101
|
Robinson PA, Pagès JC, Gabay NC, Babaie T, Mukta KN. Neural field theory of perceptual echo and implications for estimating brain connectivity. Phys Rev E 2018; 97:042418. [PMID: 29758729 DOI: 10.1103/physreve.97.042418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - J C Pagès
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - N C Gabay
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - T Babaie
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - K N Mukta
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
102
|
Hu B, Guo Y, Shi F, Zou X, Dong J, Pan L, Yu M, Zhou C, Cheng Z, Tang W, Sun H, Chen L. The generation mechanism of spike-and-slow wave discharges appearing on thalamic relay nuclei. Sci Rep 2018; 8:4953. [PMID: 29563579 PMCID: PMC5862852 DOI: 10.1038/s41598-018-23280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
In this paper, we use a model modified from classic corticothalamic network(CT) to explore the mechanism of absence seizures appearing on specific relay nuclei (SRN) of the thalamus. It is found that typical seizure states appear on SRN through tuning several critical connection strengths in the model. In view of previous experimental and theoretical works which were mainly on epilepsy seizure phenomena appearing on excitatory pyramidal neurons (EPN) of the cortex, this is a novel model to consider the seizure observed on thalamus. In particular, the onset mechanism is different from previous theoretical studies. Inspired by some previous clinical and experimental studies, we employ the external stimuli voltage on EPN and SRN in the network, and observe that the seizure can be well inhibited by tuning the stimulus intensity appropriately. We further explore the effect of the signal transmission delays on seizures, and found that the polyspike phenomenon appears only when the delay is sufficiently large. The experimental data also confirmed our model. Since there is a complex network in the brain and all organizations are interacting closely with each other, the results obtained in this paper provide not only biological insights into the regulatory mechanisms but also a reference for the prevention and treatment of epilepsy in future.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Shi
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Zou
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Dong
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Pan
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaowei Zhou
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhang Cheng
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanyue Tang
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haochen Sun
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
103
|
Robinson PA. The balanced and introspective brain. J R Soc Interface 2018; 14:rsif.2016.0994. [PMID: 28566506 PMCID: PMC5454281 DOI: 10.1098/rsif.2016.0994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Transfers of large-scale neural activity into, within and between corticothalamic neural populations and brain hemispheres are analysed using time-integrated transfer functions and state parameters obtained from neural field theory for a variety of arousal states. It is shown that the great majority of activity results from feedbacks within the corticothalamic system, including significant transfer between hemispheres, but only a small minority arises via net input from the external world, with the brain thus in a near-critical, highly introspective state. Notably, the total excitatory and inhibitory influences on cortical neurons are balanced to within a few per cent across arousal states. Strong negative intrahemispheric feedforward exists to the cortex, and even larger interhemispheric positive feedforward, but these are modified by feedback loops to yield near-critical positive overall gain. The results underline the utility of transfer functions for the analysis of brain activity.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia .,Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
104
|
Tewarie P, Steenwijk MD, Brookes MJ, Uitdehaag BMJ, Geurts JJG, Stam CJ, Schoonheim MM. Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study. Hum Brain Mapp 2018; 39:2541-2548. [PMID: 29468785 PMCID: PMC5969233 DOI: 10.1002/hbm.24020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo‐cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Martijn D Steenwijk
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Bernard M J Uitdehaag
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
105
|
Tuncel Y, Başaklar T, Ider YZ. Period doubling behavior in human steady state visual evoked potentials. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa78f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
106
|
Control of absence epilepsy seizures in specific relay nuclei of thalamus. J Theor Biol 2017; 435:50-61. [PMID: 28918332 DOI: 10.1016/j.jtbi.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
In this paper, we used a classic basal ganglia-corticothalamic model(BGCT) to study the onset and control mechanism of absence epilepsy in specific relay nuclei (SRN) of thalamus. It was found that the seizure state may appear in SRN by turning the coupling strength -vsr and signal transmission delay τ on the route "Thalamic reticular nuclei (TRN) of thalamus ⟶ SRN". With increasing of -vsr, the seizure state appeared two times, and its onset mechanism has not been discussed in previous studies. The seizure activity can be well controlled by adjusting the activation level of the substantia nigra pars reticulata (SNr) in basal ganglia, which is a main output tissue to the corticothalamic system through two direct inhibitory pathways "SNr ⟶ SRN" and "SNr ⟶ TRN" in our model. We found that the interesting bidirectional regulation phenomenon appeared as considering the single pathway "SNr ⟶ SRN" and "SNr ⟶ TRN", or when they coexisted in one network, the mechanism of which is also different from some previous theoretical studies. At last, we pointed out that the mechanism obtained above can also explain the onset and control of the poly-spikes slow wave appeared in SRN by turning τ to large enough. Therefore, the results in the paper will further deepen our understanding of the generation and control mechanism of epilepsy disease.
Collapse
|
107
|
Kunze T, Peterson ADH, Haueisen J, Knösche TR. A model of individualized canonical microcircuits supporting cognitive operations. PLoS One 2017; 12:e0188003. [PMID: 29200435 PMCID: PMC5714354 DOI: 10.1371/journal.pone.0188003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations.
Collapse
Affiliation(s)
- Tim Kunze
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
- * E-mail:
| | | | - Jens Haueisen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
108
|
Mukta KN, MacLaurin JN, Robinson PA. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation. Phys Rev E 2017; 96:052410. [PMID: 29347754 DOI: 10.1103/physreve.96.052410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 11/07/2022]
Abstract
Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1/f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1/f^{2}. Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks at multiples of the period of the dominant frequency of system activity.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - J N MacLaurin
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
109
|
Roy N, Sanz-Leon P, Robinson PA. Spectral signatures of activity-dependent neural feedback in the corticothalamic system. Phys Rev E 2017; 96:052310. [PMID: 29347805 DOI: 10.1103/physreve.96.052310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 11/07/2022]
Abstract
The modulation of neural quantities by presynaptic and postsynaptic activities via local feedback processes is investigated by incorporating nonlinear phenomena such as relative refractory period, synaptic enhancement, synaptic depression, and habituation. This is done by introducing susceptibilities, which quantify the response in either firing threshold or synaptic strength to unit change in either presynaptic or postsynaptic activity. Effects on the power spectra are then analyzed for a realistic corticothalamic model to determine the spectral signatures of various nonlinear processes and to what extent these are distinct. Depending on the feedback processes, there can be enhancements or reductions in low-frequency and/or alpha power, splitting of the alpha resonance, and/or appearance of new resonances at high frequencies. These features in the power spectra allow processes to be fully distinguished where they are unique, or partly distinguished if they are common to only a subset of feedbacks, and can potentially be used to constrain the types, strengths, and dynamics of feedbacks present.
Collapse
Affiliation(s)
- N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
110
|
Hu B, Guo Y, Zou X, Dong J, Pan L, Yu M, Yang Z, Zhou C, Cheng Z, Tang W, Sun H. Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cogn Neurodyn 2017; 12:103-119. [PMID: 29435091 DOI: 10.1007/s11571-017-9457-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/14/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Based on a classical model of the basal ganglia thalamocortical network, in this paper, we employed a type of the deep brain stimulus voltage on the subthalamic nucleus to study the control mechanism of absence epilepsy seizures. We found that the seizure can be well controlled by turning the period and the duration of current stimulation into suitable ranges. It is the very interesting bidirectional periodic adjustment phenomenon. These parameters are easily regulated in clinical practice, therefore, the results obtained in this paper may further help us to understand the treatment mechanism of the epilepsy seizure.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaoqiang Zou
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Dong
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Long Pan
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Min Yu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhejia Yang
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaowei Zhou
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhang Cheng
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanyue Tang
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haochen Sun
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
111
|
Fan D, Wang Q, Su J, Xi H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. J Comput Neurosci 2017; 43:203-225. [PMID: 28939929 DOI: 10.1007/s10827-017-0658-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| | - Hongguang Xi
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| |
Collapse
|
112
|
Gabay NC, Robinson PA. Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis. Phys Rev E 2017; 96:032413. [PMID: 29347046 DOI: 10.1103/physreve.96.032413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/22/2022]
Abstract
Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.
Collapse
Affiliation(s)
- Natasha C Gabay
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
113
|
Ruijter B, Hofmeijer J, Meijer H, van Putten M. Synaptic damage underlies EEG abnormalities in postanoxic encephalopathy: A computational study. Clin Neurophysiol 2017; 128:1682-1695. [PMID: 28753456 DOI: 10.1016/j.clinph.2017.06.245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/02/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023]
|
114
|
Sanz-Leon P, Robinson PA. Multistability in the corticothalamic system. J Theor Biol 2017; 432:141-156. [PMID: 28830686 DOI: 10.1016/j.jtbi.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
Neural field theory of the corticothalamic system is used to analyze the properties of its steady-state solutions, including their linear stability, in the parameter space of synaptic couplings for physiological parameter ranges representing normal arousal waking states in adult humans. The independent connections of the corticothalamic model define an eight-dimensional parameter space, while specific combinations of these connections parameterize intracortical, corticothalamic, and intrathalamic loops. Multistable regions are systematically identified and the existence of up to five steady-state solutions is confirmed, up to three of which are linearly stable. A key determinant for the existence of five steady states is found to be the number of nonzero connections. This finding had not been previously proposed as the determining factor of high multiplicities of multistability in mesoscopic models of the brain. In the corticothalamic model presented here, multistability occurs when the intrathalamic loop is present (i.e., the reticular nucleus inhibits the relay nuclei), and when the net synaptic effect of the intracortical loop is inhibitory. The signature of these additional waking states is an overall increased level of thalamic activity. It is argued that the additional steady states found may represent hyperarousal states which occur when the corticothalamic projections do not attenuate the activity of the cortex.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
115
|
Cocchi L, Gollo LL, Zalesky A, Breakspear M. Criticality in the brain: A synthesis of neurobiology, models and cognition. Prog Neurobiol 2017; 158:132-152. [PMID: 28734836 DOI: 10.1016/j.pneurobio.2017.07.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 11/26/2022]
Abstract
Cognitive function requires the coordination of neural activity across many scales, from neurons and circuits to large-scale networks. As such, it is unlikely that an explanatory framework focused upon any single scale will yield a comprehensive theory of brain activity and cognitive function. Modelling and analysis methods for neuroscience should aim to accommodate multiscale phenomena. Emerging research now suggests that multi-scale processes in the brain arise from so-called critical phenomena that occur very broadly in the natural world. Criticality arises in complex systems perched between order and disorder, and is marked by fluctuations that do not have any privileged spatial or temporal scale. We review the core nature of criticality, the evidence supporting its role in neural systems and its explanatory potential in brain health and disease.
Collapse
Affiliation(s)
- Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Metro North Mental Health Service, Brisbane, Australia
| |
Collapse
|
116
|
Fan D, Liao F, Wang Q. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles. CHAOS (WOODBURY, N.Y.) 2017; 27:073103. [PMID: 28764392 DOI: 10.1063/1.4991869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE1→TC1→Cortex1 and Cortex1→Cortex2→Cortex3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fucheng Liao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
117
|
Müller EJ, van Albada SJ, Kim JW, Robinson PA. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies. J Theor Biol 2017. [PMID: 28633970 DOI: 10.1016/j.jtbi.2017.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with observations. Overall, the findings demonstrate strong parallels between coherent oscillations in generalized epilepsies and PD, and provide insights into possible comorbidities.
Collapse
Affiliation(s)
- E J Müller
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia.
| | - S J van Albada
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Center, Jülich, Germany
| | - J W Kim
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
118
|
Hashemi M, Hutt A, Hight D, Sleigh J. Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLoS One 2017; 12:e0179286. [PMID: 28622355 PMCID: PMC5473556 DOI: 10.1371/journal.pone.0179286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β-frequency band, which moves to the α-frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α- and δ-frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA Grand Est - Nancy, Team NEUROSYS, Villers-lès-Nancy, France
- CNRS, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Axel Hutt
- German Meteorology Service, Offenbach am Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
119
|
Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain 2017; 140:641-654. [PMID: 28364550 PMCID: PMC5837328 DOI: 10.1093/brain/awx004] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/03/2016] [Indexed: 01/03/2023] Open
Abstract
See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions.
Collapse
Affiliation(s)
- Timothée Proix
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, 13005 Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, UMR CNRS-AMU 7339), Medical School of Marseille, 13005, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d'Imagerie Médicale, CHU, 13005, Marseille, France
| | - Viktor K Jirsa
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
120
|
Chu H, Chung CK, Jeong W, Cho KH. Predicting epileptic seizures from scalp EEG based on attractor state analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 143:75-87. [PMID: 28391821 DOI: 10.1016/j.cmpb.2017.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction. METHODS We analyze the transition process from normal to seizure attractor state and investigate a precursor phenomenon seen before reaching the seizure attractor state. From the result of an analysis, we define a quantified spectral measure in scalp EEG for seizure prediction. From scalp EEG recordings, the Fourier coefficients of six EEG frequency bands are extracted, and the defined spectral measure is computed based on the coefficients for each half-overlapped 20-second-long window. The computed spectral measure is applied to seizure prediction using a low-complexity methodology. RESULTS Within scalp EEG, we identified an early-warning indicator before an epileptic seizure occurs. Getting closer to the bifurcation point that triggers the transition from normal to seizure state, the power spectral density of low frequency bands of the perturbation of an attractor in the EEG, showed a relative increase. A low-complexity seizure prediction algorithm using this feature was evaluated, using ∼583h of scalp EEG in which 143 seizures in 16 patients were recorded. With the test dataset, the proposed method showed high sensitivity (86.67%) with a false prediction rate of 0.367h-1 and average prediction time of 45.3min. CONCLUSIONS A novel seizure prediction method using scalp EEG, based on attractor state analysis, shows potential for application with real epilepsy patients. This is the first study in which the seizure-precursor phenomenon of an epileptic seizure is investigated based on attractor-based analysis of the macroscopic dynamics of the brain. With the scalp EEG, we first propose use of a spectral feature identified for seizure prediction, in which the dynamics of an attractor are excluded, and only the perturbation dynamics from the attractor are considered.
Collapse
Affiliation(s)
- Hyunho Chu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Daejeon, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Woorim Jeong
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Daejeon, Republic of Korea.
| |
Collapse
|
121
|
Chen M, Guo D, Xia Y, Yao D. Control of Absence Seizures by the Thalamic Feed-Forward Inhibition. Front Comput Neurosci 2017; 11:31. [PMID: 28491031 PMCID: PMC5405150 DOI: 10.3389/fncom.2017.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/10/2017] [Indexed: 11/17/2022] Open
Abstract
As a subtype of idiopathic generalized epilepsies, absence epilepsy is believed to be caused by pathological interactions within the corticothalamic (CT) system. Using a biophysical mean-field model of the CT system, we demonstrate here that the feed-forward inhibition (FFI) in thalamus, i.e., the pathway from the cerebral cortex (Ctx) to the thalamic reticular nucleus (TRN) and then to the specific relay nuclei (SRN) of thalamus that are also directly driven by the Ctx, may participate in controlling absence seizures. In particular, we show that increasing the excitatory Ctx-TRN coupling strength can significantly suppress typical electrical activities during absence seizures. Further, investigation demonstrates that the GABAA- and GABAB-mediated inhibitions in the TRN-SRN pathway perform combination roles in the regulation of absence seizures. Overall, these results may provide an insightful mechanistic understanding of how the thalamic FFI serves as an intrinsic regulator contributing to the control of absence seizures.
Collapse
Affiliation(s)
- Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China.,Center for Information in BioMedicine, University of Electronic Science and Technology of ChinaChengdu, China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China.,Center for Information in BioMedicine, University of Electronic Science and Technology of ChinaChengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China.,Center for Information in BioMedicine, University of Electronic Science and Technology of ChinaChengdu, China
| |
Collapse
|
122
|
Wang Z, Wang Q. Eliminating Absence Seizures through the Deep Brain Stimulation to Thalamus Reticular Nucleus. Front Comput Neurosci 2017; 11:22. [PMID: 28469569 PMCID: PMC5395627 DOI: 10.3389/fncom.2017.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/27/2017] [Indexed: 01/19/2023] Open
Abstract
Deep brain stimulation (DBS) can play a crucial role in the modulation of absence seizures, yet relevant biophysical mechanisms are not completely established. In this paper, on the basis of a biophysical mean-field model, we investigate a typical absence epilepsy activity by introducing slow kinetics of GABAB receptors on thalamus reticular nucleus (TRN). We find that the region of spike and slow-wave discharges (SWDs) can be reduced greatly when we add the DBS to TRN. Furthermore, we systematically explore how the corresponding stimulation parameters including frequency, amplitude and positive input duration suppress the SWDs under certain conditions. It is shown that the SWDs can be controlled as key stimulation parameters are suitably chosen. The results in this paper can be helpful for researchers to understand the thalamus stimulation in treating epilepsy patients, and provide theoretical basis for future experimental and clinical studies.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Dynamics and Control, Beihang UniversityBeijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang UniversityBeijing, China
| |
Collapse
|
123
|
Neural field model of seizure-like activity in isolated cortex. J Comput Neurosci 2017; 42:307-321. [DOI: 10.1007/s10827-017-0642-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
124
|
Roberts JA, Friston KJ, Breakspear M. Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [DOI: 10.1016/j.bpsc.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
125
|
Yang DP, Robinson PA. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys Rev E 2017; 95:042410. [PMID: 28505725 DOI: 10.1103/physreve.95.042410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 06/07/2023]
Abstract
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
Collapse
Affiliation(s)
- Dong-Ping Yang
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
126
|
Zobaer MS, Anderson RM, Kerr CC, Robinson PA, Wong KKH, D'Rozario AL. K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory. BIOLOGICAL CYBERNETICS 2017; 111:149-164. [PMID: 28251306 DOI: 10.1007/s00422-017-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
To interrelate K-complexes, spindles, evoked response potentials (ERPs), and spontaneous electroencephalography (EEG) using neural field theory (NFT), physiology-based NFT of the corticothalamic system is used to model cortical excitatory and inhibitory populations and thalamic relay and reticular nuclei. The impulse response function of the model is used to predict the responses to impulses, which are compared with transient waveforms in sleep studies. Fits to empirical data then allow underlying brain physiology to be inferred and compared with other waves. Spontaneous K-complexes, spindles, and other transient waveforms can be reproduced using NFT by treating them as evoked responses to impulsive stimuli with brain parameters appropriate to spontaneous EEG in sleep stage 2. Using this approach, spontaneous K-complexes and sleep spindles can be analyzed using the same single theory as previously been used to account for waking ERPs and other EEG phenomena. As a result, NFT can explain a wide variety of transient waveforms that have only been phenomenologically classified to date. This enables noninvasive fitting to be used to infer underlying physiological parameters. This physiology-based model reproduces the time series of different transient EEG waveforms; it has previously reproduced experimental EEG spectra, and waking ERPs, and many other observations, thereby unifying transient sleep waveforms with these phenomena.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - R M Anderson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - K K H Wong
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - A L D'Rozario
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
127
|
Mehta-Pandejee G, Robinson PA, Henderson JA, Aquino KM, Sarkar S. Inference of direct and multistep effective connectivities from functional connectivity of the brain and of relationships to cortical geometry. J Neurosci Methods 2017; 283:42-54. [PMID: 28342831 DOI: 10.1016/j.jneumeth.2017.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND The problem of inferring effective brain connectivity from functional connectivity is under active investigation, and connectivity via multistep paths is poorly understood. NEW METHOD A method is presented to calculate the direct effective connection matrix (deCM), which embodies direct connection strengths between brain regions, from functional CMs (fCMs) by minimizing the difference between an experimental fCM and one calculated via neural field theory from an ansatz deCM based on an experimental anatomical CM. RESULTS The best match between fCMs occurs close to a critical point, consistent with independent published stability estimates. Residual mismatch between fCMs is identified to be largely due to interhemispheric connections that are poorly estimated in an initial ansatz deCM due to experimental limitations; improved ansatzes substantially reduce the mismatch and enable interhemispheric connections to be estimated. Various levels of significant multistep connections are then imaged via the neural field theory (NFT) result that these correspond to powers of the deCM; these are shown to be predictable from geometric distances between regions. COMPARISON WITH EXISTING METHODS This method gives insight into direct and multistep effective connectivity from fCMs and relating to physiology and brain geometry. This contrasts with other methods, which progressively adjust connections without an overarching physiologically based framework to deal with multistep or poorly estimated connections. CONCLUSIONS deCMs can be usefully estimated using this method and the results enable multistep connections to be investigated systematically.
Collapse
Affiliation(s)
- Grishma Mehta-Pandejee
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia
| | - James A Henderson
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia; School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia
| | - K M Aquino
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia; Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Somwrita Sarkar
- Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia; Design Lab, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
128
|
Deco G, Cabral J, Woolrich MW, Stevner ABA, van Hartevelt TJ, Kringelbach ML. Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data. Neuroimage 2017; 152:538-550. [PMID: 28315461 PMCID: PMC5440176 DOI: 10.1016/j.neuroimage.2017.03.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/14/2017] [Accepted: 03/12/2017] [Indexed: 10/31/2022] Open
Abstract
During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in consistent patterns, which have been related to resting-state networks measured with fMRI. To investigate the genesis of such envelope correlations, we consider a whole-brain network model assuming two distinct fundamental scenarios: one where each brain area generates oscillations in a single frequency, and a novel one where each brain area can generate oscillations in multiple frequency bands. The models share, as a common generator of damped oscillations, the normal form of a supercritical Hopf bifurcation operating at the critical border between the steady state and the oscillatory regime. The envelopes of the simulated signals are compared with empirical MEG data using new methods to analyse the envelope dynamics in terms of their phase coherence and stability across the spectrum of carrier frequencies. Considering the whole-brain model with a single frequency generator in each brain area, we obtain the best fit with the empirical MEG data when the fundamental frequency is tuned at 12Hz. However, when multiple frequency generators are placed at each local brain area, we obtain an improved fit of the spatio-temporal structure of on-going MEG data across all frequency bands. Our results indicate that the brain is likely to operate on multiple frequency channels during rest, introducing a novel dimension for future models of large-scale brain activity.
Collapse
Affiliation(s)
- Gustavo Deco
- Computational and Theoretical Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Aarhus University, DK.
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK; Centre for the Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK
| | - Angus B A Stevner
- Department of Psychiatry, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Aarhus University, DK
| | - Tim J van Hartevelt
- Department of Psychiatry, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Aarhus University, DK
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Aarhus University, DK
| |
Collapse
|
129
|
Ogawa Y, Yamaguchi I, Kotani K, Jimbo Y. Deriving theoretical phase locking values of a coupled cortico-thalamic neural mass model using center manifold reduction. J Comput Neurosci 2017; 42:231-243. [PMID: 28236135 DOI: 10.1007/s10827-017-0638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/18/2016] [Accepted: 02/19/2017] [Indexed: 11/28/2022]
Abstract
Cognitive functions such as sensory processing and memory processes lead to phase synchronization in the electroencephalogram or local field potential between different brain regions. There are a lot of computational researches deriving phase locking values (PLVs), which are an index of phase synchronization intensity, from neural models. However, these researches derive PLVs numerically. To the best of our knowledge, there have been no reports on the derivation of a theoretical PLV. In this study, we propose an analytical method for deriving theoretical PLVs from a cortico-thalamic neural mass model described by a delay differential equation. First, the model for generating neural signals is transformed into a normal form of the Hopf bifurcation using center manifold reduction. Second, the normal form is transformed into a phase model that is suitable for analyzing synchronization phenomena. Third, the Fokker-Planck equation of the phase model is derived and the phase difference distribution is obtained. Finally, the PLVs are calculated from the stationary distribution of the phase difference. The validity of the proposed method is confirmed via numerical simulations. Furthermore, we apply the proposed method to a working memory process, and discuss the neurophysiological basis behind the phase synchronization phenomenon. The results demonstrate the importance of decreasing the intensity of independent noise during the working memory process. The proposed method will be of great use in various experimental studies and simulations relevant to phase synchronization, because it enables the effect of neurophysiological changes on PLVs to be analyzed from a mathematical perspective.
Collapse
Affiliation(s)
- Yutaro Ogawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | | | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Yasuhiko Jimbo
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
130
|
Dynamic models of large-scale brain activity. Nat Neurosci 2017; 20:340-352. [PMID: 28230845 DOI: 10.1038/nn.4497] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
|
131
|
Abstract
In many realistic networks, the edges representing the interactions between nodes are time varying. Evidence is growing that the complex network that models the dynamics of the human brain has time-varying interconnections, that is, the network is evolving. Based on this evidence, we construct a patient- and data-specific evolving network model (comprising discrete-time dynamical systems) in which epileptic seizures or their terminations in the brain are also determined by the nature of the time-varying interconnections between the nodes. A novel and unique feature of our methodology is that the evolving network model remembers the data from which it was conceived from, in the sense that it evolves to almost regenerate the patient data even on presenting an arbitrary initial condition to it. We illustrate a potential utility of our methodology by constructing an evolving network from clinical data that aids in identifying an approximate seizure focus; nodes in such a theoretically determined seizure focus are outgoing hubs that apparently act as spreaders of seizures. We also point out the efficacy of removal of such spreaders in limiting seizures.
Collapse
Affiliation(s)
- G Manjunath
- Department of Mathematics, Rhodes University, Grahamstown 6139, South Africa
| |
Collapse
|
132
|
Milton J, Wu J, Campbell SA, Bélair J. Outgrowing Neurological Diseases: Microcircuits, Conduction Delay and Childhood Absence Epilepsy. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
133
|
A Neural Mass Computational Framework to Study Synaptic Mechanisms Underlying Alpha and Theta Rhythms. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
134
|
Tewarie P, Hillebrand A, van Dijk BW, Stam CJ, O'Neill GC, Van Mieghem P, Meier JM, Woolrich MW, Morris PG, Brookes MJ. Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach. Neuroimage 2016; 142:324-336. [PMID: 27498371 DOI: 10.1016/j.neuroimage.2016.07.057] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022] Open
Abstract
Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology, MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Bob W van Dijk
- Department of Clinical Neurophysiology, MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology, MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Piet Van Mieghem
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, The Netherlands
| | - Jil M Meier
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, The Netherlands
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom; Centre for the Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
135
|
Robinson PA, Zhao X, Aquino KM, Griffiths JD, Sarkar S, Mehta-Pandejee G. Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. Neuroimage 2016; 142:79-98. [PMID: 27157788 DOI: 10.1016/j.neuroimage.2016.04.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/13/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Neural field theory of the corticothalamic system is applied to predict and analyze the activity eigenmodes of the bihemispheric brain, focusing particularly on their spatial structure. The eigenmodes of a single brain hemisphere are found to be close analogs of spherical harmonics, which are the natural modes of the sphere. Instead of multiple eigenvalues being equal, as in the spherical case, cortical folding splits them to have distinct values. Inclusion of interhemispheric connections between homologous regions via the corpus callosum leads to further splitting that depends on symmetry or antisymmetry of activity between brain hemispheres, and the strength and sign of the interhemispheric connections. Symmetry properties of the lowest observed eigenmodes strongly constrain the interhemispheric connectivity strengths and unihemispheric mode spectra, and it is predicted that most spontaneous brain activity will be symmetric between hemispheres, consistent with observations. Comparison with the eigenmodes of an experimental anatomical connectivity matrix confirms these results, permits the relative strengths of intrahemispheric and interhemispheric connectivities to be approximately inferred from their eigenvalues, and lays the foundation for further experimental tests. The results are consistent with brain activity being in corticothalamic eigenmodes, rather than discrete "networks" and open the way to new approaches to brain analysis.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.
| | - X Zhao
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - K M Aquino
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham NG7 2RD, UK, EU
| | - J D Griffiths
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Rotman Research Institute at Baycrest, 3560 Bathurst St, Toronto, Ontario, M6A 2E1, Canada
| | - S Sarkar
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Design Lab, School of Architecture, Design, and Planning, University of Sydney, New South Wales 2006, Australia
| | - Grishma Mehta-Pandejee
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
136
|
Collier ZA, Gust KA, Gonzalez-Morales B, Gong P, Wilbanks MS, Linkov I, Perkins EJ. A weight of evidence assessment approach for adverse outcome pathways. Regul Toxicol Pharmacol 2016; 75:46-57. [DOI: 10.1016/j.yrtph.2015.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023]
|
137
|
Steyn-Ross ML, Steyn-Ross DA. From individual spiking neurons to population behavior: Systematic elimination of short-wavelength spatial modes. Phys Rev E 2016; 93:022402. [PMID: 26986357 DOI: 10.1103/physreve.93.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 12/14/2022]
Abstract
Mean-field models of the brain approximate spiking dynamics by assuming that each neuron responds to its neighbors via a naive spatial average that neglects local fluctuations and correlations in firing activity. In this paper we address this issue by introducing a rigorous formalism to enable spatial coarse-graining of spiking dynamics, scaling from the microscopic level of a single type 1 (integrator) neuron to a macroscopic assembly of spiking neurons that are interconnected by chemical synapses and nearest-neighbor gap junctions. Spiking behavior at the single-neuron scale ℓ≈10μm is described by Wilson's two-variable conductance-based equations [H. R. Wilson, J. Theor. Biol. 200, 375 (1999)], driven by fields of incoming neural activity from neighboring neurons. We map these equations to a coarser spatial resolution of grid length Bℓ, with B≫1 being the blocking ratio linking micro and macro scales. Our method systematically eliminates high-frequency (short-wavelength) spatial modes q(->) in favor of low-frequency spatial modes Q(->) using an adiabatic elimination procedure that has been shown to be equivalent to the path-integral coarse graining applied to renormalization group theory of critical phenomena. This bottom-up neural regridding allows us to track the percolation of synaptic and ion-channel noise from the single neuron up to the scale of macroscopic population-average variables. Anticipated applications of neural regridding include extraction of the current-to-firing-rate transfer function, investigation of fluctuation criticality near phase-transition tipping points, determination of spatial scaling laws for avalanche events, and prediction of the spatial extent of self-organized macrocolumnar structures. As a first-order exemplar of the method, we recover nonlinear corrections for a coarse-grained Wilson spiking neuron embedded in a network of identical diffusively coupled neurons whose chemical synapses have been disabled. Intriguingly, we find that reblocking transforms the original type 1 Wilson integrator into a type 2 resonator whose spike-rate transfer function exhibits abrupt spiking onset with near-vertical takeoff and chaotic dynamics just above threshold.
Collapse
Affiliation(s)
| | - D A Steyn-Ross
- School of Engineering, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
138
|
Wang SJ, Ouyang G, Guang J, Zhang M, Wong KYM, Zhou C. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems. PHYSICAL REVIEW LETTERS 2016; 116:018101. [PMID: 26799044 DOI: 10.1103/physrevlett.116.018101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 06/05/2023]
Abstract
Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.
Collapse
Affiliation(s)
- Sheng-Jun Wang
- Department of Physics, Shaanxi Normal University, Xi'An 710119, China
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guang Ouyang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jing Guang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - K Y Michael Wong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Beijing Computational Science Research Center, Beijing 100084, China
- Research Centre, HKBU Institute of Research and Continuing Education, Virtual University Park Building, South Area Hi-tech Industrial Park, Shenzhen 518057, China
| |
Collapse
|
139
|
Abeysuriya RG, Robinson PA. Real-time automated EEG tracking of brain states using neural field theory. J Neurosci Methods 2015; 258:28-45. [PMID: 26523766 DOI: 10.1016/j.jneumeth.2015.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022]
Abstract
A real-time fitting system is developed and used to fit the predictions of an established physiologically-based neural field model to electroencephalographic spectra, yielding a trajectory in a physiological parameter space that parametrizes intracortical, intrathalamic, and corticothalamic feedbacks as the arousal state evolves continuously over time. This avoids traditional sleep/wake staging (e.g., using Rechtschaffen-Kales stages), which is fundamentally limited because it forces classification of continuous dynamics into a few discrete categories that are neither physiologically informative nor individualized. The classification is also subject to substantial interobserver disagreement because traditional staging relies in part on subjective evaluations. The fitting routine objectively and robustly tracks arousal parameters over the course of a full night of sleep, and runs in real-time on a desktop computer. The system developed here supersedes discrete staging systems by representing arousal states in terms of physiology, and provides an objective measure of arousal state which solves the problem of interobserver disagreement. Discrete stages from traditional schemes can be expressed in terms of model parameters for backward compatibility with prior studies.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
140
|
Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures. PLoS Comput Biol 2015; 11:e1004539. [PMID: 26496656 PMCID: PMC4619822 DOI: 10.1371/journal.pcbi.1004539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022] Open
Abstract
The basal ganglia (BG), serving as an intermediate bridge between the cerebral cortex and thalamus, are believed to play crucial roles in controlling absence seizure activities generated by the pathological corticothalamic system. Inspired by recent experiments, here we systematically investigate the contribution of a novel identified GABAergic pallido-cortical pathway, projecting from the globus pallidus externa (GPe) in the BG to the cerebral cortex, to the control of absence seizures. By computational modelling, we find that both increasing the activation of GPe neurons and enhancing the coupling strength of the inhibitory pallido-cortical pathway can suppress the bilaterally synchronous 2-4 Hz spike and wave discharges (SWDs) during absence seizures. Appropriate tuning of several GPe-related pathways may also trigger the SWD suppression, through modulating the activation level of GPe neurons. Furthermore, we show that the previously discovered bidirectional control of absence seizures due to the competition between other two BG output pathways also exists in our established model. Importantly, such bidirectional control is shaped by the coupling strength of this direct GABAergic pallido-cortical pathway. Our work suggests that the novel identified pallido-cortical pathway has a functional role in controlling absence seizures and the presented results might provide testable hypotheses for future experimental studies.
Collapse
|
141
|
Zhao X, Robinson PA. Generalized seizures in a neural field model with bursting dynamics. J Comput Neurosci 2015; 39:197-216. [PMID: 26282528 DOI: 10.1007/s10827-015-0571-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
Abstract
The mechanisms underlying generalized seizures are explored with neural field theory. A corticothalamic neural field model that has accounted for multiple brain activity phenomena and states is used to explore changes leading to pathological seizure states. It is found that absence seizures arise from instabilities in the system and replicate experimental studies in numerous animal models and clinical studies.
Collapse
Affiliation(s)
- X Zhao
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, NSW, 2006, Australia.
- Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales, 2037, Australia.
- Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, NSW, 2006, Australia.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, NSW, 2006, Australia
- Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales, 2037, Australia
- Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
142
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
143
|
Physiologically based arousal state estimation and dynamics. J Neurosci Methods 2015; 253:55-69. [PMID: 26072247 DOI: 10.1016/j.jneumeth.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022]
Abstract
A neural field model of the brain is used to represent brain states using physiologically based parameters rather than arbitrary, discrete sleep stages. Each brain state is represented as a point in a physiologically parametrized space. Over time, changes in brain state cause these points to trace continuous trajectories, unlike the artificial discrete jumps in sleep stage that occur with traditional sleep staging. The discrete Rechtschaffen and Kales sleep stages are associated with regions in the physiological parameter space based on their electroencephalographic features, which enables interpretation of traditional sleep stages in terms of physiological trajectories. Wake states are found to be associated with strong positive corticothalamic feedback compared to sleep. The existence of physiologically valid trajectories between brain states in the model is demonstrated. Actual trajectories for an individual can be determined by fitting the model using EEG alone, and enable analysis of the physiological differences between subjects.
Collapse
|
144
|
Taylor PN, Thomas J, Sinha N, Dauwels J, Kaiser M, Thesen T, Ruths J. Optimal control based seizure abatement using patient derived connectivity. Front Neurosci 2015; 9:202. [PMID: 26089775 PMCID: PMC4453481 DOI: 10.3389/fnins.2015.00202] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological disorder in which patients have recurrent seizures. Seizures occur in conjunction with abnormal electrical brain activity which can be recorded by the electroencephalogram (EEG). Often, this abnormal brain activity consists of high amplitude regular spike-wave oscillations as opposed to low amplitude irregular oscillations in the non-seizure state. Active brain stimulation has been proposed as a method to terminate seizures prematurely, however, a general and widely-applicable approach to optimal stimulation protocols is still lacking. In this study we use a computational model of epileptic spike-wave dynamics to evaluate the effectiveness of a pseudospectral method to simulated seizure abatement. We incorporate brain connectivity derived from magnetic resonance imaging of a subject with idiopathic generalized epilepsy. We find that the pseudospectral method can successfully generate time-varying stimuli that abate simulated seizures, even when including heterogeneous patient specific brain connectivity. The strength of the stimulus required varies in different brain areas. Our results suggest that seizure abatement, modeled as an optimal control problem and solved with the pseudospectral method, offers an attractive approach to treatment for in vivo stimulation techniques. Further, if optimal brain stimulation protocols are to be experimentally successful, then the heterogeneity of cortical connectivity should be accounted for in the development of those protocols and thus more spatially localized solutions may be preferable.
Collapse
Affiliation(s)
- Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University Newcastle upon Tyne, UK
| | - Jijju Thomas
- Engineering Systems and Design, Singapore University of Technology and Design Singapore, Singapore
| | - Nishant Sinha
- School of Electrical and Electronic Engineering, Nanyang Technological University Singapore, Singapore
| | - Justin Dauwels
- School of Electrical and Electronic Engineering, Nanyang Technological University Singapore, Singapore
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University Newcastle upon Tyne, UK ; Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK
| | - Thomas Thesen
- Department of Neurology, New York University New York, NY, USA
| | - Justin Ruths
- Engineering Systems and Design, Singapore University of Technology and Design Singapore, Singapore
| |
Collapse
|
145
|
Robinson PA, Roy N. Neural field theory of nonlinear wave-wave and wave-neuron processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062719. [PMID: 26172747 DOI: 10.1103/physreve.91.062719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
- Neurosleep, 431 Glebe Point Road, Glebe, New South Wales 2037, Australia
| | - N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
146
|
Nagaraj V, Lee S, Krook-Magnuson E, Soltesz I, Benquet P, Irazoqui P, Netoff T. Future of seizure prediction and intervention: closing the loop. J Clin Neurophysiol 2015; 32:194-206. [PMID: 26035672 PMCID: PMC4455045 DOI: 10.1097/wnp.0000000000000139] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of epilepsy therapies is to provide seizure control for all patients while eliminating side effects. Improved specificity of intervention through on-demand approaches may overcome many of the limitations of current intervention strategies. This article reviews the progress in seizure prediction and detection, potential new therapies to provide improved specificity, and devices to achieve these ends. Specifically, we discuss (1) potential signal modalities and algorithms for seizure detection and prediction, (2) closed-loop intervention approaches, and (3) hardware for implementing these algorithms and interventions. Seizure prediction and therapies maximize efficacy, whereas minimizing side effects through improved specificity may represent the future of epilepsy treatments.
Collapse
Affiliation(s)
- Vivek Nagaraj
- Graduate Program in Neuroscience, University of Minnesota
| | - Steven Lee
- Weldon School of Biomedical Engineering, Purdue University
| | | | - Ivan Soltesz
- Department of Anatomy & Neurobiology, University of California, Irvine
| | | | - Pedro Irazoqui
- Weldon School of Biomedical Engineering, Purdue University
| | - Theoden Netoff
- Graduate Program in Neuroscience, University of Minnesota
- Department of Biomedical Engineering, University of Minnesota
| |
Collapse
|
147
|
Naze S, Bernard C, Jirsa V. Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity. PLoS Comput Biol 2015; 11:e1004209. [PMID: 25970348 PMCID: PMC4430284 DOI: 10.1371/journal.pcbi.1004209] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/24/2015] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizure dynamics span multiple scales in space and time. Understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. Mathematical models have been developed to reproduce seizure dynamics across scales ranging from the single neuron to the neural population. In this study, we develop a network model of spiking neurons and systematically investigate the conditions, under which the network displays the emergent dynamic behaviors known from the Epileptor, which is a well-investigated abstract model of epileptic neural activity. This approach allows us to study the biophysical parameters and variables leading to epileptiform discharges at cellular and network levels. Our network model is composed of two neuronal populations, characterized by fast excitatory bursting neurons and regular spiking inhibitory neurons, embedded in a common extracellular environment represented by a slow variable. By systematically analyzing the parameter landscape offered by the simulation framework, we reproduce typical sequences of neural activity observed during status epilepticus. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings play a major role in the progression of the seizure, which supports previous studies and further validates our model. We also investigate the influence of chemical synaptic coupling in the generation of spontaneous seizure-like events. Our results argue towards a temporal shift of typical spike waves with fast discharges as synaptic strengths are varied. We demonstrate that spike waves, including interictal spikes, are generated primarily by inhibitory neurons, whereas fast discharges during the wave part are due to excitatory neurons. Simulated traces are compared with in vivo experimental data from rodents at different stages of the disorder. We draw the conclusion that slow variations of global excitability, due to exogenous fluctuations from extracellular environment, and gap junction communication push the system into paroxysmal regimes. We discuss potential mechanisms underlying such machinery and the relevance of our approach, supporting previous detailed modeling studies and reflecting on the limitations of our methodology. Neurons communicate via different types of synapses on very fast time scales. The combination of hundred thousand of such interconnected cells within a fluctuating extracellular environment forms a complex network that gives rise to function and behavior via the formation of dynamical patterns of activity. In the context of epilepsy, the functional properties of the network at the source of a seizure are disrupted by a possibly large set of factors at the cellular and molecular levels. It is therefore needed to sacrifice some biological accuracy to model seizure dynamics in favor of macroscopic realizations. Here, we present a neuronal network model that convenes both neuronal and network representations with the goal to describe brain dynamics involved in the development of epilepsy. We compare our modeling results with animal in vivo recordings to validate our approach in the context of seizures. Such system-level methodology has significant bearing in understanding neuronal network dynamics that entangle multiple synaptic and extracellular modalities.
Collapse
Affiliation(s)
- Sebastien Naze
- UMR1106 Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Aix-Marseille University, Marseille, France
- * E-mail: (SN); (VJ)
| | - Christophe Bernard
- UMR1106 Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Viktor Jirsa
- UMR1106 Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Aix-Marseille University, Marseille, France
- * E-mail: (SN); (VJ)
| |
Collapse
|
148
|
A Master Plan for the Epilepsies? toward a General Theory of Seizure Dynamics. Epilepsy Curr 2015; 15:133-5. [DOI: 10.5698/1535-7597-15.3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
149
|
Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network modeling in The Virtual Brain. Neuroimage 2015; 111:385-430. [PMID: 25592995 DOI: 10.1016/j.neuroimage.2015.01.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 12/19/2022] Open
|
150
|
Saggar M, Zanesco AP, King BG, Bridwell DA, MacLean KA, Aichele SR, Jacobs TL, Wallace BA, Saron CD, Miikkulainen R. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training. Neuroimage 2015; 114:88-104. [PMID: 25862265 DOI: 10.1016/j.neuroimage.2015.03.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Computer Science, University of Texas at Austin, TX, USA.
| | - Anthony P Zanesco
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Brandon G King
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | | | - Katherine A MacLean
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen R Aichele
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Tonya L Jacobs
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - B Alan Wallace
- Santa Barbara Institute for Consciousness Studies, Santa Barbara, CA, USA
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, CA, USA; The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|