101
|
Multiplex Polymerase Chain Reaction Assay for the Specific Detection of the Organism Causing Anthrax. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40011-014-0344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
102
|
Srinath R, Siva R, Babu S. B
acillus anthracis
-Like Strain-Carrying P
seudomonas
FPVA
Gene Occurs as Endophyte in Vegetables. J Food Saf 2014. [DOI: 10.1111/jfs.12095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R. Srinath
- School of Biosciences and Technology; VIT University; Vellore 632014 India
| | - R. Siva
- School of Biosciences and Technology; VIT University; Vellore 632014 India
| | - S. Babu
- School of Biosciences and Technology; VIT University; Vellore 632014 India
| |
Collapse
|
103
|
Moreno Switt AI, Andrus AD, Ranieri ML, Orsi RH, Ivy R, den Bakker HC, Martin NH, Wiedmann M, Boor KJ. Genomic comparison of sporeforming bacilli isolated from milk. BMC Genomics 2014; 15:26. [PMID: 24422886 PMCID: PMC3902026 DOI: 10.1186/1471-2164-15-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sporeformers in the order Bacillales are important contributors to spoilage of pasteurized milk. While only a few Bacillus and Viridibacillus strains can grow in milk at 6°C, the majority of Paenibacillus isolated from pasteurized fluid milk can grow under these conditions. To gain a better understanding of genomic features of these important spoilage organisms and to identify candidate genomic features that may facilitate cold growth in milk, we performed a comparative genomic analysis of selected dairy associated sporeformers representing isolates that can and cannot grow in milk at 6°C. RESULTS The genomes for seven Paenibacillus spp., two Bacillus spp., and one Viridibacillus sp. isolates were sequenced. Across the genomes sequenced, we identified numerous genes encoding antimicrobial resistance mechanisms, bacteriocins, and pathways for synthesis of non-ribosomal peptide antibiotics. Phylogenetic analysis placed genomes representing Bacillus, Paenibacillus and Viridibacillus into three distinct well supported clades and further classified the Paenibacillus strains characterized here into three distinct clades, including (i) clade I, which contains one strain able to grow at 6°C in skim milk broth and one strain not able to grow under these conditions, (ii) clade II, which contains three strains able to grow at 6°C in skim milk broth, and (iii) clade III, which contains two strains unable to grow under these conditions. While all Paenibacillus genomes were found to include multiple copies of genes encoding β-galactosidases, clade II strains showed significantly higher numbers of genes encoding these enzymes as compared to clade III strains. Genome comparison of strains able to grow at 6°C and strains unable to grow at this temperature identified numerous genes encoding features that might facilitate the growth of Paenibacillus in milk at 6°C, including peptidases with cold-adapted features (flexibility and disorder regions in the protein structure) and cold-adaptation related proteins (DEAD-box helicases, chaperone DnaJ). CONCLUSIONS Through a comparative genomics approach we identified a number of genomic features that may relate to the ability of selected Paenibacillus strains to cause spoilage of refrigerated fluid milk. With additional experimental evidence, these data will facilitate identification of targets to detect and control Gram positive spore formers in fluid milk.
Collapse
Affiliation(s)
- Andrea I Moreno Switt
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Alexis D Andrus
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Matthew L Ranieri
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Reid Ivy
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Henk C den Bakker
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicole H Martin
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathryn J Boor
- 345 Stocking Hall, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
104
|
Ghosh N, Goel AK, Alam SI. Exoproteome analysis of a novel strain of Bacillus cereus implicated in disease resembling cutaneous anthrax. INFECTION GENETICS AND EVOLUTION 2014; 22:1-11. [PMID: 24412723 DOI: 10.1016/j.meegid.2013.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/06/2013] [Accepted: 12/11/2013] [Indexed: 12/15/2022]
Abstract
Bacillus cereus belongs to B. cereus sensu lato group, shared by six other related species including Bacillus anthracis. B. anthracis is the causative agent for serious illness affecting a wide range of animals as well as humans and is a category A Biological and Toxin Warfare (BTW) agent. Recent studies indicate that a Bacillus species other than B. anthracis can cause anthrax-like disease and role of anthrax virulence plasmids (pXO1 and pXO2) on the pathogenicity of B. cereus has been documented. B. cereus strain TF5 was isolated from the tissue fluid of cutaneous anthrax-like skin lesions of a human patient from an anthrax endemic area in India. The strain harboured a PA gene, however, presence of pXO1 or pXO2-like plasmids could not be ascertained using reported primers. Abundant exoproteome of the strain in the early stationary phase was elucidated using a 2-DE MS approach and compared with that from a reference B. cereus strain. Analysis of proteins showing qualitative and quantitative differences between the two strains indicated an altered regulatory mechanism and putative role of S-layer protein and sphingomyelinase in the pathogenesis of strain TF5. Phylogenetic analysis of the S-layer protein indicated close affiliation of the strain with anthracis-like B. cereus strains such as B. cereus var. anthracis strain CI; whereas sphingomyelinase exhibited specific relationship with all the strains of B. anthracis apart from that with anthracis-like B. cereus strains.
Collapse
Affiliation(s)
- Neha Ghosh
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Ajay Kumar Goel
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| |
Collapse
|
105
|
Castagnola A, Stock SP. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests. INSECTS 2014; 5:139-66. [PMID: 24634779 PMCID: PMC3952272 DOI: 10.3390/insects5010139] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/13/2023]
Abstract
This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.
Collapse
Affiliation(s)
- Anaïs Castagnola
- Center for Insect Science, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721, USA; E-Mail:
| | - S. Patricia Stock
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA
| |
Collapse
|
106
|
Gyles C, Boerlin P. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet Pathol 2013; 51:328-40. [DOI: 10.1177/0300985813511131] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article reviews the roles that laterally transferred genes (LTG) play in the virulence of bacterial pathogens. The features of LTG that allow them to be recognized in bacterial genomes are described, and the mechanisms by which LTG are transferred between and within bacteria are reviewed. Genes on plasmids, integrative and conjugative elements, prophages, and pathogenicity islands are highlighted. Virulence genes that are frequently laterally transferred include genes for bacterial adherence to host cells, type 3 secretion systems, toxins, iron acquisition, and antimicrobial resistance. The specific roles of LTG in pathogenesis are illustrated by specific reference to Escherichia coli, Salmonella, pyogenic streptococci, and Clostridium perfringens.
Collapse
Affiliation(s)
- C. Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - P. Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
107
|
Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in northeastern Poland. PLoS One 2013; 8:e80175. [PMID: 24312460 PMCID: PMC3846478 DOI: 10.1371/journal.pone.0080175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
The Bacillus cereus group, which includes entomopathogens and etiologic agents of foodborne illness or anthrax, persists in various environments. The basis of their ecological diversification remains largely undescribed. Here we present the genetic structure and phylogeny of 273 soil B. cereus s.l. isolates from diverse habitats in northeastern Poland, with samplings acquired from the last European natural forest (Białowieża National Park), the largest marshes in Europe (Biebrza National Park), and a farm. In multi-locus sequence typing (MLST), despite negative selection in seven housekeeping loci, the isolates exhibited high genetic diversity (325 alleles), mostly resulting from mutation events, and represented 148 sequencing types (131 STs new and 17 STs already described) grouped into 19 complexes corresponding with bacterial clones, and 80 singletons. Phylogenetic analyses showed that 74% of the isolates clustered with B. cereus s.l. environmental references (clade III), while only 11 and 15%, respectively, grouped with isolates of clinical origin (clade I), and B. cereus ATCC 14579 and reference B. thuringiensis (clade II). Predominantly within clade III, we found lineages adapted to low temperature (thermal ecotypes), while putative toxigenic isolates (cytK-positive) were scattered in all clades of the marsh and farm samplings. The occurrence of 92% of STs in bacilli originating from one habitat, and the description of new STs for 78% of the isolates, strongly indicate the existence of specific genotypes within the natural B. cereus s.l. populations. In contrast to the human-associated B. cereus s.l. that exhibit a significant level of similarity, the environmental isolates appear more complex. Thus we propose dividing B. cereus s.l. into two groups, the first including environmental isolates, and the second covering those that are of clinical relevance.
Collapse
|
108
|
Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00380-13. [PMID: 24092776 PMCID: PMC3790080 DOI: 10.1128/genomea.00380-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins.
Collapse
|
109
|
Bacillus cereus Sensu Lato Genomes: Basis for Identifying Anthrax Disease Strain Sources. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00790-13. [PMID: 24092785 PMCID: PMC3790089 DOI: 10.1128/genomea.00790-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
110
|
Jiménez G, Urdiain M, Cifuentes A, López-López A, Blanch AR, Tamames J, Kämpfer P, Kolstø AB, Ramón D, Martínez JF, Codoñer FM, Rosselló-Móra R. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol 2013; 36:383-91. [DOI: 10.1016/j.syapm.2013.04.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022]
|
111
|
Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 2013; 8:e62881. [PMID: 23658781 PMCID: PMC3643907 DOI: 10.1371/journal.pone.0062881] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/26/2013] [Indexed: 01/27/2023] Open
Abstract
The recalcitrance of plant biomass is the most important barrier to its economic conversion by microbes to products of interest. Thermophiles have special advantages for biomass conversion and members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes known. In this study, we report the construction of a replicating shuttle vector for Caldicellulosiruptor species based on pBAS2, the smaller of two native C. bescii plasmids. The entire plasmid was cloned into an E. coli cloning vector containing a pSC101 origin of replication and an apramycin resistance cassette for selection in E. coli. The wild-type C. bescii pyrF locus was cloned under the transcriptional control of the regulatory region of the ribosomal protein S30EA (Cbes2105), and the resulting vector was transformed into a new spontaneous deletion mutant in the pyrFA locus of C. bescii that allowed complementation with the pyrF gene alone. Plasmid DNA was methylated in vitro with a recently described cognate methyltransferase, M.CbeI, and transformants were selected for uracil prototrophy. The plasmid was stably maintained in low copy with selection but rapidly lost without selection. There was no evidence of DNA rearrangement during transformation and replication in C. bescii. A similar approach was used to screen for transformability of other members of this genus using M.CbeI to overcome restriction as a barrier and was successful for transformation of C. hydrothermalis, an attractive species for many applications. Plasmids containing a carbohydrate binding domain (CBM) and linker region from the C. bescii celA gene were maintained with selection and were structurally stable through transformation and replication in C. bescii and E. coli.
Collapse
|
112
|
Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis on the basis of the csaB gene reflects host source. Appl Environ Microbiol 2013; 79:3860-3. [PMID: 23563945 DOI: 10.1128/aem.00591-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
csaB gene analysis clustered 198 strains of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis into two groups related to mammalian and insect hosts, respectively. Mammal-related group I strains also have more S-layer homology (SLH) protein genes than group II strains. This indicates that csaB-based differentiation reflects selective pressure from animal hosts.
Collapse
|
113
|
Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. mBio 2013; 4:mBio.00604-12. [PMID: 23532978 PMCID: PMC3622922 DOI: 10.1128/mbio.00604-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chlamydia psittaci is an obligate intracellular bacterium. Interest in Chlamydia stems from its high degree of virulence as an intestinal and pulmonary pathogen across a broad range of animals, including humans. C. psittaci human pulmonary infections, referred to as psittacosis, can be life-threatening, which is why the organism was developed as a bioweapon in the 20th century and is listed as a CDC biothreat agent. One remarkable recent result from comparative genomics is the finding of frequent homologous recombination across the genome of the sexually transmitted and trachoma pathogen Chlamydia trachomatis. We sought to determine if similar evolutionary dynamics occurred in C. psittaci. We analyzed 20 C. psittaci genomes from diverse strains representing the nine known serotypes of the organism as well as infections in a range of birds and mammals, including humans. Genome annotation revealed a core genome in all strains of 911 genes. Our analyses showed that C. psittaci has a history of frequently switching hosts and undergoing recombination more often than C. trachomatis. Evolutionary history reconstructions showed genome-wide homologous recombination and evidence of whole-plasmid exchange. Tracking the origins of recombinant segments revealed that some strains have imported DNA from as-yet-unsampled or -unsequenced C. psittaci lineages or other Chlamydiaceae species. Three ancestral populations of C. psittaci were predicted, explaining the current population structure. Molecular clock analysis found that certain strains are part of a clonal epidemic expansion likely introduced into North America by South American bird traders, suggesting that psittacosis is a recently emerged disease originating in New World parrots. Chlamydia psittaci is classified as a CDC biothreat agent based on its association with life-threatening lung disease, termed psittacosis, in humans. Because of the recent remarkable findings of frequent recombination across the genome of the human sexually transmitted and ocular trachoma pathogen Chlamydia trachomatis, we sought to determine if similar evolutionary dynamics occur in C. psittaci. Twenty C. psittaci genomes were analyzed from diverse strains that may play a pathogenic role in human disease. Evolution of the strains revealed genome-wide recombination occurring at a higher rate than for C. trachomatis. Certain strains were discovered to be part of a recent epidemic clonal expansion originating in South America. These strains may have been introduced into the United States from South American bird traders, suggesting that psittacosis is a recently emerged disease originating in New World parrots. Our analyses indicate that C. psittaci strains have a history of frequently switching hosts and undergoing recombination.
Collapse
|