101
|
Cha TA, Alberts BM. Effects of the bacteriophage T4 gene 41 and gene 32 proteins on RNA primer synthesis: coupling of leading- and lagging-strand DNA synthesis at a replication fork. Biochemistry 1990; 29:1791-8. [PMID: 2158814 DOI: 10.1021/bi00459a018] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have demonstrated previously that the template sequences 5'-GTT-3' and 5'-GCT-3' serve as necessary and sufficient signals for the initiation of new DNA chains that start with pentaribonucleotide primers of sequence pppApCpNpNpN or pppGpCpNpNpN, respectively. Normally, the complete T4 primosome, consisting of the T4 gene 41 (DNA helicase) and gene 61 (primase) proteins, is required to produce RNA primers. However, a high concentration of the 61 protein alone can prime DNA chain starts from the GCT sites [Cha, T.-A., & Alberts, B. M. (1986) J. Biol. Chem. 261, 7001-7010]. We show here that the 61 protein can catalyze a single-stranded DNA template-dependent reaction in which the dimers pppApC and pppGpC are the major products and much longer oligomers of various lengths are minor ones. Further addition of the 41 protein is needed to form a primosome that catalyzes efficient synthesis of the physiologically relevant pentaribonucleotides that are responsible for the de novo DNA chain starts on the lagging strand of a replication fork. The helicase activity of the 41 protein is necessary and sufficient to ensure a high rate and processivity of DNA synthesis on the leading strand [Cha, T.-A., & Alberts, B. M. (1989) J. Biol. Chem. 264, 12220-12225]. Coupling an RNA primase to this helicase in the primosome therefore coordinates the leading- and lagging-strand DNA syntheses at a DNA replication fork. Our experiments reveal that the addition of the T4 helix-destabilizing protein (the gene 32 protein) is required to confine the synthesis of RNA primers to those sites where they are used to start an Okazaki fragment, causing many potential priming sites to be passed by the primosome without triggering primer synthesis.
Collapse
Affiliation(s)
- T A Cha
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
102
|
Simian virus 40 DNA replication in vitro: identification of multiple stages of initiation. Mol Cell Biol 1989. [PMID: 2550804 DOI: 10.1128/mcb.9.9.3839] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cell-free DNA replication system dependent upon five purified cellular proteins, one crude cellular fraction, and the simian virus 40 (SV40)-encoded large tumor antigen (T antigen) initiated and completed replication of plasmids containing the SV40 origin sequence. DNA synthesis initiated at or near the origin sequence after a time lag of approximately 10 min and then proceeded bidirectionally from the origin to yield covalently closed, monomer daughter molecules. The time lag could be completely eliminated by a preincubation of SV40 ori DNA in the presence of T antigen, a eucaryotic single-stranded DNA-binding protein (replication factor A [RF-A]), and topoisomerases I and II. In contrast, if T antigen and the template DNA were incubated alone, the time lag was only partially decreased. Kinetic analyses of origin recognition by T antigen, origin unwinding, and DNA synthesis suggest that the time lag in replication was due to the formation of a complex between T antigen and DNA called the T complex, followed by formation of a second complex called the unwound complex. Formation of the unwound complex required RF-A. When origin unwinding was coupled to DNA replication by the addition of a partially purified cellular fraction (IIA), DNA synthesis initiated at the ori sequence, but the template DNA was not completely replicated. Complete DNA replication in this system required the proliferating-cell nuclear antigen and another cellular replication factor, RF-C, during the elongation stage. In a less fractionated system, another cellular fraction, SSI, was previously shown to be necessary for reconstitution of DNA replication. The SSI fraction was required in the less purified system to antagonize the inhibitory action of another cellular protein(s). This inhibitor specifically blocked the earliest stage of DNA replication, but not the later stages. The implications of these results for the mechanisms of initiation and elongation of DNA replication are discussed.
Collapse
|
103
|
Tsurimoto T, Fairman MP, Stillman B. Simian virus 40 DNA replication in vitro: identification of multiple stages of initiation. Mol Cell Biol 1989; 9:3839-49. [PMID: 2550804 PMCID: PMC362445 DOI: 10.1128/mcb.9.9.3839-3849.1989] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A cell-free DNA replication system dependent upon five purified cellular proteins, one crude cellular fraction, and the simian virus 40 (SV40)-encoded large tumor antigen (T antigen) initiated and completed replication of plasmids containing the SV40 origin sequence. DNA synthesis initiated at or near the origin sequence after a time lag of approximately 10 min and then proceeded bidirectionally from the origin to yield covalently closed, monomer daughter molecules. The time lag could be completely eliminated by a preincubation of SV40 ori DNA in the presence of T antigen, a eucaryotic single-stranded DNA-binding protein (replication factor A [RF-A]), and topoisomerases I and II. In contrast, if T antigen and the template DNA were incubated alone, the time lag was only partially decreased. Kinetic analyses of origin recognition by T antigen, origin unwinding, and DNA synthesis suggest that the time lag in replication was due to the formation of a complex between T antigen and DNA called the T complex, followed by formation of a second complex called the unwound complex. Formation of the unwound complex required RF-A. When origin unwinding was coupled to DNA replication by the addition of a partially purified cellular fraction (IIA), DNA synthesis initiated at the ori sequence, but the template DNA was not completely replicated. Complete DNA replication in this system required the proliferating-cell nuclear antigen and another cellular replication factor, RF-C, during the elongation stage. In a less fractionated system, another cellular fraction, SSI, was previously shown to be necessary for reconstitution of DNA replication. The SSI fraction was required in the less purified system to antagonize the inhibitory action of another cellular protein(s). This inhibitor specifically blocked the earliest stage of DNA replication, but not the later stages. The implications of these results for the mechanisms of initiation and elongation of DNA replication are discussed.
Collapse
Affiliation(s)
- T Tsurimoto
- Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
104
|
Herendeen DR, Kassavetis GA, Barry J, Alberts BM, Geiduschek EP. Enhancement of bacteriophage T4 late transcription by components of the T4 DNA replication apparatus. Science 1989; 245:952-8. [PMID: 2672335 DOI: 10.1126/science.2672335] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The expression of the late genes in bacteriophage T4 development is closely connected to viral DNA replication. Three T4-encoded DNA polymerase accessory proteins are shown to stimulate transcription at T4 late promoters in an adenosine triphosphate (ATP) hydrolysis-requiring process. The properties of the activation resemble those found for enhancers of eukaryotic transcription. However, the nature of the enhancer of T4 late transcription is novel in that it is a structure--a break in the nontranscribed DNA stand--to which the three replication proteins bind, rather than a sequence. Since the three DNA polymerase accessory proteins are carried on the moving replication fork as part of the replisome, we postulate that viral DNA replication forks act, in vivo, as the mobile enhancers of T4 late gene transcription. Whereas Escherichia coli RNA polymerase bearing the T4 gene 55 protein can selectively recognize T4 late promoters, it is only capable of responding to the transcription-enhancing activity of the three replication proteins on acquiring an additional T4-specific modification.
Collapse
Affiliation(s)
- D R Herendeen
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
105
|
The Escherichia coli Primosome Can Translocate Actively in Either Direction along a DNA Strand. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71711-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
106
|
|
107
|
|
108
|
Rush J, Lin TC, Quinones M, Spicer EK, Douglas I, Williams KR, Konigsberg WH. The 44P Subunit of the T4 DNA Polymerase Accessory Protein Complex Catalyzes ATP Hydrolysis. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60410-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
109
|
Caron PR, Grossman L. Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res 1988; 16:10891-902. [PMID: 2974538 PMCID: PMC338946 DOI: 10.1093/nar/16.22.10891] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires ATP hydrolysis. Although the deduced sequence of the UvrB protein suggests a putative ATP binding site, no nucleoside triphosphatase activity is demonstrable with the purified UvrB protein. The UvrB protein is specifically proteolyzed in E. coli cell extracts to yield a 70 kD fragment, referred to as UvrB*, which has been purified and is shown to possess a single-strand DNA dependent ATPase activity. Substrate specificity and kinetic analyses of UvrB* catalyzed nucleotide hydrolysis indicate that the stimulation in DNA dependent ATPase activity following formation of the UvrAB complex results from the activation of the normally sequestered UvrB associated ATPase. Using nucleotide analogues, it can be shown that this activity is essential to the DNA incision reaction carried out by the UvrABC complex.
Collapse
Affiliation(s)
- P R Caron
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205
| | | |
Collapse
|
110
|
Perrino FW, Meyer RR, Bobst AM, Rein DC. Interaction of a folded chromosome-associated protein with single-stranded DNA-binding protein of Escherichia coli, identified by affinity chromatography. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37861-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
111
|
Albright LM, Kassavetis GA, Geiduschek EP. Bacteriophage T4 late transcription from plasmid templates is enhanced by negative supercoiling. J Bacteriol 1988; 170:1279-89. [PMID: 2830234 PMCID: PMC210904 DOI: 10.1128/jb.170.3.1279-1289.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Concurrent viral replication is normally required to activate bacteriophage T4 late promoters; replication is thought to provide a template structure which is competent for late transcription. Transcription from plasmid-borne T4 late promoters, however, is independent of replication in vivo and in vitro. In this work, we have shown that, when the late gene 23 promoter is located on a plasmid, its utilization in vivo depends upon the ability of host DNA gyrase to maintain some degree of negative superhelicity. This suggests that an alternative pathway exists for activation of late promoters: DNA which is under sufficient negative torsional stress is already competent for late transcription. We also describe a method for isolating ternary complexes of plasmid DNA, RNA polymerase, and nascent RNA which have initiated transcription in vivo. The topoisomer distribution of such ternary complexes prepared from T4-infected cells showed that, late in infection, transcriptional activity resides primarily in the subset of the plasmid population with the most negatively supercoiled topoisomers. However, the overall transcriptional pattern in these ternary complexes indicated that both vector and T4 sequences are actively transcribed. Much of this transcriptional activity could be independent of gp55, the T4-specific RNA polymerase-binding protein that confers late promoter recognition.
Collapse
Affiliation(s)
- L M Albright
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
112
|
Kinchington PR, Inchauspe G, Subak-Sharpe JH, Robey F, Hay J, Ruyechan WT. Identification and characterization of a varicella-zoster virus DNA-binding protein by using antisera directed against a predicted synthetic oligopeptide. J Virol 1988; 62:802-9. [PMID: 2828675 PMCID: PMC253635 DOI: 10.1128/jvi.62.3.802-809.1988] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have identified, in varicella-zoster virus (VZV)-infected cells, the product of the gene predicted to code for the VZV analog of the herpes simplex virus major DNA-binding protein. The open reading frame of the VZV gene has the potential to code for a protein with a predicted molecular weight of 132,000 (a 132K protein). To detect the protein, a 12-amino-acid oligopeptide corresponding to the carboxyl terminus of the putative open reading frame was synthesized and used to prepare antisera in rabbits. The resulting antibodies reacted specifically in Western immunoblot analysis and immunoprecipitation with a single 130K polypeptide found in VZV-infected cells. The specific reactivity of the antisera with the 130K polypeptide was inhibited by the addition of synthetic peptide. Immunofluorescence studies with the antisera as probe for the 130K polypeptide suggested that this peptide is located predominantly within the nuclei of infected cells. Analysis of proteins that bind to single-stranded DNA immobilized on cellulose matrices indicated that 30 to 50% of the 130K polypeptide is capable of interacting with single-stranded DNA and that this interaction is overcome with 0.5 M NaCl. Thus, we have prepared a specific polyclonal antiserum that identifies a VZV DNA-binding protein whose properties are similar to those of the herpes simplex virus ICP8 (Vmw130) DNA-binding protein.
Collapse
Affiliation(s)
- P R Kinchington
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | | | | | |
Collapse
|
113
|
Ruyechan WT. N-ethylmaleimide inhibition of the DNA-binding activity of the herpes simplex virus type 1 major DNA-binding protein. J Virol 1988; 62:810-7. [PMID: 2828676 PMCID: PMC253636 DOI: 10.1128/jvi.62.3.810-817.1988] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major herpes simplex virus DNA-binding protein, designated ICP8, binds tightly to single-stranded DNA and is required for replication of viral DNA. The sensitivity of the DNA-binding activity of ICP8 to the action of the sulfhydryl reagent N-ethylmaleimide has been examined by using nitrocellulose filter-binding and agarose gel electrophoresis assays. Incubation of ICP8 with N-ethylmaleimide results in a rapid loss of DNA-binding activity. Preincubation of ICP8 with single-stranded DNA markedly inhibits this loss of binding activity. These results imply that a free sulfhydryl group is involved in the interaction of ICP8 with single-stranded DNA and that this sulfhydryl group becomes less accessible to the environment upon binding. Agarose gel electrophoretic analysis of the binding interaction in the presence and absence of N-ethylmaleimide indicates that the cooperative binding exhibited by ICP8 is lost upon treatment with this reagent but that some residual noncooperative binding may remain. This last result was confirmed by equilibrium dialysis experiments with the 32P-labeled oligonucleotide dT10 and native and N-ethylmaleimide-treated ICP8.
Collapse
Affiliation(s)
- W T Ruyechan
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| |
Collapse
|
114
|
Lee MS, Marians KJ. Escherichia coli replication factor Y, a component of the primosome, can act as a DNA helicase. Proc Natl Acad Sci U S A 1987; 84:8345-9. [PMID: 2825188 PMCID: PMC299539 DOI: 10.1073/pnas.84.23.8345] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The primosome is a mobile multienzyme DNA replication-priming complex that requires seven Escherichia coli proteins for assembly (the products of the dnaB, dnaC, dnaG, and dnaT genes as well as proteins n and n" and replication factor Y). It has been shown previously that the primosome, in combination with the E. coli DNA polymerase III holoenzyme, can form replication forks in vitro that move at rates similar to those measured in vivo and that the primosome and one of the components of the primosome, the DNA B protein, have DNA helicase activity. Evidence is presented here that another component of the primosome, replication factor Y, possesses DNA helicase activity as well. Factor Y helicase activity requires the presence of E. coli single-stranded DNA binding protein, Mg2+, and hydrolyzable ATP or dATP. Helicase activity is stimulated 15-fold when the enzyme is actively loaded onto single-stranded DNA through a primosome assembly site, and duplex DNA is unwound unidirectionally, 3'----5', along the DNA strand to which the protein is bound.
Collapse
Affiliation(s)
- M S Lee
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | |
Collapse
|
115
|
Lee SH, Walker JR. Escherichia coli DnaX product, the tau subunit of DNA polymerase III, is a multifunctional protein with single-stranded DNA-dependent ATPase activity. Proc Natl Acad Sci U S A 1987; 84:2713-7. [PMID: 3033660 PMCID: PMC304728 DOI: 10.1073/pnas.84.9.2713] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The dnaZX gene of Escherichia coli directs the synthesis of two proteins, DnaZ and DnaX. These products are confirmed as the gamma and tau subunits of DNA polymerase III because antibody to a synthetic peptide present in both the DnaZ and DnaX proteins reacts also with the gamma and tau subunits of holoenzyme. To characterize biochemically the tau subunit, for which there has been no activity assay, the dnaZX gene was fused to the beta-galactosidase gene to encode a fusion product in which the 20 C-terminal amino acids of the DnaX protein (tau) were replaced by beta-galactosidase lacking only 7 N-terminal amino acids. The 185-kDa fusion protein, which retained beta-galactosidase activity, was overproduced to the level of about 5% of the soluble cellular protein by placing the gene fusion under control of the tac promoter and Shine-Dalgarno sequence. The fusion protein was isolated in one step by affinity chromatography on p-aminobenzyl 1-thio-beta-D-galactopyranoside-agarose. The purified fusion protein also had ATPase (and dATPase) activity that was dependent on single-stranded DNA. This activity copurified with the beta-galactosidase activity not only through the affinity column but also through a subsequent gel filtration. We conclude that the DnaX protein function involves binding to single-stranded DNA and hydrolysis of ATP or dATP, in addition to binding to other DNA polymerase III holoenzyme components, increasing the processivity of the core enzyme, and serving as a substrate for the production of the gamma subunit.
Collapse
|
116
|
Abstract
The protein-mediated exchange of strands between a DNA double helix and a homologous DNA single strand involves both synapsis and branch migration, which are two important aspects of any general recombination reaction. Purified DNA-dependent ATPases from Escherichia coli (recA protein), Ustilago (rec 1 protein) and phage T4 (uvsX protein) have been shown to drive both synapsis and branch migration in vitro. The T4 gene 32 protein is a helix-destabilizing protein that greatly stimulates uvsX-protein-catalysed synapsis, and the E. coli SSB (single-strand binding) protein stimulates the analogous recA-protein-mediated reaction to a lesser degree. One suspects that several other proteins also play a role in the strand exchange process. For example, a DNA helicase could in principle accelerate branch migration rates by helping to melt the helix at the branch point. The T4 dda protein is a DNA helicase that is required to move the T4 replication fork past DNA template-bound proteins in vitro. Previously, we have shown that the dda protein binds to a column that contains immobilized T4 uvsX protein. We show here that this helicase specifically stimulates the branch migration reaction that the uvsX protein catalyses as a central part of the genetic recombination process in a T4 bacteriophage-infected cell.
Collapse
|
117
|
DNA helicase II of Escherichia coli. Characterization of the single-stranded DNA-dependent NTPase and helicase activities. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61619-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
118
|
Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3' to 5' direction. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67506-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
119
|
Ruyechan WT, Chytil A, Fisher CM. In vitro characterization of a thermolabile herpes simplex virus DNA-binding protein. J Virol 1986; 59:31-6. [PMID: 3012119 PMCID: PMC253034 DOI: 10.1128/jvi.59.1.31-36.1986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major herpes simplex virus DNA-binding protein, ICP8, was purified from cells infected with the herpes simplex virus type 1 temperature-sensitive strain tsHA1. tsHA1 ICP8 bound single-stranded DNA in filter binding assays carried out at room temperature and exhibited nonrandom binding to single-stranded bacteriophage fd DNA circles as determined by electron microscopy. The filter binding assay results and the apparent nucleotide spacing of the DNA complexed with protein were identical, within experimental error, to those observed with wild-type ICP8. Thermal inactivation assays, however, showed that the DNA-binding activity of tsHA1 ICP8 was 50% inactivated at approximately 39 degrees C as compared with 45 degrees C for the wild-type protein. Both wild-type and tsHA1 ICP8 were capable of stimulating viral DNA polymerase activity at permissive temperatures. The stimulatory effect of both proteins was lost at 39 degrees C.
Collapse
|
120
|
Studies of the DNA helicase-RNA primase unit from bacteriophage T4. A trinucleotide sequence on the DNA template starts RNA primer synthesis. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62714-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
121
|
DiFrancesco RA, Lehman IR. Interaction of ribonuclease H from Drosophila melanogaster embryos with DNA polymerase-primase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38638-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
122
|
Production of antibodies directed against Escherichia coli helicase III and the molecular cloning of the helicase III gene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39103-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
123
|
Relationship between bacteriophage T4 and T6 DNA topoisomerases. T6 39-protein subunit is equivalent to the combined T4 39- and 60-protein subunits. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39444-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
124
|
Burke RL, Munn M, Barry J, Alberts BM. Purification and properties of the bacteriophage T4 gene 61 RNA priming protein. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89652-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
125
|
Jongeneel CV, Bedinger P, Alberts BM. Effects of the bacteriophage T4 dda protein on DNA synthesis catalyzed by purified T4 replication proteins. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90835-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
126
|
Jongeneel CV, Formosa T, Alberts BM. Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90834-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
127
|
Site-specific recognition of bacteriophage T4 DNA by T4 type II DNA topoisomerase and Escherichia coli DNA gyrase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42996-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
128
|
Thaller C, Alberts B, Goldsmith E, Sprang S, Fletterick R. Crystallization of the gene 45 protein from the DNA replication fork of bacteriophage T4. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43391-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
129
|
Jongeneel CV, Formosa T, Munn M, Alberts BM. Enzymological studies of the T4 replication proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1984; 179:17-33. [PMID: 6098151 DOI: 10.1007/978-1-4684-8730-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
130
|
Marians KJ. Enzymology of DNA in replication in prokaryotes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 17:153-215. [PMID: 6097404 DOI: 10.3109/10409238409113604] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review stresses recent developments in the in vitro study of DNA replication in prokaryotes. New insights into the enzymological mechanisms of initiation and elongation of leading and lagging strand DNA synthesis in ongoing studies are emphasized. Data from newly developed systems, such as those replicating oriC containing DNA or which are dependent on the lambda, O, and P proteins, are presented and the information compared to existing mechanisms. Evidence bearing on the coupling of DNA synthesis on both parental strands through protein-protein interactions and on the turnover of the elongation systems are analyzed. The structure of replication origins, and how their tertiary structure affects recognition and interaction with the various replication proteins is discussed.
Collapse
|
131
|
Abstract
In this paper we describe the nature and importance of processive enzymatic reactions in biological processes. A model is set up to describe the processive synthetic process in DNA replication, and experiments are presented to define and test the model, using the components of the T4 phage-coded five-protein (in vitro) DNA replication system of Alberts. Nossal and coworkers. These experiments are performed either with a homogeneous oligo dT-poly dA primer-template system, or with a natural primer-template system using phage M13 DNA. The results are used to define some molecular aspects of the microscopic "processivity cycle".
Collapse
Affiliation(s)
- F R Fairfield
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | |
Collapse
|
132
|
Bedinger P, Alberts BM. The 3‘-5‘ proofreading exonuclease of bacteriophage T4 DNA polymerase is stimulated by other T4 DNA replication proteins. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44546-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|