101
|
Chambers M, Turki-Judeh W, Kim MW, Chen K, Gallaher SD, Courey AJ. Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity. BMC Genomics 2017; 18:215. [PMID: 28245789 PMCID: PMC5331681 DOI: 10.1186/s12864-017-3589-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting. Results Our chromatin immunoprecipitation sequencing analysis of temporally staged Drosophila embryos shows that Gro binds in a highly dynamic manner primarily to clusters of discrete (<1 kb) segments. Consistent with the idea that Gro may facilitate communication between silencers and promoters, Gro binding is enriched at both cis-regulatory modules, as well as within the promotors of potential target genes. While this Gro-recruitment is required for repression, our data show that it is not sufficient for repression. Integration of Gro binding data with transcriptomic analysis suggests that, contrary to what has been observed for another Gro family member, Drosophila Gro is probably a dedicated repressor. This analysis also allows us to define a set of high confidence Gro repression targets. Using publically available data regarding the physical and genetic interactions between these targets, we are able to place them in the regulatory network controlling development. Through analysis of chromatin associated pre-mRNA levels at these targets, we find that genes regulated by Gro in the embryo are enriched for characteristics of promoter proximal paused RNA polymerase II. Conclusions Our findings are inconsistent with a one-dimensional spreading model for long-range repression and suggest that Gro-mediated repression must be regulated at a post-recruitment step. They also show that Gro is likely a dedicated repressor that sits at a prominent highly interconnected regulatory hub in the developmental network. Furthermore, our findings suggest a role for RNA polymerase II pausing in Gro-mediated repression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3589-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Chambers
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Wiam Turki-Judeh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Min Woo Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Kenny Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Energy, Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Albert J Courey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
102
|
Damianov A, Ying Y, Lin CH, Lee JA, Tran D, Vashisht AA, Bahrami-Samani E, Xing Y, Martin KC, Wohlschlegel JA, Black DL. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR. Cell 2016; 165:606-19. [PMID: 27104978 DOI: 10.1016/j.cell.2016.03.040] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/18/2015] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Ying
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ji-Ann Lee
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diana Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
103
|
Choudhury SR, Singh AK, McLeod T, Blanchette M, Jang B, Badenhorst P, Kanhere A, Brogna S. Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Drosophila melanogaster. eLife 2016; 5:e19881. [PMID: 27879206 PMCID: PMC5158136 DOI: 10.7554/elife.19881] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on Drosophila polytene chromosomes. Additionally, Y14 ChIP-seq demonstrates that association with transcribed genes is also splicing-independent in Drosophila S2 cells. The association of the EJC proteins with nascent transcripts does not require CWC22 and that of Y14 and MAGO is independent of eIF4AIII. We also show that eIF4AIII associates with both polysomal and monosomal RNA in S2 cell extracts, whereas Y14 and MAGO fractionate separately. Cumulatively, our data indicate a global role of eIF4AIII in gene expression, which would be independent of Y14 and MAGO, splicing, and of the EJC, as currently understood.
Collapse
Affiliation(s)
| | - Anand K Singh
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Tina McLeod
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas city, United States
| | - Boyun Jang
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul Badenhorst
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
104
|
Alpert T, Herzel L, Neugebauer KM. Perfect timing: splicing and transcription rates in living cells. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27873472 DOI: 10.1002/wrna.1401] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
Abstract
An important step toward understanding gene regulation is the elucidation of the time necessary for the completion of individual steps. Measurement of reaction rates can reveal potential nodes for regulation. For example, measurements of in vivo transcription elongation rates reveal regulation by DNA sequence, gene architecture, and chromatin. Pre-mRNA splicing is regulated by transcription elongation rates and vice versa, yet the rates of RNA processing reactions remain largely elusive. Since the 1980s, numerous model systems and approaches have been used to determine the precise timing of splicing in vivo. Because splicing can be co-transcriptional, the position of Pol II when splicing is detected has been used as a proxy for time by some investigators. In addition to these 'distance-based' measurements, 'time-based' measurements have been possible through live cell imaging, metabolic labeling of RNA, and gene induction. Yet splicing rates can be convolved by the time it takes for transcription, spliceosome assembly and spliceosome disassembly. The variety of assays and systems used has, perhaps not surprisingly, led to reports of widely differing splicing rates in vivo. Recently, single molecule RNA-seq has indicated that splicing occurs more quickly than previously deduced. Here we comprehensively review these findings and discuss evidence that splicing and transcription rates are closely coordinated, facilitating the efficiency of gene expression. On the other hand, introduction of splicing delays through as yet unknown mechanisms provide opportunity for regulation. More work is needed to understand how cells optimize the rates of gene expression for a range of biological conditions. WIREs RNA 2017, 8:e1401. doi: 10.1002/wrna.1401 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
105
|
Abstract
We give an overview of experimental and computational methods to estimate RNA metabolism rates genome-wide. We then advocate a local definition of RNA metabolism rate at the level of individual phosphodiester bonds. Rates of formation and disappearance of individual bonds are unambiguously defined, in contrast to rates of complete transcripts. We show that over previous approaches, the recently developed transient transcriptome sequencing (TT-seq) protocol allows for estimation of metabolism rates of individual bonds with least positional bias.
Collapse
Affiliation(s)
- Leonhard Wachutka
- a Department of Informatics , Technical University of Munich, Garching bei München , Germany
| | - Julien Gagneur
- a Department of Informatics , Technical University of Munich, Garching bei München , Germany
| |
Collapse
|
106
|
Mazloomian A, Meyer IM. Genome-wide identification and characterization of tissue-specific RNA editing events in D. melanogaster and their potential role in regulating alternative splicing. RNA Biol 2016; 12:1391-401. [PMID: 26512413 PMCID: PMC4829317 DOI: 10.1080/15476286.2015.1107703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA editing is a widespread mechanism that plays a crucial role in diversifying gene products. Its abundance and importance in regulating cellular processes were revealed using new sequencing technologies. The majority of these editing events, however, cannot be associated with regulatory mechanisms. We use tissue-specific high-throughput libraries of D. melanogaster to study RNA editing. We introduce an analysis pipeline that utilises large input data and explicitly captures ADAR's requirement for double-stranded regions. It combines probabilistic and deterministic filters and can identify RNA editing events with a low estimated false positive rate. Analyzing ten different tissue types, we predict 2879 editing sites and provide their detailed characterization. Our analysis pipeline accurately distinguishes genuine editing sites from SNPs and sequencing and mapping artifacts. Our editing sites are 3 times more likely to occur in exons with multiple splicing acceptor/donor sites than in exons with unique splice sites (p-value < 2.10−15). Furthermore, we identify 244 edited regions where RNA editing and alternative splicing are likely to influence each other. For 96 out of these 244 regions, we find evolutionary evidence for conserved RNA secondary-structures near splice sites suggesting a potential regulatory mechanism where RNA editing may alter splicing patterns via changes in local RNA structure.
Collapse
Affiliation(s)
- Alborz Mazloomian
- a Centre for High-Throughput Biology; Department of Computer Science and Department of Medical Genetics ; University of British Columbia ; Vancouver ; BC , Canada
| | - Irmtraud M Meyer
- a Centre for High-Throughput Biology; Department of Computer Science and Department of Medical Genetics ; University of British Columbia ; Vancouver ; BC , Canada
| |
Collapse
|
107
|
Abstract
Transcription and splicing are fundamental steps in gene expression. These processes have been studied intensively over the past four decades, and very recent findings are challenging some of the formerly established ideas. In particular, splicing was shown to occur much faster than previously thought, with the first spliced products observed as soon as splice junctions emerge from RNA polymerase II (Pol II). Splicing was also found coupled to a specific phosphorylation pattern of Pol II carboxyl-terminal domain (CTD), suggesting a new layer of complexity in the CTD code. Moreover, phosphorylation of the CTD may be scarcer than expected, and other post-translational modifications of the CTD are emerging with unanticipated roles in gene expression regulation.
Collapse
Affiliation(s)
- Noélia Custódio
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Carmo-Fonseca
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
108
|
Stegeman R, Spreacker PJ, Swanson SK, Stephenson R, Florens L, Washburn MP, Weake VM. The Spliceosomal Protein SF3B5 is a Novel Component of Drosophila SAGA that Functions in Gene Expression Independent of Splicing. J Mol Biol 2016; 428:3632-49. [PMID: 27185460 PMCID: PMC5011000 DOI: 10.1016/j.jmb.2016.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/19/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
Abstract
The interaction between splicing factors and the transcriptional machinery provides an intriguing link between the coupled processes of transcription and splicing. Here, we show that the two components of the SF3B complex, SF3B3 and SF3B5, that form part of the U2 small nuclear ribonucleoprotein particle (snRNP) are also subunits of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator complex in Drosophila melanogaster. Whereas SF3B3 had previously been identified as a human SAGA subunit, SF3B5 had not been identified as a component of SAGA in any species. We show that SF3B3 and SF3B5 bind to SAGA independent of RNA and interact with multiple SAGA subunits including Sgf29 and Spt7 in a yeast two-hybrid assay. Through analysis of sf3b5 mutant flies, we show that SF3B5 is necessary for proper development and cell viability but not for histone acetylation. Although SF3B5 does not appear to function in SAGA's histone-modifying activities, SF3B5 is still required for expression of a subset of SAGA-regulated genes independent of splicing. Thus, our data support an independent function of SF3B5 in SAGA's transcription coactivator activity that is separate from its role in splicing.
Collapse
Affiliation(s)
- Rachel Stegeman
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Peyton J Spreacker
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Robert Stephenson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
109
|
Hur JK, Luo Y, Moon S, Ninova M, Marinov GK, Chung YD, Aravin AA. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev 2016; 30:840-55. [PMID: 27036967 PMCID: PMC4826399 DOI: 10.1101/gad.276030.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
Abstract
In this study, Hur et al. identified a novel function for the TREX complex, which is critical for pre-mRNA processing and mRNA nuclear export. They found that Thoc5 and other TREX components are essential for the biogenesis of noncoding RNA and delineate a novel mechanism for TREX loading on nascent RNA. The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis.
Collapse
Affiliation(s)
- Junho K Hur
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sungjin Moon
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Georgi K Marinov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yun D Chung
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
110
|
Ahn JH, Rechsteiner A, Strome S, Kelly WG. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006227. [PMID: 27541139 PMCID: PMC4991786 DOI: 10.1371/journal.pgen.1006227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/08/2016] [Indexed: 01/22/2023] Open
Abstract
The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation.
Collapse
Affiliation(s)
- Jeong H. Ahn
- Biology Department, Emory University, Atlanta, Georgia, United States of America
- Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Andreas Rechsteiner
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - William G. Kelly
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
111
|
Chen YCA, Stuwe E, Luo Y, Ninova M, Le Thomas A, Rozhavskaya E, Li S, Vempati S, Laver JD, Patel DJ, Smibert CA, Lipshitz HD, Toth KF, Aravin AA. Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors. Mol Cell 2016; 63:97-109. [PMID: 27292797 DOI: 10.1016/j.molcel.2016.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Small non-coding RNAs called piRNAs serve as guides for an adaptable immune system that represses transposable elements in germ cells of Metazoa. In Drosophila the RDC complex, composed of Rhino, Deadlock and Cutoff (Cuff) bind chromatin of dual-strand piRNA clusters, special genomic regions, which encode piRNA precursors. The RDC complex is required for transcription of piRNA precursors, though the mechanism by which it licenses transcription remained unknown. Here, we show that Cuff prevents premature termination of RNA polymerase II. Cuff prevents cleavage of nascent RNA at poly(A) sites by interfering with recruitment of the cleavage and polyadenylation specificity factor (CPSF) complex. Cuff also protects processed transcripts from degradation by the exonuclease Rat1. Our work reveals a conceptually different mechanism of transcriptional enhancement. In contrast to other factors that regulate termination by binding to specific signals on nascent RNA, the RDC complex inhibits termination in a chromatin-dependent and sequence-independent manner.
Collapse
Affiliation(s)
- Yung-Chia Ariel Chen
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Evelyn Stuwe
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA.,Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Yicheng Luo
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Maria Ninova
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Adrien Le Thomas
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Ekaterina Rozhavskaya
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Sisi Li
- Memorial Sloan-Kettering Cancer Center, Structural Biology Program, 1275 York Avenue, New York, NY, 10021 USA
| | - Sivani Vempati
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Dinshaw J Patel
- Memorial Sloan-Kettering Cancer Center, Structural Biology Program, 1275 York Avenue, New York, NY, 10021 USA
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Katalin Fejes Toth
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
112
|
mRNA-Associated Processes and Their Influence on Exon-Intron Structure in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:1617-26. [PMID: 27172210 PMCID: PMC4889658 DOI: 10.1534/g3.116.029231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mRNA-associated processes and gene structure in eukaryotes are typically treated as separate research subjects. Here, we bridge this separation and leverage the extensive multidisciplinary work on Drosophila melanogaster to examine the roles that capping, splicing, cleavage/polyadenylation, and telescripting (i.e., the protection of nascent transcripts from premature cleavage/polyadenylation by the splicing factor U1) might play in shaping exon-intron architecture in protein-coding genes. Our findings suggest that the distance between subsequent internal 5′ splice sites (5′ss) in Drosophila genes is constrained such that telescripting effects are maximized, in theory, and thus nascent transcripts are less vulnerable to premature termination. Exceptionally weak 5′ss and constraints on intron-exon size at the gene 5′ end also indicate that capping might enhance the recruitment of U1 and, in turn, promote telescripting at this location. Finally, a positive correlation between last exon length and last 5′ss strength suggests that optimal donor splice sites in the proximity of the pre-mRNA tail may inhibit the processing of downstream polyadenylation signals more than weak donor splice sites do. These findings corroborate and build upon previous experimental and computational studies on Drosophila genes. They support the possibility, hitherto scantly explored, that mRNA-associated processes impose significant constraints on the evolution of eukaryotic gene structure.
Collapse
|
113
|
Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:1513-23. [PMID: 27172183 PMCID: PMC4889648 DOI: 10.1534/g3.116.027508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways.
Collapse
|
114
|
Abstract
In the past decade, deep-sequencing approaches have greatly improved our knowledge of the genome's potential and have become a crucial milestone for new discoveries in genomics. Transcription is the first step of gene expression; therefore, the detection and measurement of transcription rates is of great interest. Here, a detailed protocol for global run-on sequencing (GRO-seq) library preparation from Drosophila ovaries is described. The method relies on rapid isolation of nuclei with halted transcription, then restarting transcription in physiological conditions in the presence of a labeled nucleotide. The newly transcribed nascent RNA is then isolated and cloned using a small RNA cloning protocol. Although it is time-consuming, the global run-on method allows the user to profile the position, orientation and amount of transcriptionally engaged RNA polymerases across the genome, therefore providing a snapshot of genome-wide transcription.
Collapse
|
115
|
Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene 2016; 587:107-19. [PMID: 27154819 DOI: 10.1016/j.gene.2016.04.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 01/04/2023]
Abstract
Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.
Collapse
|
116
|
Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues. Methods 2016; 98:134-142. [DOI: 10.1016/j.ymeth.2015.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/15/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022] Open
|
117
|
McMahon AC, Rahman R, Jin H, Shen JL, Fieldsend A, Luo W, Rosbash M. TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins. Cell 2016; 165:742-53. [PMID: 27040499 DOI: 10.1016/j.cell.2016.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
RNA transcripts are bound and regulated by RNA-binding proteins (RBPs). Current methods for identifying in vivo targets of an RBP are imperfect and not amenable to examining small numbers of cells. To address these issues, we developed TRIBE (targets of RNA-binding proteins identified by editing), a technique that couples an RBP to the catalytic domain of the Drosophila RNA-editing enzyme ADAR and expresses the fusion protein in vivo. RBP targets are marked with novel RNA editing events and identified by sequencing RNA. We have used TRIBE to identify the targets of three RBPs (Hrp48, dFMR1, and NonA). TRIBE compares favorably to other methods, including CLIP, and we have identified RBP targets from as little as 150 specific fly neurons. TRIBE can be performed without an antibody and in small numbers of specific cells.
Collapse
Affiliation(s)
- Aoife C McMahon
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Reazur Rahman
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Hua Jin
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - James L Shen
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Allegra Fieldsend
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Weifei Luo
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
118
|
Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 2016; 11:813-33. [PMID: 27010758 DOI: 10.1038/nprot.2016.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many features of how gene transcription occurs in human cells remain unclear, mainly because of a lack of quantitative approaches to follow genome transcription with nucleotide precision in vivo. Here we present a robust genome-wide approach for studying RNA polymerase II (Pol II)-mediated transcription in human cells at single-nucleotide resolution by native elongating transcript sequencing (NET-seq). Elongating RNA polymerase and the associated nascent RNA are prepared by cell fractionation, avoiding immunoprecipitation or RNA labeling. The 3' ends of nascent RNAs are captured through barcode linker ligation and converted into a DNA sequencing library. The identity and abundance of the 3' ends are determined by high-throughput sequencing, which reveals the exact genomic locations of Pol II. Human NET-seq can be applied to the study of the full spectrum of Pol II transcriptional activities, including the production of unstable RNAs and transcriptional pausing. By using the protocol described here, a NET-seq library can be obtained from human cells in 5 d.
Collapse
|
119
|
Wang HLV, Chekanova JA. Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:356-81. [PMID: 26924473 DOI: 10.1002/wrna.1340] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022]
Abstract
Eukaryotic genomes produce thousands of diverse small RNAs (smRNAs), which play vital roles in regulating gene expression in all conditions, including in survival of biotic and abiotic environmental stresses. SmRNA pathways intersect with most of the pathways regulating different steps in the life of a messenger RNA (mRNA), starting from transcription and ending at mRNA decay. SmRNAs function in both nuclear and cytoplasmic compartments; the regulation of mRNA stability and translation in the cytoplasm and the epigenetic regulation of gene expression in the nucleus are the main and best-known modes of smRNA action. However, recent evidence from animal systems indicates that smRNAs and RNA interference (RNAi) also participate in the regulation of alternative pre-mRNA splicing, one of the most crucial steps in the fast, efficient global reprogramming of gene expression required for survival under stress. Emerging evidence from bioinformatics studies indicates that a specific class of plant smRNAs, induced by various abiotic stresses, the sutr-siRNAs, has the potential to target regulatory regions within introns and thus may act in the regulation of splicing in response to stresses. This review summarizes the major types of plant smRNAs in the context of their mechanisms of action and also provides examples of their involvement in regulation of gene expression in response to environmental cues and developmental stresses. In addition, we describe current advances in our understanding of how smRNAs function in the regulation of pre-mRNA splicing. WIREs RNA 2016, 7:356-381. doi: 10.1002/wrna.1340 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
120
|
Melnik S, Caudron-Herger M, Brant L, Carr IM, Rippe K, Cook PR, Papantonis A. Isolation of the protein and RNA content of active sites of transcription from mammalian cells. Nat Protoc 2016; 11:553-65. [DOI: 10.1038/nprot.2016.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
121
|
Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, Gao X, Haug JS, Jaspersen SL, Shilatifard A. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. Mol Cell 2016; 60:435-45. [PMID: 26527278 DOI: 10.1016/j.molcel.2015.09.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.
Collapse
Affiliation(s)
- Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
122
|
Sorenson MR, Jha DK, Ucles SA, Flood DM, Strahl BD, Stevens SW, Kress TL. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol 2016; 13:412-26. [PMID: 26821844 DOI: 10.1080/15476286.2016.1144009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) - a residue methylated by Set2 during transcription elongation - exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast.
Collapse
Affiliation(s)
- Matthew R Sorenson
- a Graduate Program in Microbiology, The University of Texas at Austin , Austin , Texas , USA
| | - Deepak K Jha
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Stefanie A Ucles
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Danielle M Flood
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Brian D Strahl
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA.,d Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Scott W Stevens
- e Department of Molecular Biosciences , University of Texas at Austin , Austin , Texas , USA.,f Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin , Texas , USA
| | - Tracy L Kress
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| |
Collapse
|
123
|
Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis. THE PLANT CELL 2016; 28:55-73. [PMID: 26721863 PMCID: PMC4746689 DOI: 10.1105/tpc.15.00949] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 05/19/2023]
Abstract
Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.
Collapse
Affiliation(s)
- Zhe Wu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Danling Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoya Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jin Miao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lianfeng Gu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Kangtai Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center, Beijing 100101, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center, Beijing 100101, China
| |
Collapse
|
124
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
125
|
Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015; 84:165-98. [PMID: 26034889 DOI: 10.1146/annurev-biochem-060614-034242] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel;
| | | | | | | |
Collapse
|
126
|
Papasaikas P, Valcárcel J. The Spliceosome: The Ultimate RNA Chaperone and Sculptor. Trends Biochem Sci 2015; 41:33-45. [PMID: 26682498 DOI: 10.1016/j.tibs.2015.11.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023]
Abstract
The spliceosome, one of the most complex machineries of eukaryotic cells, removes intronic sequences from primary transcripts to generate functional messenger and long noncoding RNAs (lncRNA). Genetic, biochemical, and structural data reveal that the spliceosome is an RNA-based enzyme. Striking mechanistic and structural similarities strongly argue that pre-mRNA introns originated from self-catalytic group II ribozymes. However, in the spliceosome, protein components organize and activate the catalytic-site RNAs, and recognize and pair together splice sites at intron boundaries. The spliceosome is a dynamic, reversible, and flexible machine that chaperones small nuclear (sn) RNAs and a variety of pre-mRNA sequences into conformations that enable intron removal. This malleability likely contributes to the regulation of alternative splicing, a prevalent process contributing to cell differentiation, homeostasis, and disease.
Collapse
Affiliation(s)
- Panagiotis Papasaikas
- Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu-Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu-Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
127
|
Nuro-Gyina PK, Parvin JD. Roles for SUMO in pre-mRNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:105-12. [PMID: 26563097 DOI: 10.1002/wrna.1318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
When the small ubiquitin-like modifier (SUMO)-1 protein is localized on the genome, it is found on proteins bound to the promoters of the most highly active genes and on proteins bound to the DNA-encoding exons. Inhibition of the SUMO-1 modification leads to reductions in initiation of messenger RNA (mRNA) synthesis and splicing. In this review, we discuss what is known about the SUMOylation of factors involved in transcription initiation, pre-mRNA processing, and polyadenylation. We suggest a mechanism by which SUMO modifications of factors at the promoters of high-activity genes trigger the formation of an RNA polymerase II complex that coordinates and integrates the stimulatory signals for each process to catalyze an extremely high level of gene expression. WIREs RNA 2016, 7:105-112. doi: 10.1002/wrna.1318 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Patrick K Nuro-Gyina
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
128
|
Curado J, Iannone C, Tilgner H, Valcárcel J, Guigó R. Promoter-like epigenetic signatures in exons displaying cell type-specific splicing. Genome Biol 2015; 16:236. [PMID: 26498677 PMCID: PMC4619081 DOI: 10.1186/s13059-015-0797-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/05/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pre-mRNA splicing occurs mainly co-transcriptionally, and both nucleosome density and histone modifications have been proposed to play a role in splice site recognition and regulation. However, the extent and mechanisms behind this interplay remain poorly understood. RESULTS We use transcriptomic and epigenomic data generated by the ENCODE project to investigate the association between chromatin structure and alternative splicing. We find a strong and significant positive association between H3K9ac, H3K27ac, H3K4me3, epigenetic marks characteristic of active promoters, and exon inclusion in a small but well-defined class of exons, representing approximately 4 % of all regulated exons. These exons are systematically maintained at comparatively low levels of inclusion across cell types, but their inclusion is significantly enhanced in particular cell types when in physical proximity to active promoters. CONCLUSION Histone modifications and other chromatin features that activate transcription can be co-opted to participate in the regulation of the splicing of exons that are in physical proximity to promoter regions.
Collapse
Affiliation(s)
- Joao Curado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
- Graduate program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003, Porto, Portugal
| | - Camilla Iannone
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Hagen Tilgner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
- Department of Genetics, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305-5120, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, 08010, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain.
- Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
129
|
Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, Kuroda MI, French CA. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev 2015. [PMID: 26220994 PMCID: PMC4526735 DOI: 10.1101/gad.267583.115] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NUT midline carcinoma (NMC), a subtype of squamous cell cancer, is one of the most aggressive human solid malignancies known. NMC is driven by the creation of a translocation oncoprotein, BRD4-NUT, which blocks differentiation and drives growth of NMC cells. BRD4-NUT forms distinctive nuclear foci in patient tumors, which we found correlate with ∼100 unprecedented, hyperacetylated expanses of chromatin that reach up to 2 Mb in size. These "megadomains" appear to be the result of aberrant, feed-forward loops of acetylation and binding of acetylated histones that drive transcription of underlying DNA in NMC patient cells and naïve cells induced to express BRD4-NUT. Megadomain locations are typically cell lineage-specific; however, the cMYC and TP63 regions are targeted in all NMCs tested and play functional roles in tumor growth. Megadomains appear to originate from select pre-existing enhancers that progressively broaden but are ultimately delimited by topologically associating domain (TAD) boundaries. Therefore, our findings establish a basis for understanding the powerful role played by large-scale chromatin organization in normal and aberrant lineage-specific gene transcription.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Erica M Walsh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Wang
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Adlai R Grayson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter T Hsi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
130
|
Study of the activated macrophage transcriptome. Exp Mol Pathol 2015; 99:575-80. [PMID: 26439118 DOI: 10.1016/j.yexmp.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
Transcriptome analysis is a powerful modern tool to study possible alterations of gene expression associated with human diseases. It turns out to be especially promising for evaluation of gene expression changes in immunopathology, as immune cells have flexible gene expression patterns that can be switched in response to infection, inflammatory stimuli and exposure to various cytokines. In particular, macrophage polarization towards pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes can be successfully studied using the modern transcriptome analysis approaches. The two mostly used techniques for transcriptome analysis are microarray and next generation sequencing. In this review we will provide an overview of known gene expression changes associated with immunopathology and discuss the advantage and limitations of different methods of transcriptome analysis.
Collapse
|
131
|
Shen T, Han M, Wei G, Ni T. An intriguing RNA species--perspectives of circularized RNA. Protein Cell 2015; 6:871-80. [PMID: 26349458 PMCID: PMC4656206 DOI: 10.1007/s13238-015-0202-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/28/2015] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs), a kind of covalently closed RNA molecule, were used to be considered a type of by-products of mis-splicing events and were discovered sporadically due to the technological limits in the early years. With the great technological progress such as high-throughput next-generation sequencing, numerous circRNAs have recently been detected in many species. CircRNAs were expressed in a spatio-temporally specific manner, suggesting their regulatory functional potentials were overlooked previously. Intriguingly, some circRNAs were indeed found with critical physiological functions in certain circumstances. CircRNAs have a more stable molecular structure that can resist to exoribonuclease comparing to those linear ones, and their molecular functions include microRNA sponge, regulatory roles in transcription, mRNA traps that compete with linear splicing, templates for translation and possibly other presently unknown roles. Here, we review the discovery and characterization of circRNAs, the origination and formation mechanism, the physiological functions and the molecular roles, along with the methods for detection of circRNAs. We further look into the future and propose key questions to be answered for these magical RNA molecules.
Collapse
Affiliation(s)
- Ting Shen
- MOE Key Laboratory of Contemporary Anthropology & State Key Laboratory of Genetics Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Miao Han
- MOE Key Laboratory of Contemporary Anthropology & State Key Laboratory of Genetics Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Gang Wei
- MOE Key Laboratory of Contemporary Anthropology & State Key Laboratory of Genetics Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ting Ni
- MOE Key Laboratory of Contemporary Anthropology & State Key Laboratory of Genetics Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
132
|
Chromatin, DNA structure and alternative splicing. FEBS Lett 2015; 589:3370-8. [PMID: 26296319 DOI: 10.1016/j.febslet.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.
Collapse
|
133
|
Chen FX, Woodfin AR, Gardini A, Rickels RA, Marshall SA, Smith ER, Shiekhattar R, Shilatifard A. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell 2015; 162:1003-15. [PMID: 26279188 DOI: 10.1016/j.cell.2015.07.042] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/16/2015] [Accepted: 07/02/2015] [Indexed: 10/25/2022]
Abstract
The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Alessandro Gardini
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
134
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
135
|
Kwok RS, Li YH, Lei AJ, Edery I, Chiu JC. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila. PLoS Genet 2015; 11:e1005307. [PMID: 26132408 PMCID: PMC4488936 DOI: 10.1371/journal.pgen.1005307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. The circadian clock is an endogenous timing system that enables organisms to anticipate daily changes in their external environment and temporally coordinate key biological functions that are important to their survival. Central to Drosophila clockwork is a key transcription factor CLOCK (CLK). CLK activates expression of target genes only during specific parts of the day, thereby orchestrating rhythmic expression of hundreds of clock-controlled genes, which consequently manifest into daily rhythms in physiology and behavior. In this study, we demonstrated that the Brahma (Brm) chromatin-remodeling protein interacts with CLK and fine-tune the levels of CLK-dependent transcription to maintain the robustness of the circadian clock. Specifically, we uncovered two distinct but collaborative functions of Brm. Brm possesses a non-catalytic function that negatively regulates the binding of CLK to target genes and limits transcriptional output, likely by recruiting repressive protein complexes. Catalytically, Brm functions by condensing the chromatin at CLK target genes, specifically when transcription is active. This serves to precisely control the level of repressive factors likely recruited by Brm as well as other transcriptional regulators. By disentangling these two roles of Brm, our study uncovered a multi-layered mechanism in which a chromatin remodeler regulates the circadian clock.
Collapse
Affiliation(s)
- Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Anna J. Lei
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Isaac Edery
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
136
|
Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol 2015; 33:722-9. [DOI: 10.1038/nbt.3269] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/22/2015] [Indexed: 12/29/2022]
|
137
|
Abstract
The human genome sequence has profoundly altered our understanding of biology, human diversity, and disease. The path from the first draft sequence to our nascent era of personal genomes and genomic medicine has been made possible only because of the extraordinary advancements in DNA sequencing technologies over the past 10 years. Here, we discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application.
Collapse
Affiliation(s)
- Jason A Reuter
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Damek V Spacek
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
138
|
Herzel L, Neugebauer KM. Quantification of co-transcriptional splicing from RNA-Seq data. Methods 2015; 85:36-43. [PMID: 25929182 DOI: 10.1016/j.ymeth.2015.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
During gene expression, protein-coding transcripts are shaped by multiple processing events: 5' end capping, pre-mRNA splicing, RNA editing, and 3' end cleavage and polyadenylation. These events are required to produce mature mRNA, which can be subsequently translated. Nearly all of these RNA processing steps occur during transcription, while the nascent RNA is still attached to the DNA template by RNA polymerase II (i.e. co-transcriptionally). Polyadenylation occurs after 3' end cleavage or post-transcriptionally. Pre-mRNA splicing - the removal of introns and ligation of exons - can be initiated and concluded co-transcriptionally, although this is not strictly required. Recently, a number of studies using global methods have shown that the majority of splicing is co-transcriptional, yet not all published studies agree in their conclusions. Short read sequencing of RNA (RNA-Seq) is the prevailing approach to measuring splicing levels in nascent RNA, mRNA or total RNA. Here, we compare four different strategies for analyzing and quantifying co-transcriptional splicing. To do so, we reanalyze two nascent RNA-Seq datasets of the same species, but different cell type and RNA isolation procedure. Average co-transcriptional splicing values calculated on a per intron basis are similar, independent of the strategy used. We emphasize the technical requirements for identifying co-transcriptional splicing events with high confidence, e.g. how to calculate co-transcriptional splicing from nascent RNA- versus mRNA-Seq data, the number of biological replicates needed, depletion of polyA+RNA, and appropriate normalization. Finally, we present guidelines for planning a nascent RNA-Seq experiment.
Collapse
Affiliation(s)
- Lydia Herzel
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
139
|
Caudron-Herger M, Cook PR, Rippe K, Papantonis A. Dissecting the nascent human transcriptome by analysing the RNA content of transcription factories. Nucleic Acids Res 2015; 43:e95. [PMID: 25897132 PMCID: PMC4538806 DOI: 10.1093/nar/gkv390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/13/2015] [Indexed: 11/21/2022] Open
Abstract
While mapping total and poly-adenylated human transcriptomes has now become routine, characterizing nascent transcripts remains challenging, largely because nascent RNAs have such short half-lives. Here, we describe a simple, fast and cost-effective method to isolate RNA associated with transcription factories, the sites responsible for the majority of nuclear transcription. Following stimulation of human endothelial cells with the pro-inflammatory cytokine TNFα, we isolate and analyse the RNA content of factories by sequencing. Comparison with total, poly(A)+ and chromatin RNA fractions reveals that sequencing of purified factory RNA maps the complete nascent transcriptome; it is rich in intronic unprocessed transcript, as well as long intergenic non-coding (lincRNAs) and enhancer-associated RNAs (eRNAs), micro-RNA precursors and repeat-derived RNAs. Hence, we verify that transcription factories produce most nascent RNA and confer a regulatory role via their association with a set of specifically-retained non-coding transcripts.
Collapse
Affiliation(s)
| | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, UK
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, D-69120 Heidelberg, Germany
| | - Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, UK Center for Molecular Medicine, University of Cologne, D-50931 Cologne, Germany
| |
Collapse
|
140
|
Poly(A) Polymerase and the Nuclear Poly(A) Binding Protein, PABPN1, Coordinate the Splicing and Degradation of a Subset of Human Pre-mRNAs. Mol Cell Biol 2015; 35:2218-30. [PMID: 25896913 PMCID: PMC4456446 DOI: 10.1128/mcb.00123-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
Most human protein-encoding transcripts contain multiple introns that are removed by splicing. Although splicing catalysis is frequently cotranscriptional, some introns are excised after polyadenylation. Accumulating evidence suggests that delayed splicing has regulatory potential, but the mechanisms are still not well understood. Here we identify a terminal poly(A) tail as being important for a subset of intron excision events that follow cleavage and polyadenylation. In these cases, splicing is promoted by the nuclear poly(A) binding protein, PABPN1, and poly(A) polymerase (PAP). PABPN1 promotes intron excision in the context of 3′-end polyadenylation but not when bound to internal A-tracts. Importantly, the ability of PABPN1 to promote splicing requires its RNA binding and, to a lesser extent, PAP-stimulatory functions. Interestingly, an N-terminal alanine expansion in PABPN1 that is thought to cause oculopharyngeal muscular dystrophy cannot completely rescue the effects of PABPN1 depletion, suggesting that this pathway may have relevance to disease. Finally, inefficient polyadenylation is associated with impaired recruitment of splicing factors to affected introns, which are consequently degraded by the exosome. Our studies uncover a new function for polyadenylation in controlling the expression of a subset of human genes via pre-mRNA splicing.
Collapse
|
141
|
Nussbacher JK, Batra R, Lagier-Tourenne C, Yeo GW. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 2015; 38:226-36. [PMID: 25765321 PMCID: PMC4403644 DOI: 10.1016/j.tins.2015.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
As critical players in gene regulation, RNA binding proteins (RBPs) are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing (Seq) methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and enable us to determine the widespread influence of the multifunctional RBPs on their targets. Given that the disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RBPs in disease pathogenesis.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ranjan Batra
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Department of Physiology, National University of Singapore, Singapore.
| |
Collapse
|
142
|
Martinho RG, Guilgur LG, Prudêncio P. How gene expression in fast-proliferating cells keeps pace. Bioessays 2015; 37:514-24. [PMID: 25823409 DOI: 10.1002/bies.201400195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of living organisms requires a precise coordination of all basic cellular processes, in space and time. Early embryogenesis of most species with externally deposited eggs starts with a series of extremely fast cleavage cycles. These divisions have a strong influence on gene expression as mitosis represses transcription and pre-mRNA processing. In this review, we will describe the distinct adaptations for efficient gene expression and discuss the emerging role of the multifunctional NineTeen Complex (NTC) in gene expression and genomic stability during fast proliferation.
Collapse
Affiliation(s)
- Rui G Martinho
- Departamento de Ciências Biomédicas e Medicina, Regenerative Medicine Program, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
143
|
Pulyakhina I, Gazzoli I, 't Hoen PAC, Verwey N, den Dunnen JT, den Dunnen J, Aartsma-Rus A, Laros JFJ. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing. Nucleic Acids Res 2015; 43:e80. [PMID: 25800735 PMCID: PMC4499118 DOI: 10.1093/nar/gkv242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing is a powerful mechanism present in eukaryotic cells to obtain a wide range of transcripts and protein isoforms from a relatively small number of genes. The mechanisms regulating (alternative) splicing and the paradigm of consecutive splicing have recently been challenged, especially for genes with a large number of introns. RNA-Seq, a powerful technology using deep sequencing in order to determine transcript structure and expression levels, is usually performed on mature mRNA, therefore not allowing detailed analysis of splicing progression. Sequencing pre-mRNA at different stages of splicing potentially provides insight into mRNA maturation. Although the number of tools that analyze total and cytoplasmic RNA in order to elucidate the transcriptome composition is rapidly growing, there are no tools specifically designed for the analysis of nuclear RNA (which contains mixtures of pre- and mature mRNA). We developed dedicated algorithms to investigate the splicing process. In this paper, we present a new classification of RNA-Seq reads based on three major stages of splicing: pre-, intermediate- and post-splicing. Applying this novel classification we demonstrate the possibility to analyze the order of splicing. Furthermore, we uncover the potential to investigate the multi-step nature of splicing, assessing various types of recursive splicing events. We provide the data that gives biological insight into the order of splicing, show that non-sequential splicing of certain introns is reproducible and coinciding in multiple cell lines. We validated our observations with independent experimental technologies and showed the reliability of our method. The pipeline, named SplicePie, is freely available at: https://github.com/pulyakhina/splicing_analysis_pipeline. The example data can be found at: https://barmsijs.lumc.nl/HG/irina/example_data.tar.gz.
Collapse
Affiliation(s)
- Irina Pulyakhina
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabella Gazzoli
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nisha Verwey
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan den Dunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
144
|
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
145
|
Iannone C, Pohl A, Papasaikas P, Soronellas D, Vicent GP, Beato M, ValcáRcel J. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells. RNA (NEW YORK, N.Y.) 2015; 21:360-74. [PMID: 25589247 PMCID: PMC4338333 DOI: 10.1261/rna.048843.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 05/27/2023]
Abstract
Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.
Collapse
|
146
|
Chen F, Gao X, Shilatifard A. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide. Genes Dev 2015; 29:39-47. [PMID: 25561494 PMCID: PMC4281563 DOI: 10.1101/gad.246173.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome-wide studies have demonstrated that the phenomenon of promoter-bound Pol II pausing is widespread, especially for genes involved in developmental and stimulus-responsive pathways. Here, Chen et al. used the small molecule triptolide (TPL), an XPB/TFIIH inhibitor, to block transcriptional initiation and then measured Pol II occupancy by ChIP-seq. This revealed that most genes with paused Pol II show significant clearance of Pol II during the period of TPL treatment. They also identified a group of genes with unexpectedly stably paused Pol II, with unchanged Pol II occupancy during 1 h of inhibition of initiation. Transcription by RNA polymerase II (Pol II) in metazoans is regulated in several steps, including preinitiation complex (PIC) formation, initiation, Pol II escape, productive elongation, cotranscriptional RNA processing, and termination. Genome-wide studies have demonstrated that the phenomenon of promoter-bound Pol II pausing is widespread, especially for genes involved in developmental and stimulus-responsive pathways. However, a mechanistic understanding of the paused Pol II state at promoters is limited. For example, at a global level, it is unclear to what extent the engaged paused Pol II is stably tethered to the promoter or undergoes rapid cycles of initiation and termination. Here we used the small molecule triptolide (TPL), an XPB/TFIIH inhibitor, to block transcriptional initiation and then measured Pol II occupancy by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq). This inhibition of initiation enabled us to investigate different states of paused Pol II. Specifically, our global analysis revealed that most genes with paused Pol II, as defined by a pausing index, show significant clearance of Pol II during the period of TPL treatment. Our study further identified a group of genes with unexpectedly stably paused Pol II, with unchanged Pol II occupancy even after 1 h of inhibition of initiation. This group of genes constitutes a small portion of all paused genes defined by the conventional criterion of pausing index. These findings could pave the way for evaluating the contribution of different elongation/pausing factors on different states of Pol II pausing in developmental and other stimulus-responsive pathways.
Collapse
Affiliation(s)
- Fei Chen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Xin Gao
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
147
|
Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev 2015; 29:63-80. [PMID: 25561496 PMCID: PMC4281565 DOI: 10.1101/gad.247361.114] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts. Boutz et al. identified thousands of these “detained” introns (DIs) in human and mouse cell lines as well as the adult mouse liver. Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs, altering transcript pools of >300 genes. Srsf4 regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
Collapse
Affiliation(s)
- Paul L Boutz
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Phillip A Sharp
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
148
|
Tian D, Solodin NM, Rajbhandari P, Bjorklund K, Alarid ET, Kreeger PK. A kinetic model identifies phosphorylated estrogen receptor-α (ERα) as a critical regulator of ERα dynamics in breast cancer. FASEB J 2015; 29:2022-31. [PMID: 25648997 DOI: 10.1096/fj.14-265637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Abstract
Receptor levels are a key mechanism by which cells regulate their response to stimuli. The levels of estrogen receptor-α (ERα) impact breast cancer cell proliferation and are used to predict prognosis and sensitivity to endocrine therapy. Despite the clinical application of this information, it remains unclear how different cellular processes interact as a system to control ERα levels. To address this question, experimental results from the ERα-positive human breast cancer cell line (MCF-7) treated with 17-β-estradiol or vehicle control were used to develop a mass-action kinetic model of ERα regulation. Model analysis determined that RNA dynamics could be captured through phosphorylated ERα (pERα)-dependent feedback on transcription. Experimental analysis confirmed that pERα-S118 binds to the estrogen receptor-1 (ESR1) promoter, suggesting that pERα can feedback on ESR1 transcription. Protein dynamics required a separate mechanism in which the degradation rate for pERα was 8.3-fold higher than nonphosphorylated ERα. Using a model with both mechanisms, the root mean square error was 0.078. Sensitivity analysis of this combined model determined that while multiple mechanisms regulate ERα levels, pERα-dependent feedback elicited the strongest effect. Combined, our computational and experimental results identify phosphorylation of ERα as a critical decision point that coordinates the cellular circuitry to regulate ERα levels.
Collapse
Affiliation(s)
- Dan Tian
- *Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Natalia M Solodin
- *Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Prashant Rajbhandari
- *Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Kelsi Bjorklund
- *Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Elaine T Alarid
- *Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Pamela K Kreeger
- *Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
149
|
Fong N, Kim H, Zhou Y, Ji X, Qiu J, Saldi T, Diener K, Jones K, Fu XD, Bentley DL. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev 2015; 28:2663-76. [PMID: 25452276 PMCID: PMC4248296 DOI: 10.1101/gad.252106.114] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fong et al. examined cotranscriptional pre-mRNA splicing using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing and often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing. Alternative splicing modulates expression of most human genes. The kinetic model of cotranscriptional splicing suggests that slow elongation expands and that fast elongation compresses the “window of opportunity” for recognition of upstream splice sites, thereby increasing or decreasing inclusion of alternative exons. We tested the model using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing, frequently altering exon inclusion and intron retention in ways not predicted by the model. Cassette exons included by slow and excluded by fast elongation (type I) have weaker splice sites, shorter flanking introns, and distinct sequence motifs relative to “slow-excluded” and “fast-included” exons (type II). Many rate-sensitive exons are misspliced in tumors. Unexpectedly, slow and fast elongation often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing.
Collapse
Affiliation(s)
- Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hyunmin Kim
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Xiong Ji
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Katrina Diener
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ken Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|
150
|
Rieder LE, Savva YA, Reyna MA, Chang YJ, Dorsky JS, Rezaei A, Reenan RA. Dynamic response of RNA editing to temperature in Drosophila. BMC Biol 2015; 13:1. [PMID: 25555396 PMCID: PMC4299485 DOI: 10.1186/s12915-014-0111-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Background Adenosine-to-inosine RNA editing is a highly conserved process that post-transcriptionally modifies mRNA, generating proteomic diversity, particularly within the nervous system of metazoans. Transcripts encoding proteins involved in neurotransmission predominate as targets of such modifications. Previous reports suggest that RNA editing is responsive to environmental inputs in the form of temperature alterations. However, the molecular determinants underlying temperature-dependent RNA editing responses are not well understood. Results Using the poikilotherm Drosophila, we show that acute temperature alterations within a normal physiological range result in substantial changes in RNA editing levels. Our examination of particular sites reveals diversity in the patterns with which editing responds to temperature, and these patterns are conserved across five species of Drosophilidae representing over 10 million years of divergence. In addition, we show that expression of the editing enzyme, ADAR (adenosine deaminase acting on RNA), is dramatically decreased at elevated temperatures, partially, but not fully, explaining some target responses to temperature. Interestingly, this reduction in editing enzyme levels at elevated temperature is only partially reversed by a return to lower temperatures. Lastly, we show that engineered structural variants of the most temperature-sensitive editing site, in a sodium channel transcript, perturb thermal responsiveness in RNA editing profile for a particular RNA structure. Conclusions Our results suggest that the RNA editing process responds to temperature alterations via two distinct molecular mechanisms: through intrinsic thermo-sensitivity of the RNA structures that direct editing, and due to temperature sensitive expression or stability of the RNA editing enzyme. Environmental cues, in this case temperature, rapidly reprogram the Drosophila transcriptome through RNA editing, presumably resulting in altered proteomic ratios of edited and unedited proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0111-3) contains supplementary material, which is available to authorized users.
Collapse
|