101
|
Abstract
Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a redox-active lipid present in all cellular membranes where it functions in a variety of cellular processes. The best known functions of UQ are to act as a mobile electron carrier in the mitochondrial respiratory chain and to serve as a lipid soluble antioxidant in cellular membranes. All eukaryotic cells synthesize their own UQ. Most of the current knowledge on the UQ biosynthetic pathway was obtained by studying Escherichia coli and Saccharomyces cerevisiae UQ-deficient mutants. The orthologues of all the genes known from yeast studies to be involved in UQ biosynthesis have subsequently been found in higher organisms. Animal mutants with different genetic defects in UQ biosynthesis display very different phenotypes, despite the fact that in all these mutants the same biosynthetic pathway is affected. This review summarizes the present knowledge of the eukaryotic biosynthesis of UQ, with focus on the biosynthetic genes identified in animals, including Caenorhabditis elegans, rodents, and humans. Moreover, we review the phenotypes of mutants in these genes and discuss the functional consequences of UQ deficiency in general.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
102
|
Esser D, Pham TK, Reimann J, Albers SV, Siebers B, Wright PC. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. J Proteome Res 2012; 11:4823-33. [PMID: 22639831 DOI: 10.1021/pr300190k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is known to occur in Archaea. However, knowledge of phosphorylation in the third domain of life is rather scarce. Homology-based searches of archaeal genome sequences reveals the absence of two-component systems in crenarchaeal genomes but the presence of eukaryotic-like protein kinases and protein phosphatases. Here, the influence of the offered carbon source (glucose versus tryptone) on the phospho-proteome of Sulfolobus solfataricus P2 was studied by precursor acquisition independent from ion count (PAcIFIC). In comparison to previous phospho-proteome studies, a high number of phosphorylation sites (1318) located on 690 phospho-peptides from 540 unique phospho-proteins were detected, thus increasing the number of currently known archaeal phospho-proteins from 80 to 621. Furthermore, a 25.8/20.6/53.6 Ser/Thr/Tyr percentage ratio with an unexpectedly high predominance of tyrosine phosphorylation was detected. Phospho-proteins in most functional classes (21 out of 26 arCOGs) were identified, suggesting an important regulatory role in S. solfataricus. Focusing on the central carbohydrate metabolism in response to the offered carbon source, significant changes were observed. The observed complex phosphorylation pattern hints at an important physiological function of protein phosphorylation in control of the central carbohydrate metabolism, which might particularly operate in channeling carbon flux into the respective metabolic pathways.
Collapse
Affiliation(s)
- D Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | | | | | | | | | |
Collapse
|
103
|
Janssen S, Jayachandran R, Khathi L, Zinsstag J, Grobusch MP, Pieters J. Exploring prospects of novel drugs for tuberculosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2012; 6:217-24. [PMID: 22973091 PMCID: PMC3439222 DOI: 10.2147/dddt.s34006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tuberculosis remains a disease with an enormous impact on public health worldwide. With the continuously increasing epidemic of drug-resistant tuberculosis, new drugs are desperately needed. However, even for the treatment of drug-sensitive tuberculosis, new drugs are required to shorten the treatment duration and thereby prevent development of drug resistance. Within the past ten years, major advances in tuberculosis drug research have been made, leading to a considerable number of antimycobacterial compounds which are now in the pipeline. Here we discuss a number of these novel promising tuberculosis drugs, as well as the discovery of two new potential drug targets for the development of novel effective drugs to curb the tuberculosis pandemic, ie, the coronin 1 and protein kinase G pathways. Protein kinase G is secreted by mycobacteria and is responsible for blocking lysosomal delivery within the macrophage. Coronin 1 is responsible for activating the phosphatase, calcineurin, and thereby preventing phagosome-lysosome fusion within the macrophage. Blocking these two pathways may lead to rapid killing of mycobacteria.
Collapse
Affiliation(s)
- Saskia Janssen
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
104
|
Lundquist PK, Davis JI, van Wijk KJ. ABC1K atypical kinases in plants: filling the organellar kinase void. TRENDS IN PLANT SCIENCE 2012; 17:546-55. [PMID: 22694836 PMCID: PMC3926664 DOI: 10.1016/j.tplants.2012.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 05/20/2023]
Abstract
Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here, we discuss the activity of bc(1) complex kinase (ABC1K) protein family, which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from one or two members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review, we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
105
|
Mijakovic I, Macek B. Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol Rev 2012; 36:877-92. [DOI: 10.1111/j.1574-6976.2011.00314.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 11/27/2022] Open
|
106
|
Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol Cell Biochem 2012; 369:67-74. [DOI: 10.1007/s11010-012-1369-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
|
107
|
Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C. AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3959-73. [PMID: 22447966 DOI: 10.1093/jxb/ers072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABC1 (activity of bc1 complex) is a newly discovered atypical kinase in plants. Here, it is reported that an ABC1 protein kinase-encoded gene, AtACDO1 (ABC1-like kinase related to chlorophyll degradation and oxidative stress), located in chloroplasts, was up-regulated by methyl viologen (MV) treatment. AtACDO1 RNAi (RNA interference) plants showed developmental defects, including yellow-green leaves and reduced contents of carotenoids and chlorophyll; the chlorophyll reduction was associated with a change in the numbers of chlorophyll-binding proteins of the photosynthetic complexes. Chlorophyllide (Chlide) a the first product of chlorophyll degradation, and pheophorbide a, a subsequent intermediate of Chlide a degradation, were increased in AtACDO1 RNAi plants. The AtACDO1 RNAi plants were more sensitive to high light and MV than wild-type plants. The AtACDO1 RNAi plants had lower transcript levels of the oxidative stress response genes FSD1, CSD1, CAT1, and UTG71C1 after MV treatment compared with wild-type or 35S::AtACDO1 plants. Taken together, the results suggest that the chloroplast AtACDO1 protein plays important roles in mediating chlorophyll degradation and maintaining the number of chlorophyll-binding photosynthetic thylakoid membranes, as well as in the photooxidative stress response.
Collapse
Affiliation(s)
- Songguang Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene 2012; 498:155-63. [DOI: 10.1016/j.gene.2012.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
109
|
Smith CA, Toth M, Frase H, Byrnes LJ, Vakulenko SB. Aminoglycoside 2''-phosphotransferase IIIa (APH(2'')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2'' kinases. J Biol Chem 2012; 287:12893-903. [PMID: 22367198 DOI: 10.1074/jbc.m112.341206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2''-phosphotransferase IIIa (APH(2'')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2'')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.
Collapse
Affiliation(s)
- Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, USA.
| | | | | | | | | |
Collapse
|
110
|
Zakharevich NV, Osolodkin DI, Artamonova II, Palyulin VA, Zefirov NS, Danilenko VN. Signatures of the ATP-binding pocket as a basis for structural classification of the serine/threonine protein kinases of gram-positive bacteria. Proteins 2012; 80:1363-76. [PMID: 22275035 DOI: 10.1002/prot.24032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/13/2011] [Accepted: 12/21/2011] [Indexed: 12/30/2022]
Abstract
Eukaryotic-like serine/threonine protein kinases (ESTPKs) are widely spread throughout the bacterial genomes. These enzymes can be potential targets of new antibacterial drugs useful for the treatment of socially important diseases such as tuberculosis. In this study, ESTPKs of pathogenic, probiotic, and antibiotic-producing Gram-positive bacteria were classified according to the physicochemical properties of amino acid residues in the ATP-binding site of the enzyme. Nine residues were identified that line the surface of the adenine-binding pocket, and ESTPKs were classified based on these signatures. Twenty groups were discovered, five of them containing >10 representatives. The two most abundant groups contained >150 protein kinases that belong to the various branches of the phylogenetic tree, whereas certain groups are genus- or even species-specific. Homology modeling of the typical representatives of each group revealed that the classification is reliable, and the differences between the protein kinase ATP-binding pockets predicted based on their signatures are apparent in their structure. The classification is expected to be useful for the selection of targets for new anti-infective drugs.
Collapse
Affiliation(s)
- Natalia V Zakharevich
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
111
|
Baumas K, Soudet J, Caizergues-Ferrer M, Faubladier M, Henry Y, Mougin A. Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles. RNA Biol 2012; 9:162-74. [PMID: 22418843 PMCID: PMC3346313 DOI: 10.4161/rna.18810] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Maturation of the 40S ribosomal subunit precursors in mammals mobilizes several non-ribosomal proteins, including the atypical protein kinase RioK2. Here, we have investigated the involvement of another member of the RIO kinase family, RioK3, in human ribosome biogenesis. RioK3 is a cytoplasmic protein that does not seem to shuttle between nucleus and cytoplasm via a Crm1-dependent mechanism as does RioK2 and which sediments with cytoplasmic 40S ribosomal particles in a sucrose gradient. When the small ribosomal subunit biogenesis is impaired by depletion of either rpS15, rpS19 or RioK2, a concomitant decrease in the amount of RioK3 is observed. Surprisingly, we observed a dramatic and specific increase in the levels of RioK3 when the biogenesis of the large ribosomal subunit is impaired. A fraction of RioK3 is associated with the non ribosomal pre-40S particle components hLtv1 and hEnp1 as well as with the 18S-E pre-rRNA indicating that it belongs to a bona fide cytoplasmic pre-40S particle. Finally, RioK3 depletion leads to an increase in the levels of the 21S rRNA precursor in the 18S rRNA production pathway. Altogether, our results strongly suggest that RioK3 is a novel cytoplasmic component of pre-40S pre-ribosomal particle(s) in human cells, required for normal processing of the 21S pre-rRNA.
Collapse
Affiliation(s)
- Kamila Baumas
- Centre National de la Recherche Scientifique; Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | | | | | | | | | | |
Collapse
|
112
|
Das S, Roymondal U, Chottopadhyay B, Sahoo S. Gene expression profile of the cynobacterium synechocystis genome. Gene 2012; 497:344-52. [PMID: 22310391 DOI: 10.1016/j.gene.2012.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/19/2012] [Indexed: 11/26/2022]
Abstract
The expression of functional proteins plays a crucial role in modern biotechnology. The free-living cynobacterium Synechocystis PCC 6803 is an interesting model organism to study oxygenic photosynthesis as well as other metabolic processes. Here we analyze a gene expression profiling methodology, RCBS (the scores of relative codon usage bias) to elucidate expression patterns of genes in the Synechocystis genome. To assess the predictive performance of the methodology, we propose a simple algorithm to calculate the threshold score to identify the highly expressed genes in a genome. Analysis of differential expression of the genes of this genome reveals that most of the genes in photosynthesis and respiration belong to the highly expressed category. The other genes with the higher predicted expression level include ribosomal proteins, translation processing factors and many hypothetical proteins. Only 9.5% genes are identified as highly expressed genes and we observe that highly expressed genes in Synechocystis genome often have strong compositional bias in terms of codon usage. An important application concerns the automatic detection of a set of impact codons and genes that are highly expressed tend to use this narrow set of preferred codons and display high codon bias .We further observe a strong correlation between RCBS and protein length indicating natural selection in favor of shorter genes to be expressed at higher level. The better correlations of RCBS with 2D electrophoresis and microarray data for heat shock proteins compared to the expression measure based on codon usage difference, E(g) and codon adaptive index, CAI indicate that the genomic expression profile available in our method can be applied in a meaningful way to study the mRNA expression patterns, which are by themselves necessary for the quantitative description of the biological states.
Collapse
Affiliation(s)
- Shibsankar Das
- Department of Mathematics, Uluberia College, Uluberia, Howrah, India.
| | | | | | | |
Collapse
|
113
|
Derouiche A, Cousin C, Mijakovic I. Protein phosphorylation from the perspective of systems biology. Curr Opin Biotechnol 2011; 23:585-90. [PMID: 22119098 DOI: 10.1016/j.copbio.2011.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
Protein phosphorylation pathways emerge as large and interconnected networks, involving mutually activating protein kinases, kinases acting as network nodes by phosphorylating different substrates, and cross-talk of phosphorylation with other post-translational modifications. The complexity of these networks clearly necessitates the use of systems biology approaches. Phosphoproteomics represents the basis for detection of phosphoproteins and phosphorylation sites, but it must be combined with transcriptomics and interactomics in attempts to build in silico phosphorylation networks. This review highlights the implication of phosphorylation in cellular physiology across all domains of life. It focuses particularly on reports of human disease correlated to defects in phosphorylation networks. Brief outline of developments in quantitative mass spectrometry-based proteomics and bioinformatic tools specific for phosphoproteome studies is provided.
Collapse
|
114
|
Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p. Biochem J 2011; 440:107-14. [DOI: 10.1042/bj20101422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CoQ6 (coenzyme Q6) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ6 (demethoxy-CoQ6) into CoQ6 in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ6 conversion into CoQ6. In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser20, Ser28 and Thr32. The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ6 levels (256%). Conversely, substitution with negatively charged residues decreases CoQ6 content (57%). These modifications produced in Coq7p also alter the ratio between DMQ6 and CoQ6 itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ6 synthesis.
Collapse
|
115
|
Friedman DI, Mozola CC, Beeri K, Ko CC, Reynolds JL. Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection. Mol Microbiol 2011; 82:567-77. [PMID: 21985444 DOI: 10.1111/j.1365-2958.2011.07847.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria in their struggle for survival have evolved or acquired defences against attacking phage. However, phage often contribute to this defence through mechanisms in which a prophage protects the bacterial population from attack by another, often unrelated, phage. The 933W prophage, which carries Shiga toxin genes that enhance pathogenicity of enterohaemorrhagic Escherichia coli strain O157:H7, also carries the stk gene encoding a eukaryotic-like tyrosine kinase that excludes (aborts) infection by phage HK97. This exclusion requires the kinase activity of Stk. Little, if any, protein tyrosine phosphorylation can be detected in a 933W lysogen prior to infection with HK97, while extensive Stk-mediated tyrosine phosphorylation is evident following infection. This includes autophosphorylation that stabilizes Stk protein from degradation. Although increased levels of Stk are found following HK97 infection, these higher levels are not necessary or sufficient for exclusion or protein phosphorylation. An HK97 open reading frame, orf41, is necessary for exclusion and Stk kinase activity. We hypothesize that interaction with gp41 stimulates Stk kinase activity. Exclusion of HK97 appears to be specific since other phages tested, λ, φ80, H-19B, λ-P22dis and T4rII, were not excluded. Infection of the 933W lysogen with a non-excluded phage fails to induce Stk-determined phosphorylation.
Collapse
Affiliation(s)
- David I Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
116
|
Desai SS, Rajpurohit YS, Misra HS, Deobagkar DN. Characterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans. MICROBIOLOGY-SGM 2011; 157:2974-2982. [PMID: 21737498 DOI: 10.1099/mic.0.049361-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deinococcus radiodurans shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. radR is located upstream of drB0090, which encodes a putative sensor histidine kinase (RadS) on the megaplasmid. Deletion of these genes both individually and together resulted in hypersensitivity to DNA-damaging agents and a delayed or altered double-strand break repair. A ΔradRradS double mutant and a ΔradR single mutant showed nearly identical responses to gamma radiation and UVC. Wild-type RadR and RadS complemented the corresponding mutant strains, but also exhibited significant cross-complementation, albeit at lower doses of gamma radiation. The radS transcript was not detected in the ΔradR mutant, suggesting the existence of a radRS operon. Recombinant RadS was autophosphorylated and could catalyse the transfer of γ phosphate from ATP to RadR in vitro. These results indicated the functional interaction of RadS and RadR, and suggested a role for the RadS/RadR two-component system in the radiation resistance of this bacterium.
Collapse
Affiliation(s)
- Shruti S Desai
- Centre for Advanced Studies in Zoology, Department of Zoology, University of Pune, Pune 411007, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Dileep N Deobagkar
- Centre for Advanced Studies in Zoology, Department of Zoology, University of Pune, Pune 411007, India
| |
Collapse
|
117
|
Abstract
Genomic studies have revealed the presence of Ser/Thr kinases and phosphatases in many bacterial species, although their physiological roles have largely been unclear. Here we review bacterial Ser/Thr kinases (eSTKs) that show homology in their catalytic domains to eukaryotic Ser/Thr kinases and their partner phosphatases (eSTPs) that are homologous to eukaryotic phosphatases. We first discuss insights into the enzymatic mechanism of eSTK activation derived from structural studies on both the ligand-binding and catalytic domains. We then turn our attention to the identified substrates of eSTKs and eSTPs for a number of species and to the implications of these findings for understanding their physiological roles in these organisms.
Collapse
|
118
|
A modified immunoblot method to identify substrates of protein kinases. J Microbiol 2011; 49:499-501. [PMID: 21717339 DOI: 10.1007/s12275-011-0465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/13/2011] [Indexed: 11/27/2022]
Abstract
While protein kinases are key components in multiple cellular processes, efficient identification of cognate in vivo substrates remains challenging. Here we describe a powerful method to screen potential substrates of protein kinases by partial transfer of proteins from a 2D-PAGE gel to a Western blot membrane. This approach allowed precise pinpointing of candidate substrate spots in the 2D gel, and identifying physiological substrates of protein kinases in Mycobacterium tuberculosis.
Collapse
|
119
|
Zorina A, Stepanchenko N, Novikova GV, Sinetova M, Panichkin VB, Moshkov IE, Zinchenko VV, Shestakov SV, Suzuki I, Murata N, Los DA. Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the Cyanobacterium synechocystis. DNA Res 2011; 18:137-51. [PMID: 21551175 PMCID: PMC3111230 DOI: 10.1093/dnares/dsr006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES.
Collapse
Affiliation(s)
- Anna Zorina
- Institute of Plant Physiology, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Xie LX, Hsieh EJ, Watanabe S, Allan CM, Chen JY, Tran UC, Clarke CF. Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:348-60. [PMID: 21296186 PMCID: PMC3075350 DOI: 10.1016/j.bbalip.2011.01.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants and show that unlike the coq8 null mutant, each maintained normal steady-state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p-dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q(6). The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.
Collapse
Affiliation(s)
- Letian X. Xie
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Edward J. Hsieh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Shota Watanabe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Christopher M. Allan
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Jia Y. Chen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - UyenPhuong C. Tran
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| |
Collapse
|
121
|
Phillips D, Aponte AM, Covian RG, Balaban RS. Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes. Biochemistry 2011; 50:2515-29. [PMID: 21329348 PMCID: PMC3524331 DOI: 10.1021/bi101434x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.
Collapse
Affiliation(s)
- Darci Phillips
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892
| | - Angel M. Aponte
- The Proteomics Core Facility, NHLBI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892
| | - Raul Garcia Covian
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892
| |
Collapse
|
122
|
Duan X, He ZG. Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. Biochem Biophys Res Commun 2011; 407:242-7. [PMID: 21382340 DOI: 10.1016/j.bbrc.2011.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
The mechanism and target genes of regulation by Forkhead (FHA) domain-containing transcription factors have not yet been documented in Archaea. In this study, using a bacterial one-hybrid technique, we successfully screened and identified for the first time a target gene regulated by ST0829, an FHA domain-containing potential transcriptional factor in the hyperthermophilic archaeon Sulfolobus tokodaii. We show that ST0829 could specifically bind to the promoter region of ST2519p, the archaeal flagellar protein-encoding operon (including FlaG, FlaF, FlaH, FlaI, and FlaJ) by using both in vitro electrophoretic mobility shift assay and surface plasmon resonance experiments, and invivo chromatin immunoprecipitation assays. Furthermore, phosphorylation of the FHA domain-containing protein was found to negatively regulate its specific DNA-binding activity. The interaction between ST0829 and ST2519p could be inhibited by wild-type Ser/Thr protein kinase ST1565, but was not significantly affected by its mutant variant ST1565-K166A that lacks kinase activity. These findings not only increase our knowledge about the function of an archaeal FHA domain-containing regulator but also offer important insights for further understanding the signaling mechanism of environmental adaptation in archaea.
Collapse
Affiliation(s)
- Xin Duan
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
123
|
Jers C, Kobir A, Søndergaard EO, Jensen PR, Mijakovic I. Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain. PLoS One 2011; 6:e14653. [PMID: 21304896 PMCID: PMC3033389 DOI: 10.1371/journal.pone.0014653] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system.
Collapse
Affiliation(s)
- Carsten Jers
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Ahasanul Kobir
- Micalis, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | - Peter Ruhdal Jensen
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Ivan Mijakovic
- Micalis, AgroParisTech/Institut National de la Recherche Agronomique, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
124
|
Wang C, Jing R, Mao X, Chang X, Li A. TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1299-311. [PMID: 21115661 PMCID: PMC3022413 DOI: 10.1093/jxb/erq377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought, salinity, and low temperature have drastic effects on plant growth and development. However, the molecular mechanisms regulating biochemical and physiological changes in response to stresses are not well understood. Protein kinases are major signal transduction factors among the reported molecular mechanisms mediating acclimation to environmental changes. Protein kinase ABC1 (activity of bc(1) complex) is involved in regulating coenzyme Q biosynthesis in mitochondria in yeast (Saccharomyces cersvisiae), and in balancing oxidative stress in chloroplasts in Arabidopsis thaliana. In the current study, TaABC1 (Triticum aestivum L. activity of bc(1) complex) protein kinase was localized to the cell membrane, cytoplasm, and nucleus. The effects of overexpressing TaABC1 in transgenic Arabidopsis plants on responses to drought, salt, and cold stress were further investigated. Transgenic Arabidopsis overexpressing the TaABC1 protein showed lower water loss and higher osmotic potential, photochemistry efficiency, and chlorophyll content, while cell membrane stability and controlled reactive oxygen species homeostasis were maintained. In addition, overexpression of TaABC1 increased the expression of stress-responsive genes, such as DREB1A, DREB2A, RD29A, ABF3, KIN1, CBF1, LEA, and P5CS, detected by real-time PCR analysis. The results suggest that TaABC1 overexpression enhances drought, salt, and cold stress tolerance in Arabidopsis, and imply that TaABC1 may act as a regulatory factor involved in a multiple stress response pathways.
Collapse
Affiliation(s)
| | - Ruilian Jing
- To whom correspondence should be addressed. E-mail:
| | | | | | | |
Collapse
|
125
|
The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J 2010; 30:873-81. [PMID: 21183954 DOI: 10.1038/emboj.2010.343] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022] Open
Abstract
The highly conserved Kinase, Endopeptidase and Other Proteins of small Size (KEOPS)/Endopeptidase-like and Kinase associated to transcribed Chromatin (EKC) protein complex has been implicated in transcription, telomere maintenance and chromosome segregation, but its exact function remains unknown. The complex consists of five proteins, Kinase-Associated Endopeptidase (Kae1), a highly conserved protein present in bacteria, archaea and eukaryotes, a kinase (Bud32) and three additional small polypeptides. We showed that the complex is required for a universal tRNA modification, threonyl carbamoyl adenosine (t6A), found in all tRNAs that pair with ANN codons in mRNA. We also showed that the bacterial ortholog of Kae1, YgjD, is required for t6A modification of Escherichia coli tRNAs. The ATPase activity of Kae1 and the kinase activity of Bud32 are required for the modification. The yeast protein Sua5 has been reported previously to be required for t6A synthesis. Using yeast extracts, we established an in vitro system for the synthesis of t6A that requires Sua5, Kae1, threonine, bicarbonate and ATP. It remains to be determined whether all reported defects of KEOPS/EKC mutants can be attributed to the lack of t6A, or whether the complex has multiple functions.
Collapse
|
126
|
GAO QS, YANG ZF, ZHOU Y, ZHANG D, YAN CH, LIANG GH, XU CW. Cloning of an ABC1-like Gene ZmABC1-10 and Its Responses to Cadmium and Other Abiotic Stresses in Maize (Zea mays L.). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1875-2780(09)60089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
127
|
Rajpurohit YS, Misra HS. Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol Microbiol 2010; 77:1470-82. [PMID: 20633226 DOI: 10.1111/j.1365-2958.2010.07301.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deinococcus radiodurans mutant lacking pyrroloquinoline-quinone (PQQ) synthesis shows sensitivity to γ-rays and impairment of DNA double strand break repair. The genome of this bacterium encodes five putative proteins having multiple PQQ binding motifs. The deletion mutants of corresponding genes were generated, and their response to DNA damage was monitored. Only the Δdr2518 mutant exhibited higher sensitivity to DNA damage. Survival of these cells decreased by 3-log cycle both at 6 kGy γ-rays and 1200 Jm(-2) UV (254 nm) radiation, and 2.5-log cycle upon 14 days desiccation at 5% humidity. The Δdr2518 mutant showed complete inhibition of DSB repair until 24 h PIR and disappearance of a few phosphoproteins. The Δdr2518pqqE:cat double mutant showed γ-ray sensitivity similar to Δdr2518 indicating functional interaction of these genes in D. radiodurans. DR2518 contains a eukaryotic type Ser/Thr kinase domain and structural topology suggesting stress responsive transmembrane protein. Its autokinase activity in solution was stimulated by nearly threefold with PQQ and twofold with linear DNA, but not with circular plasmid DNA. More than 15-fold increase in dr2518 transcription and several-fold enhanced in vivo phosphorylation of DR2518 were observed in response to γ irradiation. These results suggest that DR2518 as a DNA damage-responsive protein kinase plays an important role in radiation resistance and DNA strand break repair in D. radiodurans.
Collapse
|
128
|
Treuner-Lange A. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes. PLoS One 2010; 5:e11164. [PMID: 20567509 PMCID: PMC2887360 DOI: 10.1371/journal.pone.0011164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/04/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS PREDOMINANT OBSERVATIONS WERE: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
129
|
Tyagi N, Anamika K, Srinivasan N. A framework for classification of prokaryotic protein kinases. PLoS One 2010; 5:e10608. [PMID: 20520783 PMCID: PMC2877116 DOI: 10.1371/journal.pone.0010608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Collapse
Affiliation(s)
- Nidhi Tyagi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
130
|
Gerards M, van den Bosch B, Calis C, Schoonderwoerd K, van Engelen K, Tijssen M, de Coo R, van der Kooi A, Smeets H. Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. Mitochondrion 2010; 10:510-5. [PMID: 20580948 DOI: 10.1016/j.mito.2010.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/08/2010] [Accepted: 05/19/2010] [Indexed: 01/08/2023]
Abstract
Hereditary ataxias are genetic disorders characterized by uncoordinated gait and often poor coordination of hands, speech, and eye movements. Frequently, atrophy of the cerebellum occurs. Many ataxias are autosomal dominant, but autosomal recessive (AR) disease occurs as well. Homozygosity mapping in a consanguineous family with three affected children with progressive cerebellar ataxia and atrophy revealed a candidate locus on chromosome 1, containing the CABC1/ADCK3 (the chaperone, ABC1 activity of bc1 complex homologue) gene. CABC1/ADCK3 is the homologue of the yeast Coq8 gene, which is involved in the ubiquinone biosynthesis pathway. Mutation analysis of this gene showed a homozygous nonsense mutation (c.1042C>T, p.R348X). Eight additional patients with AR cerebellar ataxia and atrophy were screened for mutations in the CABC1/ADCK3 gene. One patient was compound heterozygous for the same c.1042C>T mutation and a second nonsense mutation (c.1136T>A, p.L379X). Both mutations created a premature stop codon, triggering nonsense mediated mRNA decay as the pathogenic mechanism. We found no evidence of a Dutch founder for the c.1042C>T mutation in AR ataxia. We report here the first nonsense mutations in CABC1 that most likely lead to complete absence of a functional CABC1 protein. Our results indicate that CABC1 is an important candidate for mutation analysis in progressive cerebellar ataxia and atrophy on MRI to identify those patients, who may benefit from CoQ10 treatment.
Collapse
Affiliation(s)
- Mike Gerards
- Department of Genetics and Cell Biology, Unit Clinical Genomics Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV. Stress sensors and signal transducers in cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2010; 10:2386-415. [PMID: 22294932 PMCID: PMC3264485 DOI: 10.3390/s100302386] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 11/17/2022]
Abstract
In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress.
Collapse
Affiliation(s)
- Dmitry A. Los
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Anna Zorina
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Maria Sinetova
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Sergey Kryazhov
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| | - Kirill Mironov
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Vladislav V. Zinchenko
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| |
Collapse
|
132
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|
133
|
Hernández G, Altmann M, Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci 2010; 35:63-73. [DOI: 10.1016/j.tibs.2009.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 02/08/2023]
|
134
|
Archaeal eukaryote-like serine/threonine protein kinase interacts with and phosphorylates a forkhead-associated-domain-containing protein. J Bacteriol 2010; 192:1956-64. [PMID: 20118261 DOI: 10.1128/jb.01471-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphorylation plays an important role in cell signaling. However, in the Archaea, little is known about which proteins are phosphorylated and which kinases are involved. In this study, we identified, for the first time, a typical eukaryote-like Ser/Thr protein kinase and its protein partner, a forkhead-associated (FHA)-domain-containing protein, from the archaeon Sulfolobus tokodaii strain 7. This protein kinase, ST1565, physically interacted with the FHA-domain-containing protein, ST0829, both in vivo and in vitro. ST1565 preferred Mn(2+) as a cofactor for autophosphorylation and for substrate phosphorylation; the optimal temperature for this was 45 degrees C, and the optimal pH was 5.5 to 7.5. The critical amino acid residues of the conserved FHA and kinase domain sites were identified by performing a series of mutation assays. Thr329 was part of a major activation site in the kinase, while Thr326 was a negative regulation site. Several mutants with amino acid substitutions in the conserved FHA domain sites of ST0829 did not physically interact with ST1565. A structural model for the FHA domain demonstrated that the mutation sites were located at the edge of the protein and thus were in the domain that potentially interacts with ST1565. This report describes pioneering work on the third domain of life, the Archaea, showing that a protein kinase interacts with and phosphorylates an FHA-domain-containing protein. Our data provide critical information on the structural or functional characteristics of archaeal proteins and could help increase our understanding of fundamental signaling mechanisms in all three domains of life.
Collapse
|
135
|
Toyoda T, Okano S, Shibata Y, Abiko Y. Oxidative stress induces phosphorylation of the ABC transporter, ATP-binding protein, in Porphyromonas gingivalis. J Oral Sci 2010; 52:561-6. [DOI: 10.2334/josnusd.52.561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
136
|
Gupta M, Sajid A, Arora G, Tandon V, Singh Y. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J Biol Chem 2009; 284:34723-34. [PMID: 19826007 DOI: 10.1074/jbc.m109.058834] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis profoundly exploits protein phosphorylation events carried out by serine/threonine protein kinases (STPKs) for its survival and pathogenicity. Forkhead-associated domains (FHA), the phosphorylation-responsive modules, have emerged as prominent players in STPK mediated signaling. In this study, we demonstrate the association of the previously uncharacterized FHA domain-containing protein Rv0019c with cognate STPK PknB. The consequent phosphorylation of Rv0019c is shown to be dependent on the conserved residues in the Rv0019c FHA domain and activation loop of PknB. Furthermore, by creating deletion mutants we identify Thr(36) as the primary phosphorylation site in Rv0019c. During purification of Rv0019c from Escherichia coli, the E. coli protein chloramphenicol acetyltransferase (CAT) specifically and reproducibly copurifies with Rv0019c in a FHA domain-dependent manner. On the basis of structural similarity of E. coli CAT with M. tuberculosis PapA5, a protein involved in phthiocerol dimycocerosate biosynthesis, PapA5 is identified as an interaction partner of Rv0019c. The interaction studies on PapA5, purified as an unphosphorylated protein from E. coli, with Rv0019c deletion mutants reveal that the residues N-terminal to the functional FHA domain of Rv0019c are critical for formation of the Rv0019c-PapA5 complex and thus constitute a previously unidentified phosphoindependent binding motif. Finally, PapA5 is shown to be phosphorylated on threonine residue(s) by PknB, whereas serine/threonine phosphatase Mstp completely reverses the phosphorylation. Thus, our data provides initial clues for a possible regulation of PapA5 and hence the phthiocerol dimycocerosate biosynthesis by PknB, either by direct phosphorylation of PapA5 or indirectly through Rv0019c.
Collapse
Affiliation(s)
- Meetu Gupta
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India
| | | | | | | | | |
Collapse
|
137
|
The Prokaryotic Origin and Evolution of Eukaryotic Chemosignaling Systems. ACTA ACUST UNITED AC 2009; 39:793-804. [DOI: 10.1007/s11055-009-9190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Indexed: 10/20/2022]
|
138
|
Bacterial tyrosine-kinases: structure-function analysis and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:628-34. [PMID: 19716442 DOI: 10.1016/j.bbapap.2009.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/07/2009] [Accepted: 08/17/2009] [Indexed: 11/21/2022]
Abstract
Since the characterization of genes encoding Ser/Thr-kinases and Tyr-kinases in bacteria, in 1991 and 1997, respectively, a growing body of evidence has been reported showing the important role of these enzymes in the regulation of bacterial physiology. While most Ser/Thr-kinases share structural similarity with their eukaryotic counterparts, it seems that bacteria have developed their own Tyr-kinases to catalyze protein phosphorylation on tyrosine. Different types of Tyr-kinases have been identified in bacteria and a large number of them are similar to ATP-binding proteins with Walker motifs. These enzymes have been grouped in the same family (BY-kinases) and the crystal structures of two of them have been recently characterized. Phosphoproteome analysis suggest that BY-kinases are involved in several cellular processes and to date, the best-characterized role of BY-kinases concerns the control of extracellular polysaccharide synthesis. Knowing the role of these compounds in the virulence of bacterial pathogens, BY-kinases can be considered as promising targets to combat some diseases. Here, we review the current knowledge on BY-kinases and discuss their potential for the development of new antibiotics.
Collapse
|
139
|
Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J 2009; 420:155-60. [PMID: 19366344 DOI: 10.1042/bj20090478] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Mycobacterium tuberculosis, signal transduction is mediated by 11 serine/threonine kinases, but no tyrosine kinases have been identified thus far. The protein encoded by the ORF (open reading frame) Rv2232 has been annotated as a member of the HAD (haloacid dehydrogenase-like hydrolase) superfamily, which includes phosphatases, phosphomanno- and phosphogluco-mutases, and haloacid dehydrogenases. In the present paper, we report, on the basis of biochemical and mutational analyses, that the Rv2232-encoded protein, named protein tyrosine kinase A (PtkA) is a bona fide protein tyrosine kinase. The cognate substrate of PtkA is the secreted protein tyrosine phosphatase A (PtpA).
Collapse
|
140
|
Aivaliotis M, Macek B, Gnad F, Reichelt P, Mann M, Oesterhelt D. Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum--a representative of the third domain of life. PLoS One 2009; 4:e4777. [PMID: 19274099 PMCID: PMC2652253 DOI: 10.1371/journal.pone.0004777] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/02/2009] [Indexed: 11/30/2022] Open
Abstract
In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins.
Collapse
Affiliation(s)
- Michalis Aivaliotis
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| | - Boris Macek
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Gnad
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter Reichelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
141
|
Bechet E, Guiral S, Torres S, Mijakovic I, Cozzone AJ, Grangeasse C. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids 2009; 37:499-507. [PMID: 19189200 DOI: 10.1007/s00726-009-0237-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/29/2008] [Indexed: 02/05/2023]
Abstract
When considering protein phosphorylation in bacteria, phosphorylation of aspartic acid and histidine residues mediated by the two-component systems is the first to spring to mind. And yet other phosphorylation systems have been described in bacteria in the past 20 years including eukaryotic-like serine/threonine kinases and more recently tyrosine-kinases. Among the latter, a peculiar type is widespread among bacteria, but not in higher organisms. These enzymes possess unique structural features defining thus a new family of enzymes termed Bacterial tyrosine kinases (BY-kinases). BY-kinases have been shown to be mainly involved in polysaccharide production, but their ability to phosphorylate endogenous substrates indicates that they participate in the regulation of other functions of the bacterial cell. Recent advances in mass spectrometry based phosphoproteomics provided lists of many new phosphotyrosine-proteins, indicating that BY-kinases may be involved in regulating a large array of other cellular functions. One may expect that in a near future, tyrosine phosphorylation will turn out to be one of the key regulatory processes in the bacterial cell and will yield new insights into the understanding of its physiology.
Collapse
Affiliation(s)
- Emmanuelle Bechet
- Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon, France
| | | | | | | | | | | |
Collapse
|
142
|
Padilla S, Tran UC, Jiménez-Hidalgo M, López-Martín JM, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C. Hydroxylation of demethoxy-Q6 constitutes a control point in yeast coenzyme Q6 biosynthesis. Cell Mol Life Sci 2009; 66:173-86. [PMID: 19002377 PMCID: PMC3070445 DOI: 10.1007/s00018-008-8547-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coenzyme Q is a lipid molecule required for respiration and antioxidant protection. Q biosynthesis in Saccharomyces cerevisiae requires nine proteins (Coq1p-Coq9p). We demonstrate in this study that Q levels are modulated during growth by its conversion from demethoxy-Q (DMQ), a late intermediate. Similar conversion was produced when cells were subjected to oxidative stress conditions. Changes in Q(6)/DMQ(6) ratio were accompanied by changes in COQ7 gene mRNA levels encoding the protein responsible for the DMQ hydroxylation, the penultimate step in Q biosynthesis pathway. Yeast coq null mutant failed to accumulate any Q late biosynthetic intermediate. However, in coq7 mutants the addition of exogenous Q produces the DMQ synthesis. Similar effect was produced by over-expressing ABC1/COQ8. These results support the existence of a biosynthetic complex that allows the DMQ(6) accumulation and suggest that Coq7p is a control point for the Q biosynthesis regulation in yeast.
Collapse
Affiliation(s)
- S. Padilla
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - U. C. Tran
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, 90095 CA USA
| | - M. Jiménez-Hidalgo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - J. M. López-Martín
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - A. Martín-Montalvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - C. F. Clarke
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, 90095 CA USA
| | - P. Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| | - C. Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), Carretera de Utrera, km 1, ISCIII, 41013 Sevilla, Spain
| |
Collapse
|
143
|
Artuch R, Salviati L, Jackson S, Hirano M, Navas P. Coenzyme Q10 deficiencies in neuromuscular diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:117-28. [PMID: 20225022 PMCID: PMC3245903 DOI: 10.1007/978-90-481-2813-6_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids beta-oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by mutation(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases.
Collapse
Affiliation(s)
- Rafael Artuch
- Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | |
Collapse
|
144
|
Tauche A, Krause-Buchholz U, Rödel G. Ubiquinone biosynthesis inSaccharomyces cerevisiae: the molecular organization ofO-methylase Coq3p depends on Abc1p/Coq8p. FEMS Yeast Res 2008; 8:1263-75. [DOI: 10.1111/j.1567-1364.2008.00436.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
145
|
A PPM-family protein phosphatase from the thermoacidophile Thermoplasma volcanium hydrolyzes protein-bound phosphotyrosine. Extremophiles 2008; 13:371-7. [DOI: 10.1007/s00792-008-0211-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/10/2008] [Indexed: 11/30/2022]
|
146
|
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719. [PMID: 18948295 PMCID: PMC2588523 DOI: 10.1093/nar/gkn668] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
147
|
Asencio C, Navas P, Cabello J, Schnabel R, Cypser JR, Johnson TE, Rodríguez-Aguilera JC. Coenzyme Q supports distinct developmental processes in Caenorhabditis elegans. Mech Ageing Dev 2008; 130:145-53. [PMID: 19007804 DOI: 10.1016/j.mad.2008.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (Q) regulates aging in Caenorhabditis elegans, and its deficiency leads to a variety of pathologies in humans. We used a coq-8 deleted strain to study the role of Q in C. elegans development and how it influences life span. Endogenous Q(9) content of coq-8(ok840) knockouts was demonstrated to be about 7% of that found in the wild-type, indicating the basal biosynthesis rate is reduced in this strain. Knockouts abnormally developed both gonads and hypodermis, showed reduced fertility and shortened life span, and this was partially recovered by ingestion of exogenous Q. Knockouts produced embryos that showed arrested development at the time of initial expression of coq-8 in embryo. Uridine, whose biosynthesis depends on mitochondrial Q, improved both egg production and progeny under Q-rich dietary conditions. COQ-8 is a candidate protein for post-translational regulation of Q biosynthesis rate and its expression correlates with Q content during the life cycle in C. elegans. We show for the first time that a critical level of Q is necessary to support embryo development and fertility in C. elegans. These results suggest that extra-mitochondrial function of Q is a key factor linking development and bioenergetics in C. elegans.
Collapse
Affiliation(s)
- Claudio Asencio
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
| | | | | | | | | | | | | |
Collapse
|
148
|
Laurent S, Jang J, Janicki A, Zhang CC, Bédu S. Inactivation of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocystis sp. strain PCC 6803. MICROBIOLOGY-SGM 2008; 154:2161-2167. [PMID: 18599843 DOI: 10.1099/mic.0.2007/016196-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inactivation of sll0776 (spkD), a gene encoding a protein Ser/Thr kinase in Synechocystis PCC 6803, led to a pleiotropic phenotype of the SpkD null mutant. This mutant is impaired in its growth ability under low concentration of inorganic carbon (C(i)), though its C(i)-uptake system is not affected. Addition of glucose, phosphoglyceraldehyde or pyruvate does not allow the mutant to grow under low-C(i) conditions. In contrast, this growth defect can be restored when the low-C(i) culture medium is supplemented with metabolites of the TCA cycle. Growth of the mutant is also inhibited when ammonium is provided as nitrogen source, whatever the carbon regime of the cells, due to the high demand for 2-oxoglutarate, which is the carbon skeleton for ammonium assimilation. When mutant cells are cultured under standard growth conditions, the intracellular concentration of 2-oxoglutarate is 20 % lower than is observed in the wild-type strain. However, this decrease of 2-oxoglutarate level only slightly affects the phosphorylation state of PII, a protein that regulates nitrogen and carbon metabolism according to the intracellular levels of 2-oxoglutarate. Properties of the SpkD mutant suggest that the Ser/Thr kinase SpkD could be involved in adjusting the pool of the TCA cycle metabolites according to C(i) supply in the culture medium.
Collapse
Affiliation(s)
- Sophie Laurent
- CNRS, Laboratoire de Chimie Bactérienne (UPR9043), Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
- Aix-Marseille Université, Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
| | - Jichan Jang
- CNRS, Laboratoire de Chimie Bactérienne (UPR9043), Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
| | - Annick Janicki
- CNRS, Laboratoire de Chimie Bactérienne (UPR9043), Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
| | - Cheng-Cai Zhang
- CNRS, Laboratoire de Chimie Bactérienne (UPR9043), Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
- Aix-Marseille Université, Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
| | - Sylvie Bédu
- CNRS, Laboratoire de Chimie Bactérienne (UPR9043), Institut de Biologie Structurale et Microbiologie, 13402 Marseille cedex 20, France
| |
Collapse
|
149
|
Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2008; 105:13105-10. [PMID: 18728196 DOI: 10.1073/pnas.0801143105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in Mycobacterium tuberculosis, and this sigma factor is required for virulence in animal models of infection. SigH is negatively regulated by RshA, its cognate anti-sigma factor, which functions as a stress sensor and redox switch. While RshA provides a direct mechanism for sensing stress and activating transcription, bacteria use several types of signal transduction systems to sense the external environment. M. tuberculosis encodes several serine-threonine protein kinase signaling molecules, 2 of which, PknA and PknB, are essential and have been shown to regulate cell morphology and cell wall synthesis. In this work, we demonstrate that SigH and RshA are phosphorylated in vitro and in vivo by PknB. We show that phosphorylation of RshA, but not SigH, interferes with the interaction of these 2 proteins in vitro. Consistent with this finding, negative regulation of SigH activity by RshA in vivo is partially relieved in strains in which pknB is over-expressed, resulting in increased resistance to oxidative stress. These findings demonstrate an interaction between the signaling pathways mediated by PknB and the stress response regulon controlled by SigH. The intersection of these apparently discrete regulatory systems provides a mechanism by which limited activation of the SigH-dependent stress response in M. tuberculosis can be achieved. Coordination of the PknB and SigH regulatory pathways through phosphorylation of RshA may lead to adaptive responses that are important in the pathogenesis of M. tuberculosis infection.
Collapse
|
150
|
Chuang YC, Wang KC, Chen YT, Yang CH, Men SC, Fan CC, Chang LH, Yeh KS. Identification of the genetic determinants of Salmonella enterica serotype Typhimurium that may regulate the expression of the type 1 fimbriae in response to solid agar and static broth culture conditions. BMC Microbiol 2008; 8:126. [PMID: 18652702 PMCID: PMC2527010 DOI: 10.1186/1471-2180-8-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/25/2008] [Indexed: 12/29/2022] Open
Abstract
Background Type 1 fimbriae are the most commonly found fimbrial appendages on the outer membrane of Salmonella enterica serotype Typhimurium. Previous investigations indicate that static broth culture favours S. Typhimurium to produce type 1 fimbriae, while non-fimbriate bacteria are obtained by growth on solid agar media. The phenotypic expression of type 1 fimbriae in S. Typhimurium is the result of the interaction and cooperation of several genes in the fim gene cluster. Other gene products that may also participate in the regulation of type 1 fimbrial expression remain uncharacterized. Results In the present study, transposon insertion mutagenesis was performed on S. Typhimurium to generate a library to screen for those mutants that would exhibit different type 1 fimbrial phenotypes than the parental strain. Eight-two mutants were obtained from 7,239 clones screened using the yeast agglutination test. Forty-four mutants produced type 1 fimbriae on both solid agar and static broth media, while none of the other 38 mutants formed type 1 fimbriae in either culture condition. The flanking sequences of the transposons from 54 mutants were cloned and sequenced. These mutants can be classified according to the functions or putative functions of the open reading frames disrupted by the transposon. Our current results indicate that the genetic determinants such as those involved in the fimbrial biogenesis and regulation, global regulators, transporter proteins, prophage-derived proteins, and enzymes of different functions, to name a few, may play a role in the regulation of type 1 fimbrial expression in response to solid agar and static broth culture conditions. A complementation test revealed that transforming a recombinant plasmid possessing the coding sequence of a NAD(P)H-flavin reductase gene ubiB restored an ubiB mutant to exhibit the type 1 fimbrial phenotype as its parental strain. Conclusion Genetic determinants other than the fim genes may involve in the regulation of type 1 fimbrial expression in S. Typhimurium. How each gene product may influence type 1 fimbrial expression is an interesting research topic which warrants further investigation.
Collapse
Affiliation(s)
- Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, 901 Chung Hwa Road, Yong Kang City, Tainan 710, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|