101
|
Abstract
The spatial organization of genomes is studied using microscopy- and chromosome conformation capture (3C)-based methods. The two types of methods produce data that are often consistent, but there are cases where they appear discordant. These cases provide opportunities to derive better models of chromatin folding, which can reconcile the datasets.
Collapse
Affiliation(s)
- Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605-0103, USA
| |
Collapse
|
102
|
Denker A, de Laat W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 2017; 30:1357-82. [PMID: 27340173 PMCID: PMC4926860 DOI: 10.1101/gad.281964.116] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The relevance of three-dimensional (3D) genome organization for transcriptional regulation and thereby for cellular fate at large is now widely accepted. Our understanding of the fascinating architecture underlying this function is based on microscopy studies as well as the chromosome conformation capture (3C) methods, which entered the stage at the beginning of the millennium. The first decade of 3C methods rendered unprecedented insights into genome topology. Here, we provide an update of developments and discoveries made over the more recent years. As we discuss, established and newly developed experimental and computational methods enabled identification of novel, functionally important chromosome structures. Regulatory and architectural chromatin loops throughout the genome are being cataloged and compared between cell types, revealing tissue invariant and developmentally dynamic loops. Architectural proteins shaping the genome were disclosed, and their mode of action is being uncovered. We explain how more detailed insights into the 3D genome increase our understanding of transcriptional regulation in development and misregulation in disease. Finally, to help researchers in choosing the approach best tailored for their specific research question, we explain the differences and commonalities between the various 3C-derived methods.
Collapse
Affiliation(s)
- Annette Denker
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Wouter de Laat
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| |
Collapse
|
103
|
Fujita T, Yuno M, Suzuki Y, Sugano S, Fujii H. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells 2017; 22:506-520. [PMID: 28474362 DOI: 10.1111/gtc.12492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/23/2023]
Abstract
Physical interactions between genomic regions play critical roles in the regulation of genome functions, including gene expression. Here, we show the feasibility of using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) in combination with next-generation sequencing (NGS) (enChIP-Seq) to detect such interactions. In enChIP-Seq, the target genomic region is captured by an engineered DNA-binding complex, such as a clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 and a single guide RNA. Subsequently, the genomic regions that physically interact with the target genomic region in the captured complex are sequenced by NGS. Using enChIP-Seq, we found that the 5'HS5 locus, which is involved in the regulation of globin genes expression at the β-globin locus, interacts with multiple genomic regions upon erythroid differentiation in the human erythroleukemia cell line K562. Genes near the genomic regions inducibly associated with the 5'HS5 locus were transcriptionally up-regulated in the differentiated state, suggesting the existence of a coordinated transcription mechanism mediated by physical interactions between these loci. Thus, enChIP-Seq might be a potentially useful tool for detecting physical interactions between genomic regions in a nonbiased manner, which would facilitate elucidation of the molecular mechanisms underlying regulation of genome functions.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
104
|
Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 2017; 6:e25776. [PMID: 28467304 PMCID: PMC5446243 DOI: 10.7554/elife.25776] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022] Open
Abstract
Folding of mammalian genomes into spatial domains is critical for gene regulation. The insulator protein CTCF and cohesin control domain location by folding domains into loop structures, which are widely thought to be stable. Combining genomic and biochemical approaches we show that CTCF and cohesin co-occupy the same sites and physically interact as a biochemically stable complex. However, using single-molecule imaging we find that CTCF binds chromatin much more dynamically than cohesin (~1-2 min vs. ~22 min residence time). Moreover, after unbinding, CTCF quickly rebinds another cognate site unlike cohesin for which the search process is long (~1 min vs. ~33 min). Thus, CTCF and cohesin form a rapidly exchanging 'dynamic complex' rather than a typical stable complex. Since CTCF and cohesin are required for loop domain formation, our results suggest that chromatin loops are dynamic and frequently break and reform throughout the cell cycle.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Iryna Pustova
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
105
|
|
106
|
Vera M, Biswas J, Senecal A, Singer RH, Park HY. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu Rev Genet 2017; 50:267-291. [PMID: 27893965 DOI: 10.1146/annurev-genet-120215-034854] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.
Collapse
Affiliation(s)
- Maria Vera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , , .,Janelia Research Campus of the HHMI, Ashburn, Virginia 20147
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea; .,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
107
|
Silva-Santiago E, Rivera-Mulia JC, Aranda-Anzaldo A. The Set of Structural DNA-Nuclear Matrix Interactions in Neurons Is Cell-Type Specific and Rather Independent of Functional Constraints. J Cell Biochem 2017; 118:2151-2160. [DOI: 10.1002/jcb.25852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Evangelina Silva-Santiago
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| | - Juan Carlos Rivera-Mulia
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| | - Armando Aranda-Anzaldo
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| |
Collapse
|
108
|
Le Dily F, Serra F, Marti-Renom MA. 3D modeling of chromatin structure: is there a way to integrate and reconcile single cell and population experimental data? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- François Le Dily
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Dr. Aiguader 88; Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
| | - François Serra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Dr. Aiguader 88; Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
- Structural Genomic Group, CNAG-CRG, Centre for Genomic Regulation (CRG); The Barcelona Institute of Science and Technology, Baldiri Reixac 4; Barcelona Spain
| | - Marc A. Marti-Renom
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Dr. Aiguader 88; Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
- Structural Genomic Group, CNAG-CRG, Centre for Genomic Regulation (CRG); The Barcelona Institute of Science and Technology, Baldiri Reixac 4; Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23; Barcelona Spain
| |
Collapse
|
109
|
Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM). Nature 2017; 543:519-524. [PMID: 28273065 PMCID: PMC5366070 DOI: 10.1038/nature21411] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Abstract
The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. We developed a novel genome-wide method, Genome Architecture Mapping (GAM), for measuring chromatin contacts, and other features of three-dimensional chromatin topology, based on sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify an enrichment for specific interactions between active genes and enhancers across very large genomic distances, using a mathematical model ‘SLICE’ (Statistical Inference of Co-segregation). GAM also reveals an abundance of three-way contacts genome-wide, especially between regions that are highly transcribed or contain super-enhancers, highlighting a previously inaccessible complexity in genome architecture and a major role for gene-expression specific contacts in organizing the genome in mammalian nuclei.
Collapse
|
110
|
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 2017; 8:14725. [PMID: 28290446 PMCID: PMC5424063 DOI: 10.1038/ncomms14725] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Imaging chromatin dynamics is crucial to understand genome organization and its role in transcriptional regulation. Recently, the RNA-guidable feature of CRISPR-Cas9 has been utilized for imaging of chromatin within live cells. However, these methods are mostly applicable to highly repetitive regions, whereas imaging regions with low or no repeats remains as a challenge. To address this challenge, we design single-guide RNAs (sgRNAs) integrated with up to 16 MS2 binding motifs to enable robust fluorescent signal amplification. These engineered sgRNAs enable multicolour labelling of low-repeat-containing regions using a single sgRNA and of non-repetitive regions with as few as four unique sgRNAs. We achieve tracking of native chromatin loci throughout the cell cycle and determine differential positioning of transcriptionally active and inactive regions in the nucleus. These results demonstrate the feasibility of our approach to monitor the position and dynamics of both repetitive and non-repetitive genomic regions in live cells.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mahmut Parlak
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jigar Bandaria
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ritambhara Singh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
111
|
Ranade D, Koul S, Thompson J, Prasad KB, Sengupta K. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma 2017; 126:223-244. [PMID: 26921073 PMCID: PMC5371638 DOI: 10.1007/s00412-016-0580-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Chromosome territories assume non-random positions in the interphase nucleus with gene-rich chromosomes localized toward the nuclear interior and gene-poor chromosome territories toward the nuclear periphery. Lamins are intermediate filament proteins of the inner nuclear membrane required for the maintenance of nuclear structure and function. Here, we show using whole-genome expression profiling that Lamin A/C or Lamin B2 depletion in an otherwise diploid colorectal cancer cell line (DLD1) deregulates transcript levels from specific chromosomes. Further, three-dimensional fluorescence in situ hybridization (3D-FISH) analyses of a subset of these transcriptionally deregulated chromosome territories revealed that the diploid chromosome territories in Lamin-depleted cells largely maintain conserved positions in the interphase nucleus in a gene-density-dependent manner. In addition, chromosomal aneuploidies were induced in ~25 % of Lamin A/C or Lamin B2-depleted cells. Sub-populations of these aneuploid cells consistently showed a mislocalization of the gene-rich aneuploid chromosome 19 territory toward the nuclear periphery, while gene-poor aneuploid chromosome 18 territory was mislocalized toward the nuclear interior predominantly upon Lamin B2 than Lamin A/C depletion. In addition, a candidate gene locus ZNF570 (Chr.19q13.12) significantly overexpressed upon Lamin B2 depletion was remarkably repositioned away from the nuclear lamina. Taken together, our studies strongly implicate an overarching role for Lamin B2 in the maintenance of nuclear architecture since loss of Lamin B2 relieves the spatial positional constraints required for maintaining conserved localization of aneuploid chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Devika Ranade
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Shivsmriti Koul
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Joyce Thompson
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kumar Brajesh Prasad
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
112
|
Simon CS, Downes DJ, Gosden ME, Telenius J, Higgs DR, Hughes JR, Costello I, Bikoff EK, Robertson EJ. Functional characterisation of cis-regulatory elements governing dynamic Eomes expression in the early mouse embryo. Development 2017; 144:1249-1260. [PMID: 28174238 PMCID: PMC5399628 DOI: 10.1242/dev.147322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022]
Abstract
The T-box transcription factor (TF) Eomes is a key regulator of cell fate decisions during early mouse development. The cis-acting regulatory elements that direct expression in the anterior visceral endoderm (AVE), primitive streak (PS) and definitive endoderm (DE) have yet to be defined. Here, we identified three gene-proximal enhancer-like sequences (PSE_a, PSE_b and VPE) that faithfully activate tissue-specific expression in transgenic embryos. However, targeted deletion experiments demonstrate that PSE_a and PSE_b are dispensable, and only VPE is required for optimal Eomes expression in vivo. Embryos lacking this enhancer display variably penetrant defects in anterior-posterior axis orientation and DE formation. Chromosome conformation capture experiments reveal VPE-promoter interactions in embryonic stem cells (ESCs), prior to gene activation. The locus resides in a large (500 kb) pre-formed compartment in ESCs and activation during DE differentiation occurs in the absence of 3D structural changes. ATAC-seq analysis reveals that VPE, PSE_a and four additional putative enhancers display increased chromatin accessibility in DE that is associated with Smad2/3 binding coincident with transcriptional activation. By contrast, activation of the Eomes target genes Foxa2 and Lhx1 is associated with higher order chromatin reorganisation. Thus, diverse regulatory mechanisms govern activation of lineage specifying TFs during early development. Summary: Expression of the mouse T-box factor Eomes is controlled by a key gene-proximal enhancer-like element, with changes in chromatin accessibility influencing its activity in definitive endoderm.
Collapse
Affiliation(s)
- Claire S Simon
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthew E Gosden
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Ita Costello
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
113
|
Sewitz SA, Fahmi Z, Lipkow K. Higher order assembly: folding the chromosome. Curr Opin Struct Biol 2017; 42:162-168. [DOI: 10.1016/j.sbi.2017.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
|
114
|
Silva-Santiago E, Pardo JP, Hernández-Muñoz R, Aranda-Anzaldo A. The nuclear higher-order structure defined by the set of topological relationships between DNA and the nuclear matrix is species-specific in hepatocytes. Gene 2017; 597:40-48. [PMID: 27771449 DOI: 10.1016/j.gene.2016.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific.
Collapse
Affiliation(s)
- Evangelina Silva-Santiago
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Edo. Méx., Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, 04510, Ciudad de México, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, 04510, Ciudad de México, Mexico
| | - Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Edo. Méx., Mexico.
| |
Collapse
|
115
|
Brant L, Georgomanolis T, Nikolic M, Brackley CA, Kolovos P, van Ijcken W, Grosveld FG, Marenduzzo D, Papantonis A. Exploiting native forces to capture chromosome conformation in mammalian cell nuclei. Mol Syst Biol 2016; 12:891. [PMID: 27940490 PMCID: PMC5199122 DOI: 10.15252/msb.20167311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian interphase chromosomes fold into a multitude of loops to fit the confines of cell nuclei, and looping is tightly linked to regulated function. Chromosome conformation capture (3C) technology has significantly advanced our understanding of this structure‐to‐function relationship. However, all 3C‐based methods rely on chemical cross‐linking to stabilize spatial interactions. This step remains a “black box” as regards the biases it may introduce, and some discrepancies between microscopy and 3C studies have now been reported. To address these concerns, we developed “i3C”, a novel approach for capturing spatial interactions without a need for cross‐linking. We apply i3C to intact nuclei of living cells and exploit native forces that stabilize chromatin folding. Using different cell types and loci, computational modeling, and a methylation‐based orthogonal validation method, “TALE‐iD”, we show that native interactions resemble cross‐linked ones, but display improved signal‐to‐noise ratios and are more focal on regulatory elements and CTCF sites, while strictly abiding to topologically associating domain restrictions.
Collapse
Affiliation(s)
- Lilija Brant
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Milos Nikolic
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Chris A Brackley
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Petros Kolovos
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Frank G Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
116
|
Wang XQD, Dostie J. Chromosome folding and its regulation in health and disease. Curr Opin Genet Dev 2016; 43:23-30. [PMID: 27940207 DOI: 10.1016/j.gde.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/23/2022]
Abstract
There are many ways in which cells may not adequately behave or respond to their environment, and the molecular mechanisms leading to these defects are as diverse as they are many. In this review, we report on how spatial chromatin organization contributes to the proper expression of genes, relating how CTCF-one of its main architects-contributes to gene regulation. We also touch on the emerging role of long noncoding RNAs in shaping chromatin organization and activity. The HOX gene clusters have been used as paradigm in the study of various biological pathways, and the overview we provide gives emphasis to what research on these loci has revealed about chromatin architecture and its regulation in the control of gene expression.
Collapse
Affiliation(s)
- Xue Qing David Wang
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, 3655 Promenade Sir-William-Osler, Room 815A, Montréal, Québec, Canada H3G1Y6.
| |
Collapse
|
117
|
Abstract
Chromosomes of eukaryotes adopt highly dynamic and complex hierarchical structures in the nucleus. The three-dimensional (3D) organization of chromosomes profoundly affects DNA replication, transcription and the repair of DNA damage. Thus, a thorough understanding of nuclear architecture is fundamental to the study of nuclear processes in eukaryotic cells. Recent years have seen rapid proliferation of technologies to investigate genome organization and function. Here, we review experimental and computational methodologies for 3D genome analysis, with special focus on recent advances in high-throughput chromatin conformation capture (3C) techniques and data analysis.
Collapse
Affiliation(s)
- Anthony D Schmitt
- Ludwig Institute for Cancer Research and the University of California, San Diego (UCSD) Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ming Hu
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, 650 First Avenue, Room 540, New York, New York 10016, USA
- Present address: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego (UCSD) School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
118
|
Olivares-Chauvet P, Mukamel Z, Lifshitz A, Schwartzman O, Elkayam NO, Lubling Y, Deikus G, Sebra RP, Tanay A. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 2016; 540:296-300. [DOI: 10.1038/nature20158] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
|
119
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:145-155. [PMID: 28035245 PMCID: PMC5153831 DOI: 10.1007/s12551-016-0241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
120
|
Abstract
Chromosome conformation capture (3C)-based techniques have revolutionized the field of nuclear organization, partly replacing DNA FISH as the method of choice for studying three-dimensional chromosome architecture. Although DNA FISH is commonly used for confirming 3C-based findings, the two techniques are conceptually and technically different and comparing their results is not trivial. Here, we discuss both 3C-based techniques and DNA FISH approaches to highlight their similarities and differences. We then describe the technical biases that affect each approach, and review the available reports that address their compatibility. Finally, we propose an experimental scheme for comparison of 3C and DNA FISH results.
Collapse
Affiliation(s)
- Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Edith Heard
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, Cedex 05, France. .,Collège de France, Paris, 75005, France.
| |
Collapse
|
121
|
|
122
|
Abstract
The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, which have multiple roles including positioning the nucleus, maintaining its structural organization, and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse new and stimulating results relating to nuclear organization and genome function from across kingdoms were presented in a session stream entitled “Dynamic Organization of the Nucleus” at this year's Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first session stream run by the Nuclear Dynamics Special Interest Group, which was organized by David Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, USA). The session featured presentations on areas relating to nuclear organization across kingdoms including the nuclear envelope, chromatin organization, and genome function.
Collapse
Affiliation(s)
- Stephen D Thorpe
- a Institute of Bioengineering, School of Engineering and Materials Science , Queen Mary University of London , London , UK
| | | |
Collapse
|
123
|
Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci 2016; 17:681-691. [PMID: 27708356 DOI: 10.1038/nrn.2016.124] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonrandom chromosomal conformations, including promoter-enhancer loopings that bypass kilobases or megabases of linear genome, provide a crucial layer of transcriptional regulation and move vast amounts of non-coding sequence into the physical proximity of genes that are important for neurodevelopment, cognition and behaviour. Activity-regulated changes in the neuronal '3D genome' could govern transcriptional mechanisms associated with learning and plasticity, and loop-bound intergenic and intronic non-coding sequences have been implicated in psychiatric and adult-onset neurodegenerative disease. Recent studies have begun to clarify the roles of spatial genome organization in normal and abnormal cognition.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Sergio Espeso Gil
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, Barcelona 08002, Spain
| | - Kristen J Brennand
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| |
Collapse
|
124
|
Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy. Proc Natl Acad Sci U S A 2016; 113:E6372-E6381. [PMID: 27702891 DOI: 10.1073/pnas.1608198113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure-function relationship in live cells.
Collapse
|
125
|
Dickerson D, Gierliński M, Singh V, Kitamura E, Ball G, Tanaka TU, Owen-Hughes T. High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division. BMC Cell Biol 2016; 17:33. [PMID: 27609610 PMCID: PMC5016949 DOI: 10.1186/s12860-016-0111-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/25/2016] [Indexed: 01/23/2023] Open
Abstract
Background Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells. In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was then tracked in three dimensions over time using fluorescence microscopy. Results We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene loci with a mean measurement error of 63 nm. In general, physical separation was observed to increase with increasing genomic separations. However, the extent to which chromatin is compressed varies for different genomic regions. No correlation was observed between compaction and the distribution of chromatin markers from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation was also observed within cells over time and between cells. Differences in the conformation of individual loci can persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated daughter cell pairs. Conclusions The directly observed physical separation of reporter loci in live cells is highly dynamic both over time and from cell to cell. However, consistent differences in separation are observed over some chromosomal regions that do not correlate with factors known to influence chromatin states. We conclude that as yet unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to cell-to-cell transcriptional heterogeneity. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0111-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Dickerson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vijender Singh
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Etsushi Kitamura
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Graeme Ball
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. .,Wellcome Trust Building, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
126
|
Abstract
The production of a single mRNA is the result of many sequential steps, from docking of transcription factors to polymerase initiation, elongation, splicing, and, finally, termination. Much of our knowledge about the fundamentals of RNA synthesis and processing come from ensemble in vitro biochemical measurements. Single-molecule approaches are very much in this same reductionist tradition but offer exquisite sensitivity in space and time along with the ability to observe heterogeneous behavior and actually manipulate macromolecules. These techniques can also be applied in vivo, allowing one to address questions in living cells that were previously restricted to reconstituted systems. In this review, we examine the unique insights that single-molecule techniques have yielded on the mechanisms of gene expression.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel R Larson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
127
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:233-243. [PMID: 27738452 PMCID: PMC5039213 DOI: 10.1007/s12551-016-0208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
128
|
Pueschel R, Coraggio F, Meister P. From single genes to entire genomes: the search for a function of nuclear organization. Development 2016; 143:910-23. [PMID: 26980791 DOI: 10.1242/dev.129007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of different domains within the nucleus has been clear from the time, in the late 1920s, that heterochromatin and euchromatin were discovered. The observation that heterochromatin is less transcribed than euchromatin suggested that microscopically identifiable structures might correspond to functionally different domains of the nucleus. Until 15 years ago, studies linking gene expression and subnuclear localization were limited to a few genes. As we discuss in this Review, new genome-wide techniques have now radically changed the way nuclear organization is analyzed. These have provided a much more detailed view of functional nuclear architecture, leading to the emergence of a number of new paradigms of chromatin folding and how this folding evolves during development.
Collapse
Affiliation(s)
- Ringo Pueschel
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Francesca Coraggio
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
129
|
Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X. Spatial organization of chromatin domains and compartments in single chromosomes. Science 2016; 353:598-602. [PMID: 27445307 DOI: 10.1126/science.aaf8084] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.
Collapse
Affiliation(s)
- Siyuan Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jun-Han Su
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Brian J Beliveau
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey R Moffitt
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chao-ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
130
|
Williamson I, Lettice LA, Hill RE, Bickmore WA. Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity. Development 2016; 143:2994-3001. [PMID: 27402708 PMCID: PMC5004883 DOI: 10.1242/dev.139188] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022]
Abstract
Limb-specific Shh expression is regulated by the (∼1 Mb distant) ZRS enhancer. In the mouse, limb bud-restricted spatiotemporal Shh expression occurs from ∼E10 to E11.5 at the distal posterior margin and is essential for correct autopod formation. Here, we have analysed the higher-order chromatin conformation of Shh in expressing and non-expressing tissues, both by fluorescence in situ hybridisation (FISH) and by chromosome conformation capture (5C). Conventional and super-resolution light microscopy identified significantly elevated frequencies of Shh/ZRS colocalisation only in the Shh-expressing regions of the limb bud, in a conformation consistent with enhancer-promoter loop formation. However, in all tissues and at all developmental stages analysed, Shh-ZRS spatial distances were still consistently shorter than those to a neural enhancer located between Shh and ZRS in the genome. 5C identified a topologically associating domain (TAD) over the Shh/ZRS genomic region and enriched interactions between Shh and ZRS throughout E11.5 embryos. Shh/ZRS colocalisation, therefore, correlates with the spatiotemporal domain of limb bud-specific Shh expression, but close Shh and ZRS proximity in the nucleus occurs regardless of whether the gene or enhancer is active. We suggest that this constrained chromatin configuration optimises the opportunity for the active enhancer to locate and instigate the expression of Shh. Summary: Super-resolution microscopy reveals that, during mouse limb development, enhancer-driven gene expression results in the juxtaposition of Shh and its limb bud-specific enhancer only within cells of the distal posterior limb bud.
Collapse
Affiliation(s)
- Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
| | - Laura A Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
131
|
Florescu AM, Therizols P, Rosa A. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure. PLoS Comput Biol 2016; 12:e1004987. [PMID: 27295501 PMCID: PMC4905689 DOI: 10.1371/journal.pcbi.1004987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes. A key determining factor in many important cellular processes as DNA transcription, for instance, the specific composition of the chromatin fiber sequence has a major influence on chromosome folding during interphase. Yet, how this is achieved in detail remains largely elusive. In this work, we explore this link by means of a novel quantitative computational polymer model for interphase chromosomes where the associated chromatin filaments are composed of mixtures of fibers with heterogeneous physical properties. Our work suggests a scenario where chromosomes undergo only limited reorganization, namely on length-scales below 105 basepairs and time-scales shorter than a few seconds. Our conclusions are supported by recent FISH data on murine chromosomes.
Collapse
Affiliation(s)
- Ana-Maria Florescu
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- * E-mail: (AMF); (AR)
| | - Pierre Therizols
- INSERM UMR 944, Équipe Biologie et Dynamique des Chromosomes, Institut Universitaire d’Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Angelo Rosa
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- * E-mail: (AMF); (AR)
| |
Collapse
|
132
|
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep 2016; 15:2038-49. [PMID: 27210764 PMCID: PMC4889513 DOI: 10.1016/j.celrep.2016.04.085] [Citation(s) in RCA: 1298] [Impact Index Per Article: 144.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/01/2015] [Accepted: 04/20/2016] [Indexed: 12/31/2022] Open
Abstract
Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.
Collapse
Affiliation(s)
- Geoffrey Fudenberg
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 01238, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Maxim Imakaev
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Carolyn Lu
- Program for Research in Mathematics, Engineering and Science for High School Students (PRIMES) and Undergraduate Research Opportunities Program (UROP), MIT, Cambridge, MA 02139, USA
| | - Anton Goloborodko
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Nezar Abdennur
- PhD Program in Computational and Systems Biology, MIT, Cambridge, MA 02139, USA
| | - Leonid A Mirny
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 01238, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| |
Collapse
|
133
|
Engel KL, Mackiewicz M, Hardigan AA, Myers RM, Savic D. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Semin Cell Dev Biol 2016; 57:40-50. [PMID: 27224938 DOI: 10.1016/j.semcdb.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research.
Collapse
Affiliation(s)
- Krysta L Engel
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States.
| |
Collapse
|
134
|
Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 2016; 126:33-44. [DOI: 10.1007/s00412-016-0593-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
|
135
|
Abstract
In this issue, Shachar et al. report a high-throughput imaging position mapping platform (HIPmap) enabling large-scale, high-resolution localization of 3D gene positions in single cells. Coupling loss-of-function screens with HIPmap, the authors identify DNA replication rather than mitosis as a major determinant of genome positioning.
Collapse
Affiliation(s)
- Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
136
|
Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell 2016; 162:911-23. [PMID: 26276637 DOI: 10.1016/j.cell.2015.07.035] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
Abstract
Genomes are arranged non-randomly in the 3D space of the cell nucleus. Here, we have developed HIPMap, a high-precision, high-throughput, automated fluorescent in situ hybridization imaging pipeline, for mapping of the spatial location of genome regions at large scale. High-throughput imaging position mapping (HIPMap) enabled an unbiased siRNA screen for factors involved in genome organization in human cells. We identify 50 cellular factors required for proper positioning of a set of functionally diverse genomic loci. Positioning factors include chromatin remodelers, histone modifiers, and nuclear envelope and pore proteins. Components of the replication and post-replication chromatin re-assembly machinery are prominently represented among positioning factors, and timely progression of cells through replication, but not mitosis, is required for correct gene positioning. Our results establish a method for the large-scale mapping of genome locations and have led to the identification of a compendium of cellular factors involved in spatial genome organization.
Collapse
Affiliation(s)
- Sigal Shachar
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ty C Voss
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
137
|
Ito K, Sanosaka T, Igarashi K, Ideta-Otsuka M, Aizawa A, Uosaki Y, Noguchi A, Arakawa H, Nakashima K, Takizawa T. Identification of genes associated with the astrocyte-specific gene Gfap during astrocyte differentiation. Sci Rep 2016; 6:23903. [PMID: 27041678 PMCID: PMC4819225 DOI: 10.1038/srep23903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Chromosomes and genes are non-randomly arranged within the mammalian cell nucleus, and gene clustering is of great significance in transcriptional regulation. However, the relevance of gene clustering and their expression during the differentiation of neural precursor cells (NPCs) into astrocytes remains unclear. We performed a genome-wide enhanced circular chromosomal conformation capture (e4C) to screen for genes associated with the astrocyte-specific gene glial fibrillary acidic protein (Gfap) during astrocyte differentiation. We identified 18 genes that were specifically associated with Gfap and expressed in NPC-derived astrocytes. Our results provide additional evidence for the functional significance of gene clustering in transcriptional regulation during NPC differentiation.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Sanosaka
- Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Pharmacy and Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Pharmacy and Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Akira Aizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuichi Uosaki
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Azumi Noguchi
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
138
|
Abstract
The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes-and how-to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.
Collapse
Affiliation(s)
- Juan D Olarte-Plata
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, UMR 5672, Lyon, France
| | | | | | | |
Collapse
|
139
|
Practical Analysis of Genome Contact Interaction Experiments. Methods Mol Biol 2016. [PMID: 27008015 DOI: 10.1007/978-1-4939-3578-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The three dimensional (3D) architecture of chromosomes is not random but instead tightly organized due to chromatin folding and chromatin interactions between genomically distant loci. By bringing genomically distant functional elements such as enhancers and promoters into close proximity, these interactions play a key role in regulating gene expression. Some of these interactions are dynamic, that is, they differ between cell types, conditions and can be induced by specific stimuli or differentiation events. Other interactions are more structural and stable, that is they are constitutionally present across several cell types. Genome contact interactions can occur via recruitment and physical interaction between chromatin-binding proteins and correlate with epigenetic marks such as histone modifications. Absence of a contact can occur due to presence of insulators, that is, chromatin-bound complexes that physically separate genomic loci. Understanding which contacts occur or do not occur in a given cell type is important since it can help explain how genes are regulated and which functional elements are involved in such regulation. The analysis of genome contact interactions has been greatly facilitated by the relatively recent development of chromosome conformation capture (3C). In an even more recent development, 3C was combined with next generation sequencing and led to Hi-C, a technique that in theory queries all possible pairwise interactions both within the same chromosome (intra) and between chromosomes (inter). Hi-C has now been used to study genome contact interactions in several human and mouse cell types as well as in animal models such as Drosophila and yeast. While it is fair to say that Hi-C has revolutionized the study of chromatin interactions, the computational analysis of Hi-C data is extremely challenging due to the presence of biases, artifacts, random polymer ligation and the huge number of potential pairwise interactions. In this chapter, we outline a strategy for analysis of genome contact experiments based on Hi-C using R and Bioconductor.
Collapse
|
140
|
Wang Q, Sawyer IA, Sung MH, Sturgill D, Shevtsov SP, Pegoraro G, Hakim O, Baek S, Hager GL, Dundr M. Cajal bodies are linked to genome conformation. Nat Commun 2016; 7:10966. [PMID: 26997247 PMCID: PMC4802181 DOI: 10.1038/ncomms10966] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/07/2016] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying nuclear body (NB) formation and their contribution to genome function are unknown. Here we examined the non-random positioning of Cajal bodies (CBs), major NBs involved in spliceosomal snRNP assembly and their role in genome organization. CBs are predominantly located at the periphery of chromosome territories at a multi-chromosome interface. Genome-wide chromosome conformation capture analysis (4C-seq) using CB-interacting loci revealed that CB-associated regions are enriched with highly expressed histone genes and U small nuclear or nucleolar RNA (sn/snoRNA) loci that form intra- and inter-chromosomal clusters. In particular, we observed a number of CB-dependent gene-positioning events on chromosome 1. RNAi-mediated disassembly of CBs disrupts the CB-targeting gene clusters and suppresses the expression of U sn/snoRNA and histone genes. This loss of spliceosomal snRNP production results in increased splicing noise, even in CB-distal regions. Therefore, we conclude that CBs contribute to genome organization with global effects on gene expression and RNA splicing fidelity. Nuclear bodies can nucleate at sites of active transcription and are beneficial for efficient gene expression. Here, the authors show that Cajal bodies, a prominent type of nuclear body, contribute to genome organization with global effects on gene expression and RNA splicing fidelity.
Collapse
Affiliation(s)
- Qiuyan Wang
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA.,Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA.,Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Sergey P Shevtsov
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA.,High-Throughput Imaging Facility (HiTIF), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA
| |
Collapse
|
141
|
Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016; 17:207-23. [PMID: 26948815 DOI: 10.1038/nrg.2016.4] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Networks of regulatory enhancers dictate distinct cell identities and cellular responses to diverse signals by instructing precise spatiotemporal patterns of gene expression. However, 35 years after their discovery, enhancer functions and mechanisms remain incompletely understood. Intriguingly, recent evidence suggests that many, if not all, functional enhancers are themselves transcription units, generating non-coding enhancer RNAs. This observation provides a fundamental insight into the inter-regulation between enhancers and promoters, which can both act as transcription units; it also raises crucial questions regarding the potential biological roles of the enhancer transcription process and non-coding enhancer RNAs. Here, we review research progress in this field and discuss several important, unresolved questions regarding the roles and mechanisms of enhancers in gene regulation.
Collapse
Affiliation(s)
- Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Dimple Notani
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| |
Collapse
|
142
|
Raviram R, Rocha PP, Müller CL, Miraldi ER, Badri S, Fu Y, Swanzey E, Proudhon C, Snetkova V, Bonneau R, Skok JA. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments. PLoS Comput Biol 2016; 12:e1004780. [PMID: 26938081 PMCID: PMC4777514 DOI: 10.1371/journal.pcbi.1004780] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.
Collapse
Affiliation(s)
- Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America.,Department of Biology, New York University, New York, New York, United States of America
| | - Pedro P Rocha
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Christian L Müller
- Department of Biology, New York University, New York, New York, United States of America.,Department of Computer Science, Courant Institute of Mathematical Sciences, New York, New York, United States of America.,Simons Center for Data Analysis, New York, New York, United States of America
| | - Emily R Miraldi
- Department of Biology, New York University, New York, New York, United States of America.,Department of Computer Science, Courant Institute of Mathematical Sciences, New York, New York, United States of America.,Simons Center for Data Analysis, New York, New York, United States of America
| | - Sana Badri
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Yi Fu
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America.,Department of Biology, New York University, New York, New York, United States of America
| | - Emily Swanzey
- Skirball Institute, New York University School of Medicine, New York, New York, United States of America
| | - Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Valentina Snetkova
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Bonneau
- Department of Biology, New York University, New York, New York, United States of America.,Department of Computer Science, Courant Institute of Mathematical Sciences, New York, New York, United States of America.,Simons Center for Data Analysis, New York, New York, United States of America
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
143
|
Abstract
A recent super-resolution imaging study by Boettiger et al. elegantly demonstrates that three epigenetically defined, and functionally disparate, chromatin states have distinct folding characteristics in Drosophila nuclei.
Collapse
|
144
|
Abstract
The role of genome architecture in transcription regulation has become the focus of an increasing number of studies over the past decade. Chromatin organization can have a significant impact on gene expression by promoting or restricting the physical proximity between regulatory DNA elements. Given that any change in chromatin state has the potential to alter DNA folding and the proximity between control elements, the spatial organization of chromatin is inherently linked to its molecular composition. In this review, we explore how modulators of chromatin state and organization might keep gene expression in check. We discuss recent findings and present some of the less well-studied aspects of spatial genome organization such as chromatin dynamics and regulation by non-coding RNAs.
Collapse
|
145
|
Luo Z, Lin C. Enhancer, epigenetics, and human disease. Curr Opin Genet Dev 2016; 36:27-33. [DOI: 10.1016/j.gde.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/24/2016] [Indexed: 02/09/2023]
|
146
|
Criscione SW, De Cecco M, Siranosian B, Zhang Y, Kreiling JA, Sedivy JM, Neretti N. Reorganization of chromosome architecture in replicative cellular senescence. SCIENCE ADVANCES 2016; 2:e1500882. [PMID: 26989773 PMCID: PMC4788486 DOI: 10.1126/sciadv.1500882] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/02/2015] [Indexed: 05/02/2023]
Abstract
Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells.
Collapse
Affiliation(s)
- Steven W. Criscione
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Benjamin Siranosian
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yue Zhang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - John M. Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Corresponding author. E-mail:
| |
Collapse
|
147
|
Aranda-Anzaldo A. The interphase mammalian chromosome as a structural system based on tensegrity. J Theor Biol 2016; 393:51-9. [PMID: 26780650 DOI: 10.1016/j.jtbi.2016.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Each mammalian chromosome is constituted by a DNA fiber of macroscopic length that needs to be fitted in a microscopic nucleus. The DNA fiber is subjected at physiological temperature to random thermal bending and looping that must be constrained so as achieve structural stability thus avoiding spontaneous rupturing of the fiber. Standard textbooks assume that chromatin proteins are primarily responsible for the packaging of DNA and so of its protection against spontaneous breakage. Yet the dynamic nature of the interactions between chromatin proteins and DNA is unlikely to provide the necessary long-term structural stability for the chromosomal DNA. On the other hand, longstanding evidence indicates that stable interactions between DNA and constituents of a nuclear compartment commonly known as the nuclear matrix organize the chromosomal DNA as a series of topologically constrained, supercoiled loops during interphase. This results in a primary level of DNA condensation and packaging within the nucleus, as well as in protection against spontaneous DNA breakage, independently of chromatin proteins which nevertheless increase and dynamically modulate the degree of DNA packaging and its role in the regulation of DNA function. Thus current evidence, presented hereunder, supports a model for the organization of the interphase chromosome as resilient system that satisfies the principles of structural tensegrity.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180 Edo. Méx., México.
| |
Collapse
|
148
|
Visualizing the HoxD Gene Cluster at the Nanoscale Level. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:9-16. [PMID: 26767994 DOI: 10.1101/sqb.2015.80.027177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcription of HoxD cluster genes in limbs is coordinated by two topologically associating domains (TADs), neighboring the cluster and containing various enhancers. Here, we use a combination of microscopy approaches and chromosome conformation capture to assess the structural changes occurring in this global architecture in various functional states. We observed that despite their spatial juxtaposition, the TADs are consistently kept as distinct three-dimensional units. Hox genes located at their boundary can show significant spatial segregation over long distances, suggesting that physical elongation of the HoxD cluster occurs. The use of superresolution imaging (STORM [stochastic optical reconstruction microscopy]) revealed that the gene cluster can be in an either compact or elongated shape. The latter configuration is observed in transcriptionally active tissue and in embryonic stem cells, consistent with chromosome conformation capture results. Such morphological changes at HoxD in developing digits seem to be associated with its position at the boundary between two TADs and support the idea that chromatin dynamics is important in the establishment of transcriptional activity.
Collapse
|
149
|
Wani AH, Boettiger AN, Schorderet P, Ergun A, Münger C, Sadreyev RI, Zhuang X, Kingston RE, Francis NJ. Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat Commun 2016; 7:10291. [PMID: 26759081 PMCID: PMC4735512 DOI: 10.1038/ncomms10291] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions.
Collapse
Affiliation(s)
- Ajazul H. Wani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alistair N. Boettiger
- Howard Hughes Medical Institute, Harvard University Cambridge, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Patrick Schorderet
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayla Ergun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christine Münger
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University Cambridge, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole J. Francis
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de biochimie et medécine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
150
|
Tak YG, Hung Y, Yao L, Grimmer MR, Do A, Bhakta MS, O'Geen H, Segal DJ, Farnham PJ. Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Res 2016; 44:4123-33. [PMID: 26743005 PMCID: PMC4872074 DOI: 10.1093/nar/gkv1530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for colorectal cancer (CRC). A molecular understanding of the functional consequences of this genetic variation is complicated because most GWAS SNPs are located in non-coding regions. We used epigenomic information to identify H3K27Ac peaks in HCT116 colon cancer cells that harbor SNPs associated with an increased risk for CRC. Employing CRISPR/Cas9 nucleases, we deleted a CRC risk-associated H3K27Ac peak from HCT116 cells and observed large-scale changes in gene expression, resulting in decreased expression of many nearby genes. As a comparison, we showed that deletion of a robust H3K27Ac peak not associated with CRC had minimal effects on the transcriptome. Interestingly, although there is no H3K27Ac peak in HEK293 cells in the E7 region, deletion of this region in HEK293 cells decreased expression of several of the same genes that were downregulated in HCT116 cells, including the MYC oncogene. Accordingly, deletion of E7 causes changes in cell culture assays in HCT116 and HEK293 cells. In summary, we show that effects on the transcriptome upon deletion of a distal regulatory element cannot be predicted by the size or presence of an H3K27Ac peak.
Collapse
Affiliation(s)
- Yu Gyoung Tak
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuli Hung
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lijing Yao
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Grimmer
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert Do
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mital S Bhakta
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Henriette O'Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Peggy J Farnham
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|