101
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
102
|
Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:145. [PMID: 35428295 PMCID: PMC9013041 DOI: 10.1186/s13046-022-02348-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/26/2022] [Indexed: 01/02/2023]
Abstract
Background Metastasis is the leading cause of mortality in human cancers, including esophageal squamous cell carcinoma (ESCC). As a pro-inflammatory cytokine, IL-32 was reported to be a poor prognostic factor in many cancers. However, the role of IL-32 in ESCC metastasis remains unknown. Methods ESCC cells with ectopic expression or knockdown of IL-32 were established and their effects on cell motility were detected. Ultracentrifugation, Transmission electron microscopy and Western blot were used to verify the existence of extracellular vesicle IL-32 (EV-IL-32). Coculture assay, immunofluorescence, flow cytometry, and in vivo lung metastasis model were performed to identify how EV-IL-32 regulated the crosstalk between ESCC cells and macrophages. Results Here, we found that IL-32 was overexpressed and positively correlated to lymph node metastasis of ESCC. IL-32 was significantly higher in the tumor nest compared with the non-cancerous tissue. We found that IL-32β was the main isoform and loaded in EV derived from ESCC cells. The shuttling of EV-IL-32 derived from ESCC cells into macrophages could promote the polarization of M2 macrophages via FAK-STAT3 pathway. IL-32 overexpression facilitated lung metastasis and was positively correlated with the proportion of M2 macrophages in tumor microenvironment. Conclusions Taken together, our results indicated that EV-IL-32 derived from ESCC cell line could be internalized by macrophages and lead to M2 macrophage polarization via FAK-STAT3 pathway, thus promoting the metastasis of ESCC. These findings indicated that IL-32 could serve as a potential therapeutic target in patients with ESCC. Supplementary information The online version contains supplementary material available at 10.1186/s13046-022-02348-8.
Collapse
|
103
|
Feng J, Yi J, Zouxu X, Li J, Xiong Z, Huang X, Zhong W, Huang W, Ye F, Wang X. Peripheral blood lymphocytes subtypes as new predictors for neoadjuvant therapy efficacy in breast cancer. Cancer Med 2022; 11:2923-2933. [PMID: 35411609 PMCID: PMC9359876 DOI: 10.1002/cam4.4666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background Host immunity plays an important role in tumor development and treatment. Tumor‐infiltrating lymphocytes (TILs) have been proven to predict the efficacy of neoadjuvant therapy (NAT) in breast cancer (BC) patients, but their application is limited due to various reasons. This study aims to explore the relationship between peripheral blood lymphocytes (PBLs) subsets distribution and the efficacy of NAT. Methods Between December 2017 and March 2021, a total of 116 BC patients appropriate for NAT in Sun Yat‐Sen University cancer center were enrolled, pre‐NAC baseline blood samples were taken for further flow cytometry analysis to quantitatively evaluate the PBLs subsets distribution, and corresponding clinical information including pathological complete response (pCR) rate of NAT response were recorded. Results Baseline CD3+ T cells(OR 1.11, 1.03–1.21, p = 0.011), CD8+ T cells (OR 1.09, 1.02–1.18, p = 0.015), and NK cells (OR 0.91, 0.83–0.98, p = 0.028) in PBLs subgroup distribution were independent predictors of pCR in BC patients receiving NAT, in which CD8+ T cells had the highest predictive ability (AUC = 0.76). Compared with some previous prediction indicators, its prediction ability has been improved to some extent. Conclusion Peripheral baseline CD3+ T cells, CD8+ T cells, and NK cells were independent predictors of pCR in BC patients receiving NAT, in which CD8+ T cells had the highest predictive ability. Therefore, it can provide newly non‐invasive, relatively accurate and easily accessible predictors for corresponding patients, and help clinicians better understand tumor immunity.
Collapse
Affiliation(s)
- Jikun Feng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jiarong Yi
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiazi Zouxu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jianxia Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhenchong Xiong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinjian Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Wenjing Zhong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Weiling Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Ye
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xi Wang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
104
|
Wang S, Zhen L, Li X, Fu X, Li P, Zhang D. Search for Key Genes and Functional Pathways of Ulcerative Colitis to Colon Cancer Based on Bioinformatics. Front Oncol 2022; 12:857148. [PMID: 35372018 PMCID: PMC8965385 DOI: 10.3389/fonc.2022.857148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Ulcerative colitis (UC) is a persistent and diffuse inflammatory disease of the intestine. It is widely prevalent in developed countries. Approximately 30% of patients with UC suffer from widespread and aggressive colitis and are at increased risk of colon cancer. In this study, the genetic features and potential molecular mechanisms shared between UC and colorectal cancer were investigated. The datasets from GEO and TCGA were analyzed to obtain differentially expressed genes, of which there were 116 overlapping genes. A module containing 15 genes was obtained using String and Cytoscape to analyze the module and identify hub genes. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules associated with UC and colon cancer, with 52 overlapping genes. Functional clustering of the two gene cohorts was performed using the Metascape online tool, with three significant functions or pathways associated with both gene cohorts. A total of 19 key genes were included, and CCT2 was identified after expression and survival analyses. CCT2 is highly expressed in colon cancer and lowly expressed in UC, and its low expression is associated with a poor prognostic ratio. This study reveals, for the first time, that CCT2 may be a promoter of UC transformation into colon cancer and identifies new gene candidates that could be used as biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Shengbao Wang
- Emergency Center, Gansu Emergency Medicine Clinical Research Center,Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Zhen
- Infectious Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoli Li
- Digestive Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Emergency Center, Gansu Emergency Medicine Clinical Research Center,Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
105
|
Zhang Y, Huo L, Wei Z, Tang Q, Sui H. Hotspots and Frontiers in Inflammatory Tumor Microenvironment Research: A Scientometric and Visualization Analysis. Front Pharmacol 2022; 13:862585. [PMID: 35370647 PMCID: PMC8968939 DOI: 10.3389/fphar.2022.862585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Methods: Articles on inflammatory tumor microenvironment were retrieved from the Web of Science Core Collection, and the characteristics of the articles were analyzed by CiteSpace software. Background: The inflammatory tumor microenvironment is an essential feature of the tumor microenvironment. The way in which it promotes or inhibits tumor progression plays an important role in the outcome of a tumor treatment. This research aims to explore a scientific collaboration network, describe evolution of hotspots, and predict future trends through bibliometric analysis. Results: A total of 3,534 papers published by 390 institutions in 81 countries/regions were screened, and the annual quantity has been increasing rapidly in the past decades. United States was the leading country and has the most productive institutions in this field. The research topics were mainly focused on inflammation and immunity mediated by crucial factors as well as the mechanisms of angiogenesis. Additionally, the development and application of nanoparticles is currently a novel research frontier with bright prospect. Conclusion: The present scientometric study provides an overview of inflammatory tumor microenvironment research over the previous decades using quantitative and qualitative methods, and the findings of this study can provide references for researchers focusing on tumor treatment.
Collapse
Affiliation(s)
- Yuli Zhang
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Traditional Chinese Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Huo
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenzhen Wei
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Tang
- Department of Clinical Laboratory, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Laboratory and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
106
|
Unveiling Potential Mechanisms of Spatholobi Caulis against Lung Metastasis of Malignant Tumor by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1620539. [PMID: 35356244 PMCID: PMC8959948 DOI: 10.1155/2022/1620539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
Background Lung metastasis of malignant tumor signifies worse prognosis and immensely deteriorates patients' life quality. Spatholobi Caulis (SC) has been reported to reduce lung metastasis, but the mechanism remains elusive. Methods The active components and corresponding targets of SC were obtained from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database and the SwissTargetPrediction database. The disease targets were acquired from DisGeNET and GeneCards databases. Venn map was composed to figure out intersection targets by using R. The PPI network was constructed through STRING and Cytoscape, and MCODE plug-in was used to sift hub targets. Gene Ontology (GO)-Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out by utilizing clusterProfiler package (R3.6.1) with adjusted P value <0.05. Network of SC-active components-intersection targets-KEGG pathway was accomplished with Cytoscape. Molecular docking between hub targets and active components was performed, analyzed, and visualized by AutoDockTools, AutoDock Vina, PLIP Web tool, and PYMOL. Results 24 active components and 123 corresponding targets were screened, and the number of disease targets and intersection targets was 1074 and 47, respectively. RELA, JUN, MAPK1, MAPK14, STAT3, IL-4, ESR1, and TP53 were the 8 hub targets. GO analysis and KEGG analysis elucidated that SC could ameliorate lung metastasis mainly by intervening oxidative stress, AGE-RAGE signaling pathway, and microRNAs in cancer. All 8 hub targets were proven to combine successfully with active components of SC. Conclusion Inflammation is the core factor that integrates all these targets, biological process, and signaling pathways, which indicates that SC prevents or reduces lung metastasis mainly by dispelling inflammation.
Collapse
|
107
|
Liu A, Shen L, Li N, Shen L, Li Z. Pan-cancer analyses of pyroptosis with functional implications for prognosis and immunotherapy in cancer. J Transl Med 2022; 20:109. [PMID: 35246158 PMCID: PMC8896277 DOI: 10.1186/s12967-022-03313-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Programmed cell death is an active and orderly form of cell death regulated by intracellular genes that plays an important role in the normal occurrence and development of the immune system, and pyroptosis has been found to be involved in tumorigenesis and development. However, compressive analysis and biological regulation of pyroptosis genes are lacking in cancers. METHODS Using data from The Cancer Genome Atlas, we established a score level model to quantify the pyroptosis level in cancer. Multiomics bioinformatic analyses were performed to assess pyroptosis-related molecular features and the effect of pyroptosis on immunotherapy in cancer. RESULTS In the present study, we performed a comprehensive analysis of pyroptosis and its regulator genes in cancers. Most pyroptosis genes were aberrantly expressed in different types of cancer, attributed to the CAN frequency and differences in DNA methylation levels. We established a pyroptosis level model and found that pyroptosis had dual roles across cancers, while the pyroptosis levels were different among multiple cancers and were significantly associated with clinical prognosis. The dual role of pyroptosis was also shown to affect immunotherapeutic efficacy in several cancers. Multiple pyroptosis genes showed close associations with drug sensitivity across cancers and may be considered therapeutic targets in cancer. CONCLUSIONS Our comprehensive analyses provide new insight into the functions of pyroptosis in the initiation, development, progression and treatment of cancers, suggesting corresponding prognostic and therapeutic utility.
Collapse
Affiliation(s)
- Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
108
|
Zhu M, Chen L, Kong X, Wang X, Fang Y, Li X, Wang J. The Systemic Inflammation Response Index as an Independent Predictor of Survival in Breast Cancer Patients: A Retrospective Study. Front Mol Biosci 2022; 9:856064. [PMID: 35295846 PMCID: PMC8918696 DOI: 10.3389/fmolb.2022.856064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is a close relationship between inflammatory cells and tumors, but the pathways that connect the two remain unclear. This research explores the clinical and prognostic value of the systemic inflammation response index (SIRI) in breast cancer patients. The study included 477 breast cancer patients who underwent neoadjuvant chemotherapy and 308 breast cancer patients who did not in our center between January 1998 and December 2016. Optimal SIRI threshold values were determined using the receiver operating characteristic curve (ROC). Patients were then reclassified as SIRI ≥0.80 group (High SIRI group) and SIRI <0.80 group (Low SIRI group). The outcomes were analyzed by statistical methods. The univariate and multivariate analyses demonstrated that SIRI independently predicted survival in breast cancer. The disease-free survival (DFS) and overall survival (OS) in patients with low SIRI scores were significantly longer in contrast to those with high SIRI scores (41.50 vs. 37.63 months, and 64.57 vs. 58.42 months). Further subgroup analyses revealed that low SIRI score patients who also had either early breast cancer, advanced breast cancer, or different molecular subtypes also possessed longer mean survival time of DFS and OS in contrast to those with high SIRI levels (χ2 = 2.379, p = 0.123, and χ2 = 5.153, p = 0.023; χ2 = 11.080, p = 0.0009 and χ2 = 15.900, p < 0.0001; χ2 = 16.020, p < 0.0001 and χ2 = 22.050, p < 0.0001, respectively). SIRI serves as an easily accessible, replicable, and minimally invasive prognostic tool in breast cancer patients. Lower SIRI scores were predictive of a longer DFS and OS after surgery in breast cancer patients. SIRI may serve as a marker to guide clinical management and prognostication of breast cancer.
Collapse
Affiliation(s)
- Mengliu Zhu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yi Fang, ; Xingrui Li, ; Jing Wang,
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yi Fang, ; Xingrui Li, ; Jing Wang,
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yi Fang, ; Xingrui Li, ; Jing Wang,
| |
Collapse
|
109
|
Wang C, Chen S, Li S, Mi H. A Prognostic Model for Predicting Tumor Mutation Burden and Tumor-Infiltrating Immune Cells in Bladder Urothelial Carcinoma. Front Genet 2022; 13:708003. [PMID: 35251120 PMCID: PMC8896886 DOI: 10.3389/fgene.2022.708003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tremendous progress has been made in development of immunotherapeutic approaches for treatment of bladder urothelial carcinoma (BLCA). However, efficacy and safety of these approaches remain unsatisfactory, necessitating further investigations for identification of indicators for predicting prognosis and efficacy. In this study, we downloaded transcriptomic and clinical data of BLCA patients from The Cancer Genome Atlas (TCGA) database, and identified differentially expressed genes (DEGs) between tumor and normal tissues. We incorporated these DEGs in an intersection analysis with immune-related genes (IRGs) obtained from the Immunology Database and Analysis Portal (ImmPort) database, and identified immune-related DEGs. These genes were subjected to Cox and least absolute shrinkage and selection operator (LASSO) regression analyses, then a prognostic model containing AHNAK, OAS1, NGF, PPY and SCG2 genes was constructed, for prediction of prognosis of BLCA and efficacy of immunotherapy. Finally, we explored the relationship between the prognostic model and tumor mutational burden (TMB), abundance of tumor-infiltrating immune cells (TICs) and immunotherapeutic targets, and found that patients with higher risk score (RS) had poorer prognosis and significantly lower levels of TMB. Patients in the low-RS group exhibited higher numbers of lymphoid cells, whereas those in the high-RS group exhibited higher proportions of myeloid cells. However, patients with high-RS tended to respond better to immunotherapy relative to those in the low-RS group. The constructed prognostic model provides a new tool for predicting prognosis of BLCA patients and efficacy of immunotherapy, offering a feasible option for management of the disease.
Collapse
Affiliation(s)
- Chengbang Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Songheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Hua Mi,
| |
Collapse
|
110
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
111
|
Moser B. Chemokine Receptor-Targeted Therapies: Special Case for CCR8. Cancers (Basel) 2022; 14:511. [PMID: 35158783 PMCID: PMC8833710 DOI: 10.3390/cancers14030511] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade inhibitors (CBIs) targeting cytotoxic T lymphocyte associated protein-4 (CTLA-4) and program death receptor-1 (PD-1) or its ligand-1 (PD-L1) have transformed the outlook of many patients with cancer. This remarkable progress has highlighted, from the translational point of view, the importance of immune cells in the control of tumor progression. There is still room for improvement, since current CBI therapies benefit a minority of patients. Moreover, interference with immune checkpoint receptors frequently causes immune related adverse events (irAEs) with life-threatening consequences in some of the patients. Immunosuppressive cells in the tumor microenvironment (TME), including intratumoral regulatory T (Treg) cells, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), contribute to tumor progression and correlate with a negative disease outlook. Recent reports revealed the selective expression of the chemokine receptor CCR8 on tumor Treg cells, making CCR8 a promising target in translational research. In this review, I summarize our current knowledge about the cellular distribution and function of CCR8 in physiological and pathophysiological processes. The discussion includes an assessment of how the removal of CCR8-expressing cells might affect both anti-tumor immunity as well as immune homeostasis at remote sites. Based on these considerations, CCR8 appears to be a promising novel target to be considered in future translational research.
Collapse
Affiliation(s)
- Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
112
|
Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany NY) 2022; 14:1048-1064. [PMID: 35037899 PMCID: PMC8833108 DOI: 10.18632/aging.203833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/29/2021] [Indexed: 04/21/2023]
Abstract
Drug resistance has become an obstacle to the further development of immunotherapy in clinical applications and experimental studies. In the current review, the acquired resistance to immunotherapy was examined. The mechanisms of acquired resistance were based on three aspects as follows: The change of the tumor functions, the upregulated expression of inhibitory immune checkpoint proteins, and the effects of the tumor microenvironment. The combined use of immunotherapy and other therapies is performed to delay acquired resistance. A comprehensive understanding of acquired drug resistance may provide ideas for solving this dilemma.
Collapse
Affiliation(s)
- Xunrui Chen
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Wenyan Yang
- Medical Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Min Zhou
- Department of Respirtory Medicine, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| |
Collapse
|
113
|
Zhou Q, Su S, You W, Wang T, Ren T, Zhu L. Systemic Inflammation Response Index as a Prognostic Marker in Cancer Patients: A Systematic Review and Meta-Analysis of 38 Cohorts. Dose Response 2022; 19:15593258211064744. [PMID: 34987341 PMCID: PMC8689621 DOI: 10.1177/15593258211064744] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Background The systemic inflammation response index (SIRI), a novel and cost-effective serum biomarker, is associated with prognosis in patients with cancer. However, the prognostic value of the SIRI in cancer remains unclear. This study aimed to evaluate the potential role of the SIRI as a prognostic indicator in cancer. Methods Reports in which the prognostic value of the SIRI in cancer was evaluated were retrieved from electronic databases. The pooled hazard ratio (HR) and 95% confidence interval (CI) were calculated to evaluate the prognostic significance of the SIRI. The odds ratio (OR) was also calculated to explore the association between the SIRI and clinicopathological features. Results This study included 30 retrospective studies with 38 cohorts and 10 754 cases. The meta-analysis indicated that a high SIRI was associated with short overall survival (OS) (HR = 2.04, 95% CI = 1.82-2.29, P < .001) and disease-free survival (DFS)/recurrence-free survival (RFS)/progression-free survival (PFS) (HR = 2.08, 95% CI = 1.84-2.34, P < .001). Subgroup analysis showed that the prognostic value of the SIRI was significant in all kinds of cancer included. Moreover, the SIRI was significantly correlated with sex, tumor size, T stage, N stage, TNM stage, and lymphovascular invasion. Conclusion The pretreatment SIRI could be a promising universal prognostic indicator in cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Si Su
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wen You
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
- Tao Wang, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| | - Tong Ren
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| |
Collapse
|
114
|
Huang D, Shen J, Zhai L, Chen H, Fei J, Zhu X, Zhou J. Insights Into the Prognostic Value and Immunological Role of NAAA in Pan-Cancer. Front Immunol 2022; 12:812713. [PMID: 35069601 PMCID: PMC8772335 DOI: 10.3389/fimmu.2021.812713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
N-Acylethanolamine Acid Amidase (NAAA) is an N-terminal cysteine hydrolase and plays a vital physiological role in inflammatory response. However, the roles of NAAA in tumor immunity are still unclear. By using a series of bioinformatics approaches, we study combined data from different databases, including the Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Human Protein Atlas, TIMER, and ImmuCellAI to investigate the role of NAAA expression in prognosis and tumor immunity response. We would like to reveal the potential correlations between NAAA expression and gene alterations, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, tumor microenvironment (TME), immune infiltration levels, and various immune-related genes across different cancers. The results show that NAAA displayed abnormal expression within most malignant tumors, and overexpression of NAAA was associated with the poor prognosis of tumor patients. Through gene set enrichment analysis (GSEA), we found that NAAA was significantly associated with cell cycle and immune regulation-related signaling pathways, such as in innate immune system, adaptive immune system, neutrophil degranulation, and Toll-like receptor signaling pathways (TLRs). Further, the expression of NAAA was also confirmed to be correlated with tumor microenvironment and diverse infiltration of immune cells, especially tumor-associated macrophage (TAM). In addition to this, we found that NAAA is co-expressed with genes encoding major histocompatibility complex (MHC), immune activation, immune suppression, chemokine, and chemokine receptors. Meanwhile, we demonstrate that NAAA expression was correlated with TMB in 4 cancers and with MSI in 10 cancers. Our study reveals that NAAA plays an important role in tumorigenesis and cancer immunity, which may be used to function as a prognostic biomarker and potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Da Huang
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayu Shen
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huanhuan Chen
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
115
|
Zhang F, Luo BH, Wu QH, Li QL, Yang KD. LncRNA HCG18 upregulates TRAF4/TRAF5 to facilitate proliferation, migration and EMT of epithelial ovarian cancer by targeting miR-29a/b. Mol Med 2022; 28:2. [PMID: 34983361 PMCID: PMC8725507 DOI: 10.1186/s10020-021-00415-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although long noncoding RNA HLA complex group 18 (lncRNA HCG18) has been suggested to regulate cell growth in several tumours, the function of HCG18 in epithelial ovarian cancer (EOC) and its mechanism are still unclear. Methods shRNAs were applied to reduce HCG18 and related genes. For overexpression of miRNA, a miRNA mimic was transfected into cells. Quantitative real-time PCR (qRT–PCR) was used to detect levels of HCG18, miR-29a/b, and mRNAs. MTT, colony formation, wound healing and Transwell assays were used to evaluate cell proliferation, migration and invasion, respectively. A luciferase reporter assay was utilized to evaluate NF-κB activity and the binding of miRNAs with HCG18 or TRAF4/5. BALB nude mice injected with cells stably expressing shHCG18 or shNC were used for in vivo modelling. Subcutaneous tumour growth was monitored in nude mice, and immunohistochemistry (IHC) was used to determine expression of the proliferation marker Ki67. Results Abnormal expression of HCG18 and miR-29a/b was observed in EOC tissues. Knockdown of HCG18 using shRNA inhibited proliferation, migration, EMT and the proinflammatory pathway in EOC cells. miR-29a/b mimics and TRAF4/5 knockdown exhibited effects similar to HCG18 knockdown. Further experiments suggested that HCG18 directly targets miR-29a/b and upregulates TRAF4/5 expression, which are inhibited by targeting miR-29a/b. Moreover, overexpression of TRAF4/5 antagonized the inhibitory effect of HCG18 knockdown, suggesting that they are involved in HCG18-mediated oncogenic effects. Silencing HCG18 reduced tumour size and levels of Ki67 and TRAF4/5 while increasing miR-29a/b levels in vivo. Conclusions Taken together, our data revealed an oncogenic signalling pathway mediated by HCG18 in ovarian cell lines, which functions as a ceRNA of miR-29a/b and thus derepresses expression levels of TRAF4/5, facilitating NF-κB pathway-mediated promotion of EOC cell proliferation and migration. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00415-y.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Bai-Hua Luo
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Qi-Hui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Qing-Ling Li
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke-Da Yang
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
116
|
Sakurada T, Nokihara H, Koga T, Zamami Y, Goda M, Yagi K, Hamano H, Aizawa F, Ogino H, Sato S, Kirino Y, Goto H, Nishioka Y, Ishizawa K. OUP accepted manuscript. Oncologist 2022; 27:e554-e560. [PMID: 35325241 PMCID: PMC9255977 DOI: 10.1093/oncolo/oyab077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Rash eruptions are a common side-effect of pemetrexed, for which the administration of 8 mg/day of dexamethasone for 3 days from the day preceding pemetrexed administration is recommended. This study aimed to prospectively assess the effectiveness of prophylactic administration of low-dose dexamethasone for pemetrexed-induced rashes. Methods This single-arm, phase II study recruited patients with non-squamous non–small cell lung cancer and malignant pleural mesothelioma scheduled to receive chemotherapy including pemetrexed. Patients received 2 mg of dexamethasone daily from days 2 to 6 after chemotherapy with pemetrexed. The primary endpoint was the 3-week incidence of rash eruptions. Results Twenty-five patients were enrolled between September 2017 and May 2019. The incidence of rash after 3 weeks was 16.7%. Rashes erupted mainly on the upper half of the body, such as the chest and neck, and were of grades 1 and 2 in 2 patients each. No rashes of grade 3 or higher were observed, and there were no adverse events associated with additional corticosteroids. Conclusion Prophylactic administration of low-dose dexamethasone for 5 days from the day after pemetrexed administration resulted in a milder incidence and severity of rash. These findings may provide a standard preventative strategy for pemetrexed-induced rashes. (Trial identifier: UMIN000025666).
Collapse
Affiliation(s)
- Takumi Sakurada
- Corresponding author: Takumi Sakurada, PhD, Department of Pharmacy, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan 770-8503. Tel: +81 88 631 3111;
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tadashi Koga
- Clinical Research Professionals, Clinical Study Support, Inc., Nagoya, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenta Yagi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Fuka Aizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasushi Kirino
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
117
|
Bouchard A, Sikner H, Baverel V, Garnier AR, Monterrat M, Moreau M, Limagne E, Garrido C, Kohli E, Collin B, Bellaye PS. The GRP94 Inhibitor PU-WS13 Decreases M2-like Macrophages in Murine TNBC Tumors: A Pharmaco-Imaging Study with 99mTc-Tilmanocept SPECT. Cells 2021; 10:cells10123393. [PMID: 34943901 PMCID: PMC8699502 DOI: 10.3390/cells10123393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancers and is not eligible for hormone and anti-HER2 therapies. Identifying therapeutic targets and associated biomarkers in TNBC is a clinical challenge to improve patients' outcome and management. High infiltration of CD206+ M2-like macrophages in the tumor microenvironment (TME) indicates poor prognosis and survival in TNBC patients. As we previously showed that membrane expression of GRP94, an endoplasmic reticulum chaperone, was associated with the anti-inflammatory profile of human PBMC-derived M2 macrophages, we hypothesized that intra-tumoral CD206+ M2 macrophages expressing GRP94 may represent innovative targets in TNBC for theranostic purposes. We demonstrate in a preclinical model of 4T1 breast tumor-bearing BALB/c mice that (i) CD206-expressing M2-like macrophages in the TME of TNBC can be specifically detected and quantified using in vivo SPECT imaging with 99mTc-Tilmanocept, and (ii) the inhibition of GRP94 with the chemical inhibitor PU-WS13 induces a decrease in CD206-expressing M2-like macrophages in TME. This result correlated with reduced tumor growth and collagen content, as well as an increase in CD8+ cells in the TME. 99mTc-Tilmanocept SPECT imaging might represent an innovative non-invasive strategy to quantify CD206+ tumor-associated macrophages as a biomarker of anti-GRP94 therapy efficacy and TNBC tumor aggressiveness.
Collapse
Affiliation(s)
- Alexanne Bouchard
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’imagerie et de Radiothérapie Précliniques, 21000 Dijon, France; (A.B.); (H.S.); (A.-R.G.); (M.M.); (B.C.)
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue National Contre le Cancer and Laboratoire d’Excellence LipSTIC, Université Bourgogne Franche-Comté, 21000 Dijon, France; (V.B.); (C.G.)
| | - Hugo Sikner
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’imagerie et de Radiothérapie Précliniques, 21000 Dijon, France; (A.B.); (H.S.); (A.-R.G.); (M.M.); (B.C.)
| | - Valentin Baverel
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue National Contre le Cancer and Laboratoire d’Excellence LipSTIC, Université Bourgogne Franche-Comté, 21000 Dijon, France; (V.B.); (C.G.)
| | - Anaïs-Rachel Garnier
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’imagerie et de Radiothérapie Précliniques, 21000 Dijon, France; (A.B.); (H.S.); (A.-R.G.); (M.M.); (B.C.)
| | - Marie Monterrat
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’imagerie et de Radiothérapie Précliniques, 21000 Dijon, France; (A.B.); (H.S.); (A.-R.G.); (M.M.); (B.C.)
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Emeric Limagne
- Centre George-François Leclerc, Plateforme de Transfert en Biologie Cancérologique, 21000 Dijon, France;
| | - Carmen Garrido
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue National Contre le Cancer and Laboratoire d’Excellence LipSTIC, Université Bourgogne Franche-Comté, 21000 Dijon, France; (V.B.); (C.G.)
- Centre George-François Leclerc, 21000 Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue National Contre le Cancer and Laboratoire d’Excellence LipSTIC, Université Bourgogne Franche-Comté, 21000 Dijon, France; (V.B.); (C.G.)
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- University Hospital (CHU), 21000 Dijon, France
- Correspondence: (E.K.); (P.-S.B.); Tel.: +33-345-348-119 (P.-S.B.)
| | - Bertrand Collin
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’imagerie et de Radiothérapie Précliniques, 21000 Dijon, France; (A.B.); (H.S.); (A.-R.G.); (M.M.); (B.C.)
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’imagerie et de Radiothérapie Précliniques, 21000 Dijon, France; (A.B.); (H.S.); (A.-R.G.); (M.M.); (B.C.)
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue National Contre le Cancer and Laboratoire d’Excellence LipSTIC, Université Bourgogne Franche-Comté, 21000 Dijon, France; (V.B.); (C.G.)
- Correspondence: (E.K.); (P.-S.B.); Tel.: +33-345-348-119 (P.-S.B.)
| |
Collapse
|
118
|
The prognostic significance of controlling nutritional status (CONUT) score for surgically treated renal cell cancer and upper urinary tract urothelial cancer: a systematic review and meta-analysis. Eur J Clin Nutr 2021; 76:801-810. [PMID: 34815539 DOI: 10.1038/s41430-021-01014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023]
Abstract
In order to evaluate the predictive effect of the controlled nutritional status (CONUT) score on the prognosis of patients with renal cell carcinoma (RCC) and upper urinary tract urothelial carcinoma (UTUC), a meta-analysis was performed. This systematic review has been registered on PROSPERO, the registration ID is CRD42021251879. A systematic search of the published literature using PubMed, Web of Science, Cochrane Library, EMBASE, and MEDLINE was performed. The fields of "renal cell cancer," "upper tract urothelial cancer," and "controlling nutritional status" and other fields were used as search terms. STATA 16 software was used to carry out data merging and statistical analysis of binary variables, Q test and χ2 tests were used to verify the heterogeneity between the included works of studies. Subgroup analysis and sensitivity analysis were used to explain the sources of heterogeneity between studies. Begg's test was used to assess publication bias between studies. From the first 542 studies retrieved, through strict inclusion and exclusion criteria, 7 studies finally met the requirements and were included in the meta-analysis. Pooled results indicated that high CONUT indicates worse over survival (OS) [HR = 1.70, 95% CI (1.43-2.03), P = 0.02], cancer-specific survival (CSS) [HR = 1.84, 95% CI (1.52-2.23), P = 0.01], recurrence-free survival (RFS) [HR = 1.60, 95% CI (1.26-2.03), P = 0.116], and disease-free survival (DFS) [HR = 1.47, 95% CI (1.20-1.81), P = 0.03]. Based on cancer type, cutoff value, region, and sample size, a subgroup analysis was performed. The results showed that OS and CSS were not affected by the above factors, and the high CONUT score before surgery predicted worse OS and CSS. In conclusion, this meta-analysis revealed that the preoperative CONUT score is a potential independent predictor of the postoperative prognosis of RCC/UTUC patients. A high CONUT predicts worse OS/CSS/DFS and RFS in patients.
Collapse
|
119
|
Clifton KK, Ma CX, Fontana L, Peterson LL. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J Clin 2021; 71:527-546. [PMID: 34383300 DOI: 10.3322/caac.21694] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic caloric restriction (CR) has powerful anticarcinogenic actions in both preclinical and clinical studies but may be difficult to sustain. As an alternative to CR, there has been growing interest in intermittent fasting (IF) in both the scientific and lay community as a result of promising study results, mainly in experimental animal models. According to a survey by the International Food Information Council Foundation, IF has become the most popular diet in the last year, and patients with cancer are seeking advice from oncologists about its beneficial effects for cancer prevention and treatment. However, as discussed in this review, results from IF studies in rodents are controversial and suggest potential detrimental effects in certain oncologic conditions. The effects of IF on human cancer incidence and prognosis remain unknown because of a lack of high-quality randomized clinical trials. Preliminary studies suggest that prolonged fasting in some patients who have cancer is safe and potentially capable of decreasing chemotherapy-related toxicity and tumor growth. However, because additional trials are needed to elucidate the risks and benefits of fasting for patients with cancer, the authors would not currently recommend patients undergoing active cancer treatment partake in IF outside the context of a clinical trial. IF may be considered in adults seeking cancer-prevention benefits through means of weight management, but whether IF itself affects cancer-related metabolic and molecular pathways remains unanswered.
Collapse
Affiliation(s)
- Katherine K Clifton
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Cynthia X Ma
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Lindsay L Peterson
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
120
|
Ieni A, Caruso RA, Pizzimenti C, Giuffrè G, Irato E, Rigoli L, Navarra G, Fadda G, Tuccari G. M1 Polarized Tumor-Associated Macrophages (TAMs) as Promising Prognostic Signature in Stage I–II Gastric Adenocarcinomas. GASTROINTESTINAL DISORDERS 2021; 3:207-217. [DOI: 10.3390/gidisord3040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tumor-associated macrophages (TAMs) may be noticed in gastric carcinomas (GC), but their clinicopathological significance has not been yet explored. From a histological review of 400 cases of tubular/papillary adenocarcinomas, 24 cases of stage I–II gastric adenocarcinomas with intraglandular and stromal TAMs were identified. Their clinicopathological features were compared with 72 pT-matched as well as stage-matched control cases of adenocarcinomas without TAMs. TAMs present in GC cases were present either in glands or in neoplastic stroma, showing an immunoreactivity for CD68 and CD80; sometimes, they were organized in mature granulomas with occasional giant cells. Therefore, the stained TAMs were reminiscent of a specific polarized macrophage M1 phenotype; however, in any case of our cohort, no M2 phenotype macrophages were documented by CD 163 and CD 204 immunostainings. Statistically, no significant differences in age, gender, tumor location, size, and lymphovascular and perineural invasion between the case group with TAMs and pT- as well as stage-matched controls were reported; furthermore, the case group showed lower frequency of lymph node metastasis (p = 0.02). In addition, a significantly different clinical course and overall survival rate were also observed in gastric adenocarcinomas with M1 TAMs (p = 0.02) in comparison to controls. These results suggest that tumor-associated M1 macrophages are related to a quite indolent growth and a better prognosis of patients with this peculiar variant of gastric adenocarcinomas.
Collapse
Affiliation(s)
- Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Rosario Alberto Caruso
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Eleonora Irato
- Integrated Cancer Registry of Oriental Sicily, 95123 Catania, Italy
| | - Luciana Rigoli
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
121
|
Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res 2021; 11:4866-4883. [PMID: 34765297 PMCID: PMC8569368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of various autoimmune and inflammatory diseases, including inflammatory bowel disease (IBD). However, the effect of GCs on the progression of colitis-associated colorectal cancer (CAC) has not been well explored. In this study, we first established a colorectal cancer model induced by azoxymethane and dextran sulfate sodium (AOM/DSS) and a colitis model induced by DSS in mice. Dexamethasone (DEX) was then administered at different periods of time to determine its effect on tumorigenesis and tumor progression. Meanwhile, body weight, stool property and fecal blood of mice were recorded. At the end of this study, the number and load of tumors were evaluated, and the expression of proteins associated with cell proliferation was analyzed. To evaluate the inflammation in colon, we detected the level of pro-inflammatory cytokine TNFα, and the mucosal infiltration of inflammatory cells. Our results revealed that AOM injection followed by three cycles of drinking water containing 1.5% DSS successfully induced multiple tumor formation in mouse colon and rectum. Both early and late DEX intervention suppressed tumor growth in mouse colorectum, and downregulated the expression of PCNA and cyclin D1. Moreover, DEX treatment significantly inhibited TNFα production, mucosal infiltration of inflammatory cells, and the activity of MAPK/JNK pathway, particularly early DEX intervention. However, we also found that DEX treatment deteriorated the general state of mouse manifested by greater loss of body weight and rectal bleeding. In summary, both early and late DEX interventions significantly ameliorate colonic inflammation and inhibit the progression of AOM/DSS-induced colorectal cancer, at least partly due to the inhibition of MAPK/JNK pathway. It is noteworthy that the deleterious effect on the general condition of mouse may limit the duration of GCs treatment.
Collapse
Affiliation(s)
- Jun Pu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Xinrui Zhou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| |
Collapse
|
122
|
Kemmerer CL, Schittenhelm J, Dubois E, Neumann L, Häsler LM, Lambert M, Renovanz M, Kaeser SA, Tabatabai G, Ziemann U, Naumann U, Kowarik MC. Cerebrospinal fluid cytokine levels are associated with macrophage infiltration into tumor tissues of glioma patients. BMC Cancer 2021; 21:1108. [PMID: 34654395 PMCID: PMC8520299 DOI: 10.1186/s12885-021-08825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse gliomas are the most common malignant tumors of the central nervous system with poor treatment efficacy. Infiltration of immune cells into tumors during immunosurveillance is observed in multiple tumor entities and often associated with a favorable outcome. The aim of this study was to evaluate the infiltration of immune cells in gliomas and their association with cerebrospinal fluid (CSF) cytokine concentrations. Methods We applied immunohistochemistry in tumor tissue sections of 18 high-grade glioma (HGG) patients (4 anaplastic astrocytoma, IDH-wildtype WHO-III; 14 glioblastomas (GBM), IDH-wildtype WHO-IV) in order to assess and quantify leucocytes (CD45) and macrophages (CD68, CD163) within the tumor core, infiltration zone and perivascular spaces. In addition, we quantified the concentrations of 30 cytokines in the same patients’ CSF and in 14 non-inflammatory controls. Results We observed a significantly higher percentage of CD68+ macrophages (21–27%) in all examined tumor areas when compared to CD45+ leucocytes (ca. 3–7%); CD163+ cell infiltration was between 5 and 15%. Compared to the tumor core, significantly more macrophages and leucocytes were detectable within the perivascular area. The brain parenchyma showing a lower tumor cell density seems to be less infiltrated by macrophages. Interleukin (IL)-7 was significantly downregulated in CSF of GBM patients compared to controls. Additionally, CD68+ macrophage infiltrates showed significant correlations with the expression of eotaxin, interferon-γ, IL-1β, IL-2, IL-10, IL-13, IL-16 and vascular endothelial growth factor. Conclusions Our findings suggest that the infiltration of lymphocytes is generally low in HGG, and does not correlate with cytokine concentrations in the CSF. In contrast, macrophage infiltrates in HGG are associated with CSF cytokine changes that possibly shape the tumor microenvironment. Although results point towards an escape from immunosurveillance or even exploitation of immune cells by HGG, further studies are necessary to decipher the exact role of the immune system in these tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08825-1.
Collapse
Affiliation(s)
- Constanze L Kemmerer
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, University Hospital Tübingen, Calwerstr. 3, Tübingen, Germany.,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Evelyn Dubois
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Laura Neumann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Lisa M Häsler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Mirjam Renovanz
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Stephan A Kaeser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Ulf Ziemann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,Department of Neurology & Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Markus C Kowarik
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany. .,Department of Neurology & Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich, Germany.
| |
Collapse
|
123
|
Harmful cytokines in cancer immunology and immunotherapy: biomarkers and targets? Ann Oncol 2021; 32:1311-1313. [PMID: 34560240 DOI: 10.1016/j.annonc.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023] Open
|
124
|
Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front Cell Dev Biol 2021; 9:710165. [PMID: 34490259 PMCID: PMC8417943 DOI: 10.3389/fcell.2021.710165] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
125
|
Wen Y, Yang J, Han X. Fibrinogen-to-Albumin Ratio is Associated with All-Cause Mortality in Cancer Patients. Int J Gen Med 2021; 14:4867-4875. [PMID: 34475778 PMCID: PMC8407668 DOI: 10.2147/ijgm.s322735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Past studies have identified fibrinogen-to-albumin ratio (FAR) as a novel prognostic immune biomarker in various diseases. Here, we investigated the prognostic value of FAR in all combined cancer mortality. Methods We extracted patient data from the Multiparameter Intelligent Monitoring in Intensive Care Database III. FAR was measured prior to hospital admission. Only first admission data from each patient were used. Baseline data were extracted within 24 h after admission. The clinical endpoints were 90- and 365-day all-cause cancer mortality. Cox proportional hazards models and subgroup analyses were used to determine the relationship between FAR and these clinical endpoints. Results A total of 652 eligible patients were enrolled. Upon adjusting for age and gender, multivariate analysis revealed correlation between higher FAR values and increased risk of all-cause mortality. After adjusting for more confounding factors, higher FAR values significantly correlated with 90- and 365-day all-cause mortality relative to low FAR values (tertile 3 vs tertile 1: HR, 95% CI: 1.65, 1.15-2.39; 1.52, 1.10-2.10). Conclusion Our findings indicate that FAR may predict the risk of cancer mortality and is an independent prognostic indicator of all-cause mortality in cancer patients.
Collapse
Affiliation(s)
- Yanling Wen
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jingwen Yang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| |
Collapse
|
126
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
127
|
Abstract
Over the past decade, 3D culture models of human and animal cells have found their way into tissue differentiation, drug development, personalized medicine and tumour behaviour studies. Embryoid bodies (EBs) are in vitro 3D cultures established from murine pluripotential stem cells, whereas tumoroids are patient-derived in vitro 3D cultures. This thesis aims to describe a new implication of an embryoid body model and to characterize the patient-specific microenvironment of the parental tumour in relation to tumoroid growth rate. In this thesis, we described a high-throughput monitoring method, where EBs are used as a dynamic angiogenesis model. In this model, digital image analysis (DIA) is implemented on immunohistochemistry (IHC) stained sections of the cultures over time. Furthermore, we have investigated the correlation between the genetic profile and inflammatory microenvironment of parental tumours on the in vitro growth rate of tumoroids. The EBs were cultured in spinner flasks. The samples were collected at days 4, 6, 9, 14, 18 and 21, dehydrated and embedded in paraffin. The histological sections were IHC stained for the endothelial marker CD31 and digitally scanned. The virtual whole-image slides were digitally analysed by Visiopharm® software. Histological evaluation showed vascular-like structures over time. The quantitative DIA was plausible to monitor significant increase in the total area of the EBs and an increase in endothelial differentiation. The tumoroids were established from 32 colorectal adenocarcinomas. The in vitro growth rate of the tumoroids was followed by automated microscopy over an 11-day period. The parental tumours were analysed by next-generation sequencing for KRAS, TP53, PIK3CA, SMAD4, MAP2K1, BRAF, FGFR3 and FBXW7 status. The tumoroids established from KRAS-mutated parental tumours showed a significantly higher growth rate compared to their wild-type counterparts. The density of CD3+ T lymphocytes and CD68+ macrophages was calculated in the centre of the tumours and at the invasive margin of the tumours. The high density of CD3+ cells and the low density of CD68+ cells showed a significant correlation with a higher growth rate of the tumoroids. In conclusion, a novel approach for histological monitoring of endothelial differentiation is presented in the stem cell-derived EBs. Furthermore, the KRAS status and density of CD3+ T cells and macrophages in the parental tumour influence the growth rate of the tumoroids. Our results indicate that these parameters should be included when tumoroids are to be implemented in personalized medicine.
Collapse
Affiliation(s)
- Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
128
|
Lu T, Zhang L, Chen M, Zheng X, Jiang K, Zheng X, Li C, Xiao W, Miao Q, Yang S, Lin G. Intrapulmonic Cavity or Necrosis on Baseline CT Scan Serves as an Efficacy Predictor of Anti-PD-(L)1 Inhibitor in Advanced Lung Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:5931-5939. [PMID: 34354375 PMCID: PMC8331205 DOI: 10.2147/cmar.s319480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Predictive markers for guidance and monitoring of immunotherapy in lung squamous cell carcinoma (LSCC) are an interesting topic but have yet to be fully explored. A primary characteristic of LSCC is tumor necrosis that results in extensive immune suppression in patients. We sought to assess whether tumor necrosis or cavity on baseline CT could effectively predict the efficacy of immune checkpoint inhibitors (ICIs) in advanced LSCC. Methods Advanced LSCC cases undergoing pre-treatment chest CT imaging and receiving ICIs were retrospectively collected. All CT images were reviewed by an independent chest radiologist blinded to any previous diagnosis to confirm morphological alterations in necrosis or cavity. We performed Logistic regression and developed Cox proportional hazards models to assess the predictive performance of baseline necrosis or cavity characteristics in advanced LSCC. Survival estimates were observed using Kaplan–Meier curves. Results Ninety-three patients were eligible for analysis, predominantly consisting of patients with ECOG performance status of 0 or 1 (97.8%), male patients (95.7%), and heavy smokers (92.5%). Intrapulmonic necrosis or cavity on CT scan was present in 52.7% of all patients. Generally, the objective response rate (ORR) in patients with necrosis or cavity to ICI treatment was significantly worse versus those without (30.6% vs 54.5%, p = 0.020), with the subgroup ORRs as follows: ICI monotherapy (necrosis vs non-necrosis: 10.0% vs 36.8%, p =0.047) and ICI combination therapy (44.8% vs 68.0%, p =0.088). Multivariable analysis identified intrapulmonic necrosis or cavity at baseline as a major risk factor for advanced LSCC (HR 4.042, 95% CI1.149–10.908, p = 0.006). Multivariate Cox analysis showed that baseline necrosis or cavity and ICI monotherapy were unfavorable factors for progression-free survival (HR 1.729; 95% CI1.203–2.484, p =0.003). Conclusion LSCC patients with intrapulmonic cavity or necrosis on baseline CT scan may respond poorly to anti-PD-(L)1-treatment, monotherapy and combination therapy alike.
Collapse
Affiliation(s)
- Tao Lu
- Department of Radiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Longfeng Zhang
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Mingqiu Chen
- Department of Thoracic Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Xiaobin Zheng
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Kan Jiang
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Xinlong Zheng
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Chao Li
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Weijin Xiao
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Qian Miao
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Shanshan Yang
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
129
|
Xu Y, Yuan X, Zhang X, Hu W, Wang Z, Yao L, Zong L. Prognostic value of inflammatory and nutritional markers for hepatocellular carcinoma. Medicine (Baltimore) 2021; 100:e26506. [PMID: 34160470 PMCID: PMC8238303 DOI: 10.1097/md.0000000000026506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Many clinical studies have demonstrated that the neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and Onodera's prognostic nutritional index (OPNI) are visibly involved in the prognosis of a variety of tumors. In our research, we aim to determin the prognostic impact of NLR, PLR, and OPNI for hepatocellular carcinoma (HCC).Data of hepatocellular carcinoma patients undergoing treatment in Changzhi People's Hospital between 2011 and 2017 were reviewed. 270 patients with HCC were under inclusion criteria. The optimal cut-off points of OPNI, NLR and PLR were determined by using the X-tile program. The overall survival (OS) was analyzed by Kaplan-Meier method. Multivariate analysis was performed using Cox Proportional Hazard Regression model to determine independent prognostic indicators for HCC.As revealed by Univariate and multivariate analysis, OPNI, Treatment, PLR, and BCLC Stage can be used as independent prognostic indicators for HCC. Comparing the P values and hazard ratios, we found out that the OPNI has greatest influence on prognosis in these indexes. The appropriate cut-off points of NLR, PLR, and OPNI were 2.5, 133.3, and 39.5, respectively. High score OPNI group had a better OS. In the analysis between OPNI and clinicopathological characteristics, there were differences in treatment, postoperative therapy, AST, ALBI grade, NLR and PLR between the high OPNI group and the low OPNI group, while others did not.OPNI is a straightforward and effective independent prognostic indicator for HCC.
Collapse
Affiliation(s)
- Yingying Xu
- Department of General Surgery, Yizheng People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province
| | - Xiuxue Yuan
- Medical College of Wuhan University of Science and Technology, Wuhan, Hubei Province
| | | | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital
| | - Zehua Wang
- Department of Anesthesiology, Heji Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province
| | - Longdi Yao
- The Second Clinical College of Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang Zong
- Central Laboratory
- Department of Gastrointestinal Surgery, Changzhi People's Hospital
| |
Collapse
|
130
|
Hallab NJ, Samelko L, Hammond D. Particulate Debris Released From Breast Implant Surfaces Is Highly Dependent on Implant Type. Aesthet Surg J 2021; 41:NP782-NP793. [PMID: 33564817 DOI: 10.1093/asj/sjab051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although breast implants (BIs) have never been safer, factors such as implant debris may influence complications such as chronic inflammation and illness such as ALCL (anaplastic large cell lymphoma). Do different types of BIs produce differential particulate debris? OBJECTIVES The aim of this study was to quantify, investigate, and characterize the size, amount, and material type of both loosely bound and adherent surface particles on 5 different surface types of commercial BIs. METHODS Surface particles from BIs of 5 surface types (n = 5/group), Biocell, Microcell, Siltex, Smooth, SmoothSilk, and Traditional-Smooth, were: (1) removed by a rinsing procedure and (2) removed with ultrapure adhesive carbon tabs. Particles were characterized (ASTM 1877-16) by scanning electron microscopy and energy-dispersive X-ray chemical analysis. RESULTS Particles rinsed from Biocell, Microcell and Siltex were <1 μm in diameter whereas SmoothSilk and Traditional-Smooth surfaces had median sizes >1 μm (range, 0.4-2.7 μm). The total mass of particles rinsed from the surfaces indicated Biocell had >5-fold more particulate compared with all other implants, and >30-fold more than SmoothSilk or Traditional-Smooth implants (>100-fold more for post-rinse adhesion analysis). Energy-dispersive X-ray analysis indicated that the particulate material for Biocell, Microcell, and Siltex was silicone (>50%), whereas particulates from SmoothSilk and Traditional-Smooth implants were predominantly carbon-based polymers, eg, polycarbonate-urethane, consistent with packaging (and were detected on all implant types). Generally, SmoothSilk and Traditional-Smooth implant groups released >10-fold fewer particles than Biocell, Microcell, and Siltex surfaces. Pilot ex vivo tissue analysis supported these findings. CONCLUSIONS Particulate debris released from BIs are highly dependent on the type of implant surface and are a likely key determinant of in vivo performance. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Nadim James Hallab
- Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA
| | - Lauryn Samelko
- Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA
| | | |
Collapse
|
131
|
Pretreatment systemic inflammation response index is predictive of pathological complete response in patients with breast cancer receiving neoadjuvant chemotherapy. BMC Cancer 2021; 21:700. [PMID: 34126950 PMCID: PMC8204500 DOI: 10.1186/s12885-021-08458-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in tumor proliferation, metastasis, and resistance to chemotherapy. The systemic inflammation response index (SIRI), has been reported to be closely related to prognosis in many tumors, such as breast and gastric cancers. However, the predictive value of pretreatment SIRI on pathological complete response (pCR) rates in patients with breast cancer treated with neoadjuvant chemotherapy (NAC) is unknown. This study examined the correlation between SIRI and pCR in patients with breast cancer receiving NAC and identified convenient and accurate predictive indicators for pCR. METHODS We retrospectively analyzed the clinicopathological parameters and pretreatment peripheral blood characteristics of the 241 patients with breast cancer who received NAC between June 2015 and June 2020. Receiver operating characteristic (ROC) curves were used to determine the optimal cutoff of SIRI. ROC curves were also plotted to verify the accuracy of inflammatory markers for pCR prediction. The chi-squared test was used to explore the relationships of SIRI with pCR and other clinicopathological parameters. Multivariate analyses were performed using a logistic regression model. RESULTS Among the 241 patients, 48 (19.92%) achieved pCR. pCR was significantly related to SIRI, the neutrophil-lymphocyte ratio (NLR), the lymphocyte-monocyte ratio (LMR), molecular subtypes and other clinicopathological parameters, such as BMI, clinical T and N staging, and histological grade. Multivariate analyses indicated that the clinical T and N staging, SIRI, and NLR were independent prognostic factors for pCR in patients with breast cancer. The area under the ROC curve for SIRI was larger than that for NLR. Compared to patients with SIRI ≥0.72, patients with SIRI < 0.72 had a nearly 5-fold higher chance of obtaining pCR (odds ratio = 4.999, 95% confidence interval = 1.510-16.551, p = 0.000). CONCLUSIONS Pretreatment SIRI is predictive of pCR in patients with breast cancer receiving NAC, and the index can assist physicians in formulating personalized treatment strategies.
Collapse
|
132
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
133
|
Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I, Van TNN, Diermeier SD, Godefroy A, Gary-Bobo M, Molina F, Balabanian K, Lazennec G. Pivotal Role for Cxcr2 in Regulating Tumor-Associated Neutrophil in Breast Cancer. Cancers (Basel) 2021; 13:cancers13112584. [PMID: 34070438 PMCID: PMC8197482 DOI: 10.3390/cancers13112584] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines present in the tumor microenvironment are essential for the control of tumor progression. We show here that several ligands of the chemokine receptor Cxcr2 were up-regulated in the PyMT (polyoma middle T oncogene) model of breast cancer. Interestingly, the knock-down of Cxcr2 in PyMT animals led to an increased growth of the primary tumor and lung metastasis. The analysis of tumor content of PyMT-Cxcr2-/- animals highlighted an increased infiltration of tumor associated neutrophils (TANs), mirrored by a decreased recruitment of tumor associated macrophages (TAMs) compared to PyMT animals. Analysis of PyMT-Cxcr2-/- TANs revealed that they lost their killing ability compared to PyMT-Cxcr2+/+ TANs. The transcriptomic analysis of PyMT-Cxcr2-/- TANs showed that they had a more pronounced pro-tumor TAN2 profile compared to PyMT TANs. In particular, PyMT-Cxcr2-/- TANs displayed an up-regulation of the pathways involved in reactive oxygen species (ROS) production and angiogenesis and factors favoring metastasis, but reduced apoptosis. In summary, our data reveal that a lack of Cxcr2 provides TANs with pro-tumor effects.
Collapse
Affiliation(s)
- Colin Timaxian
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Charlotte Orcel
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Diana Vetter
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Camille Durochat
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Clarisse Chinal
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Phuong NGuyen
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Marie-Laure Aknin
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Françoise Mercier-Nomé
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Martin Davy
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, 31076 Toulouse, France;
- Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, 31076 Toulouse, France
| | - Thi-Nhu-Ngoc Van
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Anastasia Godefroy
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Karl Balabanian
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Institut de Recherche Saint-Louis, Université de Paris, EMiLy, Inserm U1160, 75010 Paris, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Correspondence:
| |
Collapse
|
134
|
Boissière-Michot F, Jacot W, Massol O, Mollevi C, Lazennec G. CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers. Cancers (Basel) 2021; 13:cancers13102328. [PMID: 34066060 PMCID: PMC8151934 DOI: 10.3390/cancers13102328] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tumor microenvironment is critical for cancer progression. The role of the chemokine receptors in breast cancers is still under investigation. The aim of this study was to focus on a retrospective cohort of triple-negative breast cancers (TNBCs) and analyze the involvement of CXCR2 and its link with immune infiltration and immune checkpoint markers. High densities of CXCR2-positive cells were associated with high-grade tumors. Higher quantities of CXCR2-positive cells were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis. Abstract Chemokines and their receptors are key players in breast cancer progression and outcome. Previous studies have shown that the chemokine receptor CXCR2 was expressed at higher levels by cells of the tumor microenvironment in triple-negative breast cancers (TNBCs). The aim of this study was to focus our attention on a retrospective cohort of 290 TNBC cases and analyze the involvement of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) and their link with immune infiltration and immune checkpoint markers. We report that high densities of CXCR2-, CD11b- and CD66b-positive cells were associated with high-grade tumors. Moreover, molecular apocrine TNBCs, defined here as tumors that express both AR and FOXA1 biomarkers, exhibited low levels of CXCR2 and CD11b. High CXCR2 and CD11b levels were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. On the other hand, CD66b levels were associated only with CD8+, stromal PD-L1 and PD-1 expression. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Finally, in TNBC treated with adjuvant chemotherapy, CXCR2 density was associated with longer RFS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis.
Collapse
Affiliation(s)
- Florence Boissière-Michot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - William Jacot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, 34298 Montpellier, France
| | - Océane Massol
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - Caroline Mollevi
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Institut Desbrest d’Epidémiologie et de Santé Publique, UMR Inserm—Université de Montpellier, 34090 Montpellier, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG, ALCEDIAG, Cap Delta, 1682 Rue de la Valsière, 34184 Montpellier, France
- CNRS, GDR 3697 “Microenvironment of Tumor Niches”, Micronit, France
- Correspondence:
| |
Collapse
|
135
|
Xu M, Wu Q, Cai L, Sun X, Xie X, Sun P. Systemic Inflammatory Score predicts Overall Survival in patients with Cervical Cancer. J Cancer 2021; 12:3671-3677. [PMID: 33995642 PMCID: PMC8120179 DOI: 10.7150/jca.56170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: To evaluate the prognostic value of the systemic inflammatory score (SIS) in cervical cancer patients. Methods: A total of 264 patients with FIGO stage (2009) IB-IIA cervical cancer undergoing radical resection from January 2014 to December 2017 were recruited. The optimal cutoff values for inflammatory biomarkers were calculated by X-tile software. The prognostic factors were investigated using univariate and multivariate Cox analyses. Time-dependent receiver operating characteristic (time-ROC) analysis and the concordance index (C-index) were used to compare the prognostic impact of factors. Results: In total, 264 patients with cervical cancer were included in the study. The optimal cutoff value for lymphocyte-to-monocyte ratio (LMR) was 4.1. In multivariate analysis, FIGO stage, lymphovascular invasion, lymph node metastasis, preoperative serum albumin (Alb), and LMR were independent prognostic factors (P<0.05). Then, we combined preoperative Alb and LMR to establish the SIS. Multivariate analysis showed that the SIS was an independent factor that affected survival (P<0.05). When stratified by FIGO stage, significant differences in survival were also found for patients with different SISs (P<0.05). When the SIS and FIGO stage were combined, the time-ROC curve was superior to that of FIGO stage only. The C-index of the model combining the SIS and FIGO stage was 0.786 (95% CI 0.699-0.873), which was significantly higher than that of the model with FIGO stage only (0.676, 95% CI 0.570-0.782, P=0.0049). Conclusions: The preoperative SIS is a simple and useful prognostic factor for postoperative survival in patients with cervical cancer. It might assist in the identification of high-risk patients among patients with the same FIGO stage.
Collapse
Affiliation(s)
- Mu Xu
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qibin Wu
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangzhi Cai
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoqi Sun
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyan Xie
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Pengming Sun
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Laboratory of Gynecologic Oncology, Fujian Maternal and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
136
|
Kovalenko LP, Korzhova KV, Zainullina LF, Nikitin SV, Ivanova EA, Zhurikov RV. [Effect of 5-hydroxypyrimidine derivatives on tumor growth and cytokine concentration in blood serum of female CBA mice with cervical cancer (RSHM-5)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:158-161. [PMID: 33860773 DOI: 10.18097/pbmc20216702158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of intraperitoneal administration of SNK-411 (2-isobutyl-4,6-dimethyl-5-hydroxypyrimidine) in a dose of 25 mg/kg (the total dose of 350 mg/kg) and SNK-578 (hydrochloride of 2-isobutyl-4,6-dimethyl-5- hydroxypyrimidine) in a dose of 10 mg/kg (the total dose of 140 mg/kg) on tumor growth and concentration of cytokines in the blood serum were studied in female CBA mice. Substances were administrated from the 2nd to 15th days of tumor development. Tumor growth inhibition (TGI) and serum cytokine level were studied on the 7th day after the end of compounds administration (21st day of tumor growth). In intact control group (n=10) median tumor mass was 1255 mg. TGI in the group of animals treated with SNK-411 was 47%; in the group of mice treated with SNK-578 TGI was 87%, tumor mass demonstrated 7.4-fold reduction. Serum concentrations of cytokines (IL-6, IL-10, IL-17A and IFN-γ) in tumor-bearing group of mice were higher versus the intact control group by 229%, 40%, 60% and 81%, respectively. Highly active SNK-578 decreased concentrations of prooncogenic IL-10, IL-17A and proinflammatory IL-6, by 61%, 70% and 29% as compared to tumor-bearing control group. SNK-411 decreased concentrations of prooncogenic IL-10 and IL-17A by 48% and 60%, respectively, and did not affect concentration of IL-6. Taking into consideration that IL-6 participates in autoimmune reactions, we can assume that the immune control is one of the crucial mechanisms of antitumor effect of SNK-578. All results are statistically significant.
Collapse
Affiliation(s)
| | - K V Korzhova
- Zakusov Institute of Pharmacology, Moscow, Russia
| | | | - S V Nikitin
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - E A Ivanova
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - R V Zhurikov
- Zakusov Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
137
|
Wang X, Jia Y, Wen L, Mu W, Wu X, Liu T, Liu X, Fang J, Luan Y, Chen P, Gao J, Nguyen KA, Cui J, Zeng G, Lan P, Chen Q, Cheng B, Wang Z. Porphyromonas gingivalis Promotes Colorectal Carcinoma by Activating the Hematopoietic NLRP3 Inflammasome. Cancer Res 2021; 81:2745-2759. [PMID: 34003774 DOI: 10.1158/0008-5472.can-20-3827] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various digestive cancers. However, whether P. gingivalis can promote colorectal cancer and the underlying mechanism associated with such promotion remains unclear. In this study, we found that P. gingivalis was enriched in human feces and tissue samples from patients with colorectal cancer compared with those from patients with colorectal adenoma or healthy subjects. Cohort studies demonstrated that P. gingivalis infection was associated with poor prognosis in colorectal cancer. P. gingivalis increased tumor counts and tumor volume in the ApcMin/+ mouse model and increased tumor growth in orthotopic rectal and subcutaneous carcinoma models. Furthermore, orthotopic tumors from mice exposed to P. gingivalis exhibited tumor-infiltrating myeloid cell recruitment and a proinflammatory signature. P. gingivalis promoted colorectal cancer via NLRP3 inflammasome activation in vitro and in vivo. NLRP3 chimeric mice harboring orthotopic tumors showed that the effect of NLRP3 on P. gingivalis pathogenesis was mediated by hematopoietic sources. Collectively, these data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome. SIGNIFICANCE: This study demonstrates that the periodontal pathogen P. gingivalis can promote colorectal tumorigenesis by recruiting myeloid cells and creating a proinflammatory tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2745/F1.large.jpg.
Collapse
Affiliation(s)
- Xi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiqun Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Stomatology Center, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Mu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianrui Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Chen
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jinlong Gao
- Institute of Dental Research, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ky-Anh Nguyen
- Institute of Dental Research, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
138
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
139
|
D'Orazi G, Cordani M, Cirone M. Oncogenic pathways activated by pro-inflammatory cytokines promote mutant p53 stability: clue for novel anticancer therapies. Cell Mol Life Sci 2021; 78:1853-1860. [PMID: 33070220 PMCID: PMC11072129 DOI: 10.1007/s00018-020-03677-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Inflammation and cancerogenesis are strongly interconnected processes, not only because inflammation promotes DNA instability, but also because both processes are driven by pathways such as NF-kB, STAT3, mTOR and MAPKs. Interestingly, these pathways regulate the release of pro-inflammatory cytokines such as IL-6, TNF-α and IL-1β that in turn control their activation and play a crucial role in shaping immune response. The transcription factor p53 is the major tumor suppressor that is often mutated in cancer, contributing to tumor progression. In this overview, we highlight how the interplay between pro-inflammatory cytokines and pro-inflammatory/pro-oncogenic pathways, regulating and being regulated by UPR signaling and autophagy, affects the stability of mutp53 that in turn is able to control autophagy, UPR signaling, cytokine release and the activation of the same oncogenic pathways to preserve its own stability and promote tumorigenesis. Interrupting these positive feedback loops may represent a promising strategy in anticancer therapy, particularly against cancers carrying mutp53.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Cordani
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Mara Cirone
- Department of Experimental Medicine, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
140
|
Peres KC, Teodoro L, Amaral LHP, Teixeira ES, Barreto IS, de Freitas LLL, Maximo V, Assumpção LVM, Bufalo NE, Ward LS. Clinical utility of TGFB1 and its receptors ( TGFBR1 and TGFBR2) in thyroid nodules: evaluation based on single nucleotide polymorphisms and mRNA analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:172-184. [PMID: 33905626 PMCID: PMC10065325 DOI: 10.20945/2359-3997000000330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Abnormalities involving the TGFB1 gene and its receptors are common in several types of cancer and often related to tumor progression. We investigated the role of single nucleotide polymorphisms (SNP) in the susceptibility to cancer, their impact on its features, as well as the role of mRNA expression of these genes in thyroid malignancy. Methods We genotyped TGFB1, TGFBR1, and TGFBR2 SNPs in 157 papillary thyroid cancer (PTC) patients and 200 healthy controls. Further, we investigated RNA samples of 47 PTC and 80 benign nodules, searching for differential mRNA expression. Results SNPs rs1800472 and rs1800469 were associated with characteristics of PTC aggressiveness. Effect predictor software analysis of nonsynonymous SNP rs1800472 indicated increasing protein stability and post-translational changes. TGFB1 mRNA expression was upregulated in PTC and downregulated in benign samples, differentiating malignant from benign nodules (p<0.0001); PTC from goiter (p<0.0001); and PTC from FA (p<0.0001). TGFBR1 mRNA expression was upregulated in goiter and PTC, but downregulated in FA, distinguishing PTC from goiter (p=0.0049); PTC from FA (p<0.0001); and goiter from FA (p=0.0267). On the other hand, TGFBR2 was downregulated in all histological types analyzed and was not able to differentiate thyroid nodules. Conclusion TGFB1 polymorphism rs1800472 may confer greater activity to TGF-β1 in the tumor microenvironment, favoring PTC aggressiveness. Evaluation of TGFB1 and TGFBR1 mRNA levels may be useful to identify malignancy in thyroid nodules.
Collapse
Affiliation(s)
- Karina Colombera Peres
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil,
| | - Larissa Teodoro
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Laís Helena Pereira Amaral
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Elisângela Souza Teixeira
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Icléia Siqueira Barreto
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Leandro Luiz Lopes de Freitas
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Valdemar Maximo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Lígia V Montalli Assumpção
- Divisão de Endocrinologia, Departamento de Medicina, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Natassia Elena Bufalo
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Laura Sterian Ward
- Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
141
|
Liu Y, Zou L, Wang P, Zhou J, Yuan C, Wang J. Construction of differential expression plasmids of NGF to detect its influence on PC12 cell neuronal differentiation. Exp Ther Med 2021; 21:363. [PMID: 33732336 PMCID: PMC7903390 DOI: 10.3892/etm.2021.9794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Alongside angiogenesis and lymphangiogenesis, neurogenesis also occurs within the cancer microenvironment. Neurogenesis is a complex process involving multiple factors, among which nerve growth factor (NGF) possesses the dual biological roles of neuron nutrition and axon growth promotion. Thus, NGF might be a key molecule involved in regulating cancer-related neurogenesis, which could play a crucial role in the signal transmission system that controls nerve growth in tumors, and enhances the abilities of migration, invasion and metastasis of tumor cells. The present study aimed to construct differential expression plasmids of NGF, in order to detect whether NGF has a vital role in neurogenesis in breast cancer cells. In the present study, 92 clinical cases of breast cancer were collected and immunohistochemical analysis was performed to verify the existence of neurons in the breast cancer microenvironment. Furthermore, recombinant NGF lentiviral overexpression, knockout and silencing plasmids were constructed, and whether NGF has an effect on neuron growth was preliminarily confirmed, indicating that the successfully constructed plasmids could be used to verify the roles of NGF in cancer-associated neurogenesis.
Collapse
Affiliation(s)
- Yu Liu
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Department of Oncology, Gong'an County Hospital, Jingzhou, Hubei 434300, P.R. China
| | - Lili Zou
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Infection and Inflammation Institute, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Peng Wang
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Infection and Inflammation Institute, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jingxuan Zhou
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Infection and Inflammation Institute, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chunling Yuan
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jun Wang
- Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
142
|
Vilchis-Ordoñez A, Ramírez-Ramírez D, Pelayo R. The triad inflammation-microenvironment-tumor initiating cells in leukemia progression. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
143
|
Tumor microenvironment and immune-related therapies of head and neck squamous cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:342-351. [PMID: 33614915 PMCID: PMC7878981 DOI: 10.1016/j.omto.2021.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are a type of common malignant tumor, mainly manifesting as oropharyngeal, oral cavity, laryngopharyngeal, hypopharyngeal, and laryngeal cancers. These highly aggressive malignant tumors reportedly affect more than 830,000 patients worldwide every year. Currently, the main treatments for HNSCC include surgery, radiotherapy, chemotherapy, and immunotherapy, as well as combination therapy. However, the overall 5-year survival rate of HNSCC has remained 50%, and it has not significantly improved in the past 10 years. Previous studies have shown that the tumor microenvironment (TME) plays a crucial role in the recurrence, metastasis, and drug resistance of patients with HNSCC. In this review, we summarize the role of anti-tumor and pro-tumor immune cells, as well as extracellular components in the TME of HNSCC. We also discuss classical HNSCC immunotherapy and highlight examples of clinical trials using CTLA-4 inhibitors and programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1)-related combination therapies. We also outline some molecules in the TME known to regulate immunosuppressive cells. Furthermore, the role and underlying mechanism of radiation therapy on the TME, immune cells, and immune response are discussed.
Collapse
|
144
|
Lan T, Chen L, Wei X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021; 10:E100. [PMID: 33429846 PMCID: PMC7827947 DOI: 10.3390/cells10010100] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between chronic inflammation and neoplastic diseases is not fully understood. The inflammatory microenvironment of a tumor is an intricate network that consists of numerous types of cells, cytokines, enzymes and signaling pathways. Recent evidence shows that the crucial components of cancer-related inflammation are involved in a coordinated system to influence the development of cancer, which may shed light on the development of potential anticancer therapies. Since the last century, considerable effort has been devoted to developing gene therapies for life-threatening diseases. When it comes to modulating the inflammatory microenvironment for cancer therapy, inflammatory cytokines are the most efficient targets. In this manuscript, we provide a comprehensive review of the relationship between inflammation and cancer development, especially focusing on inflammatory cytokines. We also summarize the clinical trials for gene therapy targeting inflammatory cytokines for cancer treatment. Future perspectives concerned with new gene-editing technology and novel gene delivery systems are finally provided.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China; (T.L.); (L.C.)
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China; (T.L.); (L.C.)
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China; (T.L.); (L.C.)
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
145
|
Malhab LJB, Saber-Ayad MM, Al-Hakm R, Nair VA, Paliogiannis P, Pintus G, Abdel-Rahman WM. Chronic Inflammation and Cancer: The Role of Endothelial Dysfunction and Vascular Inflammation. Curr Pharm Des 2021; 27:2156-2169. [PMID: 33655853 DOI: 10.2174/1381612827666210303143442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023]
Abstract
Long-lasting subclinical inflammation is associated with a wide range of human diseases, particularly at a middle and older age. Recent reports showed that there is a direct causal link between inflammation and cancer development, as several cancers were found to be associated with chronic inflammatory conditions. In patients with cancer, healthy endothelial cells regulate vascular homeostasis, and it is believed that they can limit tumor growth, invasiveness, and metastasis. Conversely, dysfunctional endothelial cells that have been exposed to the inflammatory tumor microenvironment can support cancer progression and metastasis. Dysfunctional endothelial cells can exert these effects via diverse mechanisms, including dysregulated adhesion, permeability, and activation of NF-κB and STAT3 signaling. In this review, we highlight the role of vascular inflammation in predisposition to cancer within the context of two common disease risk factors: obesity and smoking. In addition, we discuss the molecular triggers, pathophysiological mechanisms, and the biological consequences of vascular inflammation during cancer development and metastasis. Finally, we summarize the current therapies and pharmacological agents that target vascular inflammation and endothelial dysfunction.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ranyah Al-Hakm
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Surgery, University of Sassari, Viale San Pietro 43,07100 Sassari, Italy
| | - Gianfranco Pintus
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
146
|
Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 2020; 20:697-709. [PMID: 32958932 DOI: 10.1038/s41568-020-00299-w] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) are regarded as having promising potential to be used as therapeutics and disease biomarkers. Mechanistically, EVs have been shown to function in most, if not all, steps of cancer progression. Cancer EVs, including small EVs (sEVs), contain unique biomolecular cargo, consisting of protein, nucleic acid and lipids. Through progress in the identification of this specific cargo, cancer biomarkers have been identified and developed, opening up novel and interesting opportunities for cancer diagnosis and prognosis. Intriguingly, we still lack a comprehensive understanding of the cancer-specific pathways that govern EV biogenesis in cancer cells. Filling this knowledge gap will rapidly improve cancer EV biomarkers, as it will also allow discrimination of the procancer and anticancer actions of those EVs. Even more promising is uncovering therapeutically targetable, tumour-specific EV pathways and content, which will generate novel classes of cancer therapies. This Review highlights the progress the cancer sEV field has made in the areas of biomarker discovery and validation as well as sEV-based therapeutics, highlights the challenges we are facing and identifies gaps in our knowledge, which currently prevent us from developing the full potential of sEVs in cancer diagnostic and therapy.
Collapse
Affiliation(s)
- Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Richard J Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| |
Collapse
|
147
|
Xu R, Li Y, Liu Y, Qu J, Cao W, Zhang E, He J, Cai Z. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity? Protein Cell 2020; 11:881-893. [PMID: 32548715 PMCID: PMC7719135 DOI: 10.1007/s13238-020-00739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines are secreted by various cell types and act as critical mediators in many physiological processes, including immune response and tumor progression. Cytokines production is precisely and timely regulated by multiple mechanisms at different levels, ranging from transcriptional to post-transcriptional and posttranslational processes. Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), a potent immunosuppressive protein, was first described as a transcription factor in monocytes treated with monocyte chemoattractant protein-1 (MCP-1) and subsequently found to possess intrinsic RNase and deubiquitinase activities. MCPIP1 tightly regulates cytokines expression via various functions. Furthermore, cytokines such as interleukin 1 beta (IL-1B) and MCP-1 and inflammatory cytokines inducer lipopolysaccharide (LPS) strongly induce MCPIP1 expression. Mutually regulated MCPIP1 and cytokines form a complicated network in the tumor environment. In this review, we summarize how MCPIP1 and cytokines reciprocally interact and elucidate the effect of the network formed by these components in cancer-related immunity with aim of exploring potential clinical benefits of their mutual regulation.
Collapse
Affiliation(s)
- Ruyi Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
148
|
Extract from the Coriolus versicolor Fungus as an Anti-Inflammatory Agent with Cytotoxic Properties against Endothelial Cells and Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21239063. [PMID: 33260615 PMCID: PMC7731170 DOI: 10.3390/ijms21239063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a well-recognised tumour-enabling component, which includes bioactive molecules from cells infiltrating the tumour microenvironment and increases the risk of cancer progression. Since long-term use of the currently available anti-inflammatory drugs used in cancer therapy causes numerous side effects, the aim of this study was to investigate the effect of an extract isolated from the Coriolus versicolor fungus (CV extract) on HUVEC endothelial cells and MCF-7 breast cancer cells in a pro-inflammatory microenvironment mimicked by lipopolysaccharide (LPS). The cells were simultaneously stimulated with the LPS and CV extract. After co-treatment, the cell viability, generation of reactive oxygen species (ROS), wound-healing assay, production of the pro-inflammatory and pro-angiogenic factors (interleukin (IL) 6, IL-8, and metalloproteinase (MMP) 9)), as well as expression of Toll-like receptor (TLR) 4 and phosphorylated IκB (p-IκB) were evaluated. The results showed that the CV extract inhibited IL-6, IL-8, and MMP-9 production by the LPS-stimulated cells. This effect was accompanied by a decrease in TLR4 and p-IκB expression. The CV extract also had anti-migratory properties and induced a cytotoxic effect on the cells that was enhanced in the presence of LPS. The observed cytotoxicity was associated with an increase in ROS generation. We conclude that the CV extract possesses cytotoxic activity against cancer cells and endothelial cells and has the ability to inhibit the expression of the pro-tumorigenic factors associated with inflammation.
Collapse
|
149
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
150
|
Zhang P, Zhang Y, Wang L, Lou W. Tumor-regulated macrophage type 2 differentiation promotes immunosuppression in laryngeal squamous cell carcinoma. Life Sci 2020; 267:118798. [PMID: 33220295 DOI: 10.1016/j.lfs.2020.118798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
AIMS Tumor-associated macrophage (TAM) residing in tumor microenvironment as the major niche cell made remarkable contribution to tumor growth. However, the functional role of macrophage and its different differentiating state as well as the regulating mechanism in laryngeal squamous cell carcinoma (LSCC) remains not fully clear. MATERIALS AND METHODS LSCC samples were collected from patients. Human peripheral blood mononuclear cells (PBMC) were collected from volunteers' blood, and used for macrophage induction. Enzyme-Linked Immunosorbent Assay (ELISA) was performed to detect proinflammatory cytokines. Immunostaining was prepared to observe tumor tissues. KEY FINDINGS Here, we found the number of type 2 macrophage (MΦ2) and PDL-1 expression was increased in LSCC that was correlated with poor prognosis in patients with LSCC. Tumor cells induced macrophage into type 2 differentiation by TGF-β/Smad3 signaling. The primed MΦ2 produced IL-10 by activating JAK/STAT signaling that promoted PDL-1 expression in tumor cells leading to its immunosuppression. Inhibition of JAK/STAT signaling promoted tumor cells death from immune cells killing by regulating PDL-1 expression. Targeting cytokines TGF-β or IL-10 synergistically enhances the sensitivity of tumors to chemotherapy in vivo. SIGNIFICANCE In conclusion, our findings showed tumor cells and MΦ2 were bilaterally regulated through cytokines production that integrally advanced tumor progression through boosting anti-tumor immunity. It provides insight to develop immune strategies synergy with chemotherapy in treating laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanfei Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weihua Lou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|