highly susceptible have been identified based on the extent of lesion formation on the stem upon inoculation with C. austroafricana. These interactions have been used as a model pathosystem to enhance our understanding of interactions between pathogenic fungi and woody hosts, which may be different to herbaceous hosts. In previous research, transcriptomics of host responses in these two clones to C. austroafricana suggested roles for salicylic acid and gibberellic acid phytohormone signaling in defense. However, it is unclear how the pathogen infiltrates host tissue and which pathogenicity factors facilitate its spread in the two host genotypes. The aim of this study was to investigate these two aspects of the E. grandis-C. austroafricana interaction and to test the hypothesis that the pathogen possesses mechanisms to modulate the tree phytohormone-mediated defenses. Light microscopy showed that the pathogen occurred in most cell types and structures within infected E. grandis stem tissue. Notably, the fungus appeared to spread through the stem by penetrating cell wall pits. In order to understand the molecular interaction between these organisms and predict putative pathogenicity mechanisms of C. austroafricana, fungal gene expression was studied in vitro and in planta. Fungal genes associated with cell wall degradation, carbohydrate metabolism and phytohormone manipulation were expressed in planta by C. austroafricana. These genes could be involved in fungal spread by facilitating cell wall pit degradation and manipulating phytohormone mediated defense in each host environment, respectively. Specifically, the in planta expression of an ent-kaurene oxidase and salicylate hydroxylase in C. austroafricana suggests putative mechanisms by which the pathogen can modulate the phytohormone-mediated defenses of the host. These mechanisms have been reported in herbaceous plant-pathogen interactions, supporting the notion that these aspects of the interaction are similar in a woody species. This study highlights ent-kaurene oxidase and salicylate hydroxylase as candidates for further functional characterization.
Collapse
Affiliation(s)
- Ronishree Mangwanda
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lizahn Zwart
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
127
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
128
|
Gu Y, Liu Y, Cao S, Huang X, Zuo Z, Yu S, Deng J, Ding C, Yuan M, Shen L, Wu R, Wen Y, Ren Z, Zhao Q, Peng G, Zhong Z, Wang C, Ma X. Suppressive subtractive hybridization reveals different gene expression between high and low virulence strains of Cladosporium cladosporioides. Microb Pathog 2016; 100:276-284. [PMID: 27744104 DOI: 10.1016/j.micpath.2016.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022]
Abstract
Cladosporium cladosporioides is a ubiquitous fungus, causing infections in plants, humans, and animals. Suppression subtractive hybridization (SSH) and quantitative real-time PCR (qRT-PCR) were used in this study to identify differences in gene expression between two C. cladosporioides strains, the highly virulent Z20 strain and the lowly virulent Zt strain. A total of 61 unigenes from the forward library and 42 from the reverse library were identified. Gene ontology (GO) analysis showed that these genes were involved in various biological processes, cellular components and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the unigenes in the forward library corresponded to 5 different pathways and the reverse library unigenes were involved in 3 different pathways. The qRT-PCR results indicated that expressions of APL1, GUD1, CSE1, SPBC3E7.04c and MFS were significantly different between Z20 and Zt strains, while genes encoding the senescence-associated proteins, pse1, nup107, mip1, pex2, icl1 and α/β hydrolase exhibited no significant differences between the two strains. In addition, we found that 5 unigenes encoding mip1, chk1, icl1, α/β hydrolase and β-glucosidase may be associated with pathogenicity. One unigene (MFS) may be related to the resistance to 14 α-demethylase inhibitor fungicides, and 5 unigenes (PEX2, NUP107, PSE1, APL1, and SPBC3E7.04c) may be related to either low spore yield or earlier aging of the Zt strain. Our study may help better understand the molecular mechanism of C. cladosporioides infection, and therefore improve the treatment and prevention of C. cladosporioides induced diseases.
Collapse
Affiliation(s)
- Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yanfang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Ya'an, 625000, China.
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
129
|
Michopoulos F, Karagianni N, Whalley NM, Firth MA, Nikolaou C, Wilson ID, Critchlow SE, Kollias G, Theodoridis GA. Targeted Metabolic Profiling of the Tg197 Mouse Model Reveals Itaconic Acid as a Marker of Rheumatoid Arthritis. J Proteome Res 2016; 15:4579-4590. [PMID: 27704840 DOI: 10.1021/acs.jproteome.6b00654] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis is a progressive, highly debilitating disease where early diagnosis, enabling rapid clinical intervention, would provide obvious benefits to patients, healthcare systems, and society. Novel biomarkers that enable noninvasive early diagnosis of the onset and progression of the disease provide one route to achieving this goal. Here a metabolic profiling method has been applied to investigate disease development in the Tg197 arthritis mouse model. Hind limb extract profiling demonstrated clear differences in metabolic phenotypes between control (wild type) and Tg197 transgenic mice and highlighted raised concentrations of itaconic acid as a potential marker of the disease. These changes in itaconic acid concentrations were moderated or indeed reversed when the Tg197 mice were treated with the anti-hTNF biologic infliximab (10 mg/kg twice weekly for 6 weeks). Further in vitro studies on synovial fibroblasts obtained from healthy wild-type, arthritic Tg197, and infliximab-treated Tg197 transgenic mice confirmed the association of itaconic acid with rheumatoid arthritis and disease-moderating drug effects. Preliminary indications of the potential value of itaconic acid as a translational biomarker were obtained when studies on K4IM human fibroblasts treated with hTNF showed an increase in the concentrations of this metabolite.
Collapse
Affiliation(s)
- Filippos Michopoulos
- Bioscience, Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom.,Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki 541 24, Greece
| | | | - Nichola M Whalley
- Bioscience, Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Mike A Firth
- Discovery Science, iMED, AstraZeneca, Cambridge CB4 0FZ, United Kingdom
| | - Christoforos Nikolaou
- Biomedical Siences Research Center "Alexander Fleming", 34 Fleming Street, Vari 16672, Greece.,Department of Biology, University of Crete , Heraklion 741 00, Greece
| | - Ian D Wilson
- Department of Surgery and Cancer, Imperial College , London SW7 2AZ, United Kingdom
| | - Susan E Critchlow
- Bioscience, Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - George Kollias
- Biomedical Siences Research Center "Alexander Fleming", 34 Fleming Street, Vari 16672, Greece.,Department of Physiology, Faculty of Medicine, National and Kapodistrian University of Athens , Athens 11527, Greece
| | - Georgios A Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki 541 24, Greece
| |
Collapse
|
130
|
Metabolic flux analyses of Pseudomonas aeruginosa cystic fibrosis isolates. Metab Eng 2016; 38:251-263. [PMID: 27637318 DOI: 10.1016/j.ymben.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/07/2016] [Accepted: 09/11/2016] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is a metabolically versatile wide-ranging opportunistic pathogen. In humans P. aeruginosa causes infections of the skin, urinary tract, blood, and the lungs of Cystic Fibrosis patients. In addition, P. aeruginosa's broad environmental distribution, relatedness to biotechnologically useful species, and ability to form biofilms have made it the focus of considerable interest. We used 13C metabolic flux analysis (MFA) and flux balance analysis to understand energy and redox production and consumption and to explore the metabolic phenotypes of one reference strain and five strains isolated from the lungs of cystic fibrosis patients. Our results highlight the importance of the oxidative pentose phosphate and Entner-Doudoroff pathways in P. aeruginosa growth. Among clinical strains we report two divergent metabolic strategies and identify changes between genetically related strains that have emerged during a chronic infection of the same patient. MFA revealed that the magnitude of fluxes through the glyoxylate cycle correlates with growth rates.
Collapse
|
131
|
Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism. Appl Environ Microbiol 2016; 82:4126-4132. [PMID: 27129963 DOI: 10.1128/aem.00493-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem.
Collapse
|
132
|
Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans. J Microbiol 2016; 54:487-91. [PMID: 27350614 DOI: 10.1007/s12275-016-6177-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.
Collapse
|
133
|
Lv C, Wang P, Wang W, Su R, Ge Y, Zhu Y, Zhu G. Two isocitrate dehydrogenases from a plant pathogen Xanthomonas campestris pv. campestris 8004. Bioinformatic analysis, enzymatic characterization, and implication in virulence. J Basic Microbiol 2016; 56:975-85. [PMID: 27282849 DOI: 10.1002/jobm.201500648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylate (TCA) cycle, which may play an important role in the virulence of pathogenic bacteria. Here, two structurally different IDHs from a plant pathogen Xanthomonas campestris pv. campestris 8004 (XccIDH1 and XccIDH2) were characterized in detail. The recombinant XccIDH1 forms homodimer in solution, while the recombinant XccIDH2 is a typical monomer. Phylogenetic analysis showed that XccIDH1 belongs to the type I IDH subfamily and XccIDH2 groups into the monomeric IDH clade. Kinetic characterization demonstrated that XccIDH1's specificity towards NAD(+) was 110-fold greater than NADP(+) , while XccIDH2's specificity towards NADP(+) was 353-fold greater than NAD(+) . The putative coenzyme discriminating amino acids (Asp268, Ile269 and Ala275 for XccIDH1, and Lys589, His590 and Arg601 for XccIDH2) were studied by site-directed mutagenesis. The coenzyme specificities of the two mutants, mXccIDH1 and mXccIDH2, were completely reversed from NAD(+) to NADP(+) , and NADP(+) to NAD(+) , respectively. Furthermore, Ser80 of XccIDH1, and Lys256 and Tyr421 of XccIDH2, were the determinants for the substrate binding. The detailed biochemical properties, such as optimal pH and temperature, thermostability, and metal ion effects, of XccIDH1 and XccIDH2 were further investigated. The possibility of taking the two IDHs into consideration as the targets for drug development to control the plant diseases caused by Xcc 8004 were described and discussed thoroughly.
Collapse
Affiliation(s)
- Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Wencai Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Ruirui Su
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Yadong Ge
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Youming Zhu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Stomatological Hospital, Anhui Medical University, China.
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China.
| |
Collapse
|
134
|
Park Y, Cho Y, Lee YH, Lee YW, Rhee S. Crystal structure and functional analysis of isocitrate lyases from Magnaporthe oryzae and Fusarium graminearum. J Struct Biol 2016; 194:395-403. [DOI: 10.1016/j.jsb.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/24/2022]
|
135
|
Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-015-1131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
136
|
Chotpatiwetchkul W, Jongkon N, Hannongbua S, Gleeson MP. QM/MM investigation of the reaction rates of substrates of 2,3-dimethylmalate lyase: A catabolic protein isolated from Aspergillus niger. J Mol Graph Model 2016; 68:29-38. [PMID: 27343740 DOI: 10.1016/j.jmgm.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand
| | - Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
137
|
Gao SH, Fan L, Peng L, Guo J, Agulló-Barceló M, Yuan Z, Bond PL. Determining Multiple Responses of Pseudomonas aeruginosa PAO1 to an Antimicrobial Agent, Free Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5305-5312. [PMID: 27116299 DOI: 10.1021/acs.est.6b00288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Free nitrous acid (FNA) has recently been demonstrated as an antimicrobial agent on a range of micro-organisms, especially in wastewater-treatment systems. However, the antimicrobial mechanism of FNA is largely unknown. Here, we report that the antimicrobial effects of FNA are multitargeted. The response of a model denitrifier, Pseudomnas aeruginosa PAO1 (PAO1), common in wastewater treatment, was investigated in the absence and presence of inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. This was achieved through coupling gene expression analysis, by RNA sequencing, and with a suite of physiological analyses. Various transcripts exhibited significant changes in abundance in the presence of FNA. Respiration was likely inhibited because denitrification activity was severely depleted, and decreased transcript levels of most denitrification genes occurred. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in the FNA-exposed cultures. Meanwhile, during FNA exposure, PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product as a possible survival mechanism. Additionally, protein synthesis was significantly decreased, and ribosome preservation was evident. These findings improve our understanding of PAO1 in response to FNA and contribute toward the potential application for use of FNA as an antimicrobial agent.
Collapse
Affiliation(s)
- Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
| | - Lu Fan
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
- iCarbonX , Shenzhen 518053, China
| | - Lai Peng
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, Ghent 9000, Belgium
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
| | - Míriam Agulló-Barceló
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane QLD 4072, Australia
| |
Collapse
|
138
|
Duan S, Ma X, Chen W, Wan W, He Y, Ma X, Ma Y, Long N, Tan Y, Wang Y, Hou Y, Dong Y. Transcriptomic profile of tobacco in response to Alternaria longipes and Alternaria alternata infections. Sci Rep 2016; 6:25635. [PMID: 27157477 PMCID: PMC4860569 DOI: 10.1038/srep25635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022] Open
Abstract
Tobacco brown spot caused by Alternaria fungal species is one of the most damaging diseases, and results in significant yield losses. However, little is known about the systematic response of tobacco to this fungal infection. To fill this knowledge gap, de novo assemblies of tobacco leaf transcriptomes were obtained in cultivars V2 and NC89 after the inoculation of either Alternaria longipes (AL) or Alternaria alternata (AA) at three different time points. We studied the gene expression profile of each cultivar-pathogen combination, and identified eight differentially expressed genes shared among all combinations. Gene ontology enrichment analysis of the differentially expressed genes revealed key components during the fungal infection, which included regulation of gene expression (GO:0010468), regulation of RNA metabolic process (GO:0051252), tetrapyrrole binding (GO:0046906), and external encapsulating structure (GO:0030312). Further analyses of the continuously upregulated/downregulated genes and the resistance genes demonstrated that the gene expression profile upon fungal infection was contingent on the specific cultivar and pathogen. In conclusion, this study provides a solid foundation for the investigation of plant-pathogen interaction, and is of great importance for disease prevention and molecular breeding.
Collapse
Affiliation(s)
- Shengchang Duan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiao Ma
- Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Chen
- Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Wenting Wan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuqi He
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China
| | - Xiaoqin Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yujin Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ni Long
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuntao Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yangzi Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yujie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
139
|
Comparative analysis of metabolic machinery of Frankia along with other selected actinobacteria. Symbiosis 2016. [DOI: 10.1007/s13199-016-0410-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
140
|
Lassek C, Berger A, Zühlke D, Wittmann C, Riedel K. Proteome and carbon flux analysis of Pseudomonas aeruginosa clinical isolates from different infection sites. Proteomics 2016; 16:1381-5. [PMID: 26959854 DOI: 10.1002/pmic.201500228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/31/2016] [Accepted: 03/03/2016] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa is known as opportunistic pathogen frequently isolated from different infection sites. To investigate the expression rates of P. aeruginosa proteins commonly expressed by different clinical isolates, absolute protein quantities were determined employing a gel-free and data-independent LC-IMS(E) approach. Moreover, the metabolic diversity of these isolates was investigated by (13) C-metabolic flux analyses. 812 proteins were reproducibly identified and absolutely quantified for the reference strain P. aeruginosa PAO1, 363 of which were also identified and relatively quantified in all isolates. Whilst the majority of these proteins were expressed in constant amounts, expression rates of 42 proteins were highly variable between the isolates. Notably, the outer membrane protein OprH and the response regulator PhoP were strongly expressed in burned wounds isolates compared to lung/urinary tract isolates. Moreover, proteins involved in iron/amino acids uptake were found to be highly abundant in urinary tract isolates. The fluxome data revealed a conserved glycolysis, and a niche-specific divergence in fluxes through the glyoxylate shunt and the TCA cycle among the isolates. The integrated proteome/fluxome analysis did not indicate straightforward correlation between the protein amount and flux, but rather points to additional layers of regulation that mediate metabolic adaption of P. aeruginosa to different host environments. All MS data have been deposited in the ProteomeXchange with identifier PXD002373 (http://proteomecentral.proteomexchange.org/dataset/PXD002373).
Collapse
Affiliation(s)
- Christian Lassek
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Antje Berger
- Institute of Biochemical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
141
|
Ahn S, Jung J, Jang IA, Madsen EL, Park W. Role of Glyoxylate Shunt in Oxidative Stress Response. J Biol Chem 2016; 291:11928-38. [PMID: 27036942 DOI: 10.1074/jbc.m115.708149] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 12/16/2022] Open
Abstract
The glyoxylate shunt (GS) is a two-step metabolic pathway (isocitrate lyase, aceA; and malate synthase, glcB) that serves as an alternative to the tricarboxylic acid cycle. The GS bypasses the carbon dioxide-producing steps of the tricarboxylic acid cycle and is essential for acetate and fatty acid metabolism in bacteria. GS can be up-regulated under conditions of oxidative stress, antibiotic stress, and host infection, which implies that it plays important but poorly explored roles in stress defense and pathogenesis. In many bacterial species, including Pseudomonas aeruginosa, aceA and glcB are not in an operon, unlike in Escherichia coli In P. aeruginosa, we explored relationships between GS genes and growth, transcription profiles, and biofilm formation. Contrary to our expectations, deletion of aceA in P. aeruginosa improved cell growth under conditions of oxidative and antibiotic stress. Transcriptome data suggested that aceA mutants underwent a metabolic shift toward aerobic denitrification; this was supported by additional evidence, including up-regulation of denitrification-related genes, decreased oxygen consumption without lowering ATP yield, increased production of denitrification intermediates (NO and N2O), and increased cyanide resistance. The aceA mutants also produced a thicker exopolysaccharide layer; that is, a phenotype consistent with aerobic denitrification. A bioinformatic survey across known bacterial genomes showed that only microorganisms capable of aerobic metabolism possess the glyoxylate shunt. This trend is consistent with the hypothesis that the GS plays a previously unrecognized role in allowing bacteria to tolerate oxidative stress.
Collapse
Affiliation(s)
- Sungeun Ahn
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| | - Jaejoon Jung
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| | - In-Ae Jang
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| | - Eugene L Madsen
- the Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Woojun Park
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| |
Collapse
|
142
|
Torres MF, Ghaffari N, Buiate EAS, Moore N, Schwartz S, Johnson CD, Vaillancourt LJ. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genomics 2016; 17:202. [PMID: 26956617 PMCID: PMC4782317 DOI: 10.1186/s12864-016-2546-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A "Mixed Effects" Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy. RESULTS More than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients. CONCLUSIONS This approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as 'landmarks' to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Functional Genomics Laboratory, Weill Cornell Medical College, Cornell University, Qatar Foundation - Education City, Doha, Qatar.
| | - Noushin Ghaffari
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Ester A S Buiate
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Monsanto Company Brazil, Uberlândia, Minas Gerais, Brazil.
| | - Neil Moore
- Department of Computer Science, University of Kentucky, Davis Marksbury Building, 328 Rose Street, Lexington, KY, 40506-0633, USA.
| | - Scott Schwartz
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
143
|
Olive AJ, Sassetti CM. Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat Rev Microbiol 2016; 14:221-34. [PMID: 26949049 DOI: 10.1038/nrmicro.2016.12] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.
Collapse
Affiliation(s)
- Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
144
|
Oakley CA, Ameismeier MF, Peng L, Weis VM, Grossman AR, Davy SK. Symbiosis induces widespread changes in the proteome of the model cnidarianAiptasia. Cell Microbiol 2016; 18:1009-23. [DOI: 10.1111/cmi.12564] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Clinton A. Oakley
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| | - Michael F. Ameismeier
- Gene Center, Department of Chemistry and Biochemistry; University of Munich; Munich 81377 Germany
| | - Lifeng Peng
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| | - Virginia M. Weis
- Department of Integrative Biology; Oregon State University; Corvallis OR 97331 USA
| | - Arthur R. Grossman
- Department of Plant Biology; The Carnegie Institution; Stanford CA 94305 USA
| | - Simon K. Davy
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| |
Collapse
|
145
|
Khan S, Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029. Interdiscip Sci 2015; 9:96-106. [PMID: 26649559 DOI: 10.1007/s12539-015-0134-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/01/2022]
Abstract
Chlamydophila pneumoniae, a Gram-negative bacterium belongs to the family Chlamydiaceae, is known to cause community-acquired pneumonia and bronchitis. There is a need for genomic analyses of C. pneumoniae as its chronic infections result in reactive airway disease, lung cancer and asthma. Recent advancement in the sequencing techniques led to the generation of large genomic data. In order to utilize these data, sequence-based function predictions were used for annotating the uncharacterized genes. The genome of C. pneumoniae encodes 1052 proteins, which include a group of 366 functionally uncharacterized proteins, known as "hypothetical proteins" (HPs). Functions of these HPs were predicted by utilizing an integrated approach that combines varieties of bioinformatics tools. The functions of 142 proteins were successfully predicted and categorized into different classes of enzymes, transport proteins, binding proteins and virulence factors. Among these functionally annotated HPs, we were able to identify 12 virulent HPs. Furthermore, the HP with the highest virulence score was subjected to molecular dynamics (MD) simulations to better understand their dynamical behavior in explicit water conditions. These analyses could be utilized for an in-depth understanding of virulence mechanism. The functional knowledge of these proteins could be useful in drug design and discovery process of infections caused by C. pneumoniae.
Collapse
Affiliation(s)
- Shama Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Shahbaaz
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
146
|
Valdes N, Soto P, Cottet L, Alarcon P, Gonzalez A, Castillo A, Corsini G, Tello M. Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand Genomic Sci 2015; 10:110. [PMID: 26605004 PMCID: PMC4657372 DOI: 10.1186/s40793-015-0104-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/17/2015] [Indexed: 11/10/2022] Open
Abstract
Janthinobacterium lividum is a Gram-negative bacterium able to produce violacein, a pigment with antimicrobial and antitumor properties. Janthinobacterium lividum colonizes the skin of some amphibians and confers protection against fungal pathogens. The mechanisms underlying this association are not well understood. In order to identify the advantages for the bacterium to colonize amphibian skin we sequenced Janthinobacterium lividum strain MTR, a strain isolated from Cajón del Maipo, Chile. The strain has capnophilic behavior, with growth favored by high concentrations (5 %) of carbon dioxide. Its genome is 6,535,606 bp in size, with 5,362 coding sequences and a G + C content of 62.37 %. The presence of genes encoding for products that participate in the carbon fixation pathways (dark CAM pathways), and the entire set of genes encoding for the enzymes of the glyoxylate cycle may explain the capnophilic behavior and allow us to propose that the CO2 secreted by the skin of amphibians is the signal molecule that guides colonization by Janthinobacterium lividum.
Collapse
Affiliation(s)
- Natalia Valdes
- Unidad de Apoyo Bioinformático, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363 Santiago, Chile
| | - Paola Soto
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363 Santiago, Chile
| | - Luis Cottet
- Laboratorio de Virología de Hongos, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363 Santiago, Chile
| | - Paula Alarcon
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363 Santiago, Chile
| | - Alex Gonzalez
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Fuchslocher, 1305 Osorno, Chile
| | - Antonio Castillo
- Laboratorio de Virología de Hongos, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363 Santiago, Chile
| | - Gino Corsini
- Centro de Investigación Biomédica, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El Llano Subercaseaux, 2801 Santiago, Chile ; Universidad Científica del Sur, Panamericana Sur Km. 19, Lima, Perú
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363 Santiago, Chile
| |
Collapse
|
147
|
Salhi A, Essack M, Radovanovic A, Marchand B, Bougouffa S, Antunes A, Simoes MF, Lafi FF, Motwalli OA, Bokhari A, Malas T, Amoudi SA, Othum G, Allam I, Mineta K, Gao X, Hoehndorf R, C Archer JA, Gojobori T, Bajic VB. DESM: portal for microbial knowledge exploration systems. Nucleic Acids Res 2015; 44:D624-33. [PMID: 26546514 PMCID: PMC4702830 DOI: 10.1093/nar/gkv1147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4 538 278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andre Antunes
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Marta Filipa Simoes
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture (CDA), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Olaa A Motwalli
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ameerah Bokhari
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture (CDA), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tariq Malas
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Soha Al Amoudi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ghofran Othum
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Intikhab Allam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - John A C Archer
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
148
|
Assato PA, da Silva JDF, de Oliveira HC, Marcos CM, Rossi D, Valentini SR, Mendes-Giannini MJS, Zanelli CF, Fusco-Almeida AM. Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae. BMC Microbiol 2015; 15:256. [PMID: 26537993 PMCID: PMC4634143 DOI: 10.1186/s12866-015-0586-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/23/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND 14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. RESULTS The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. CONCLUSIONS Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.
Collapse
Affiliation(s)
- Patricia Akemi Assato
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Caroline Maria Marcos
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Danuza Rossi
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Sandro Roberto Valentini
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Cleslei Fernando Zanelli
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| |
Collapse
|
149
|
Gutka HJ, Wang Y, Franzblau SG, Movahedzadeh F. glpx Gene in Mycobacterium tuberculosis Is Required for In Vitro Gluconeogenic Growth and In Vivo Survival. PLoS One 2015; 10:e0138436. [PMID: 26397812 PMCID: PMC4580611 DOI: 10.1371/journal.pone.0138436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Several enzymes involved in central carbon metabolism and gluconeogenesis play a critical role in survival and pathogenesis of Mycobacterium tuberculosis (Mtb). The only known functional fructose 1,6-bisphosphatase (FBPase) in Mtb is encoded by the glpX gene and belongs to the Class II sub-family of FBPase. We describe herein the generation of a ΔglpX strain using homologous recombination. Although the growth profile of ΔglpX is comparable to that of wild type Mtb when grown on the standard enrichment media, its growth is dysgonic with individual gluconeogenic substrates such as oleic acid, glycerol and acetate. In mice lung CFU titers of ΔglpX were 2-3 log10 lower than the wild-type Mtb strain. The results indicate that glpX gene encodes a functional FBPase and is essential for both in vitro and in vivo growth and survival of Mtb. Loss of glpX results in significant reduction of FBPase activity but not complete abolition. These findings verify that the glpX encoded FBPase II in Mtb can be a potential target for drug discovery.
Collapse
Affiliation(s)
- Hiten J. Gutka
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
150
|
Costa FG, Neto BRDS, Gonçalves RL, da Silva RA, de Oliveira CMA, Kato L, Freitas CDS, Giannini MJSM, da Silva JDF, Soares CMDA, Pereira M. Alkaloids as inhibitors of malate synthase from Paracoccidioides spp.: receptor-ligand interaction-based virtual screening and molecular docking studies, antifungal activity, and the adhesion process. Antimicrob Agents Chemother 2015; 59:5581-94. [PMID: 26124176 PMCID: PMC4538557 DOI: 10.1128/aac.04711-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides is the agent of paracoccidioidomycosis. Malate synthase plays a crucial role in the pathogenicity and virulence of various fungi, such as those that are human pathogens. Thus, an inhibitor of this enzyme may be used as a powerful antifungal without side effects in patients once these enzymes are absent in humans. Here, we searched for compounds with inhibitory capacity against the malate synthase of Paracoccidioides species (PbMLS). The three-dimensional (3D) structure of PbMLS was determined using the I-TASSER server. Compounds were selected from the ZINC database. Based on the mechanism underlying the interaction of the compounds with PbMLS, it was possible to identify β-carboline moiety as a standard key structure. The compounds with β-carboline moiety that are available in our laboratories were investigated. A total of nine alkaloid compounds were selected. The primary mechanisms of interaction of the alkaloid compounds in the binding pocket of PbMLS were identified and compared with the mechanism of interaction of acetyl coenzyme A (acetyl-CoA). We discovered that the amphipathic nature of the compounds, concomitant with the presence of β-carboline moiety, was crucial for their stability in the binding pocket of PbMLS. In addition, the importance of a critical balance of the polar and nonpolar contacts of the compounds in this region was observed. Four β-carboline alkaloid compounds showed the ability to inhibit recombinant PbMLS (PbMLSr) activity, Paracoccidioides species growth, and adhesion of the fungus and PbMLSr to the extracellular matrix components. The cytotoxicity of the alkaloids was also evaluated.
Collapse
Affiliation(s)
- Fausto Guimaraes Costa
- Núcleo Colaborativo de BioSistemas, Regional Jataí, Universidade Federal de Goiás, Jataí, Goiás, Brazil
| | | | - Ricardo Lemes Gonçalves
- Núcleo Colaborativo de BioSistemas, Regional Jataí, Universidade Federal de Goiás, Jataí, Goiás, Brazil
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de BioSistemas, Regional Jataí, Universidade Federal de Goiás, Jataí, Goiás, Brazil
| | | | - Lucília Kato
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carla Dos Santos Freitas
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Universidade Estadual Júlio de Mesquita Melo, Araraquara, São Paulo, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|