101
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
102
|
Hammes-Schiffer S. Nuclear-electronic orbital methods: Foundations and prospects. J Chem Phys 2021; 155:030901. [PMID: 34293877 DOI: 10.1063/5.0053576] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The incorporation of nuclear quantum effects and non-Born-Oppenheimer behavior into quantum chemistry calculations and molecular dynamics simulations is a longstanding challenge. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum mechanically on the same level as the electrons with wave function and density functional theory methods. This approach inherently includes nuclear delocalization and zero-point energy in molecular energy calculations, geometry optimizations, reaction paths, and dynamics. It can also provide accurate descriptions of excited electronic, vibrational, and vibronic states as well as nuclear tunneling and nonadiabatic dynamics. Nonequilibrium nuclear-electronic dynamics simulations beyond the Born-Oppenheimer approximation can be used to investigate a wide range of excited state processes. This Perspective provides an overview of the foundational NEO methods and enumerates the prospects for using these methods as building blocks for future developments. The conceptual simplicity and computational efficiency of the NEO approach will enhance its accessibility and applicability to diverse chemical and biological systems.
Collapse
|
103
|
Culpitt T, Peters LDM, Tellgren EI, Helgaker T. Ab initio molecular dynamics with screened Lorentz forces. I. Calculation and atomic charge interpretation of Berry curvature. J Chem Phys 2021; 155:024104. [PMID: 34266267 DOI: 10.1063/5.0055388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The dynamics of a molecule in a magnetic field is significantly different from its zero-field counterpart. One important difference in the presence of a field is the Lorentz force acting on the nuclei, which can be decomposed as the sum of the bare nuclear Lorentz force and a screening force due to the electrons. This screening force is calculated from the Berry curvature and can change the dynamics qualitatively. It is therefore important to include the contributions from the Berry curvature in molecular dynamics simulations in a magnetic field. In this work, we present a scheme for calculating the Berry curvature numerically using a finite-difference technique, addressing challenges related to the arbitrary global phase of the wave function. The Berry curvature is calculated as a function of bond distance for H2 at the restricted and unrestricted Hartree-Fock levels of theory and for CH+ as a function of the magnetic field strength at the restricted Hartree-Fock level of theory. The calculations are carried out using basis sets of contracted Gaussian functions equipped with London phase factors (London orbitals) to ensure gauge-origin invariance. In this paper, we also interpret the Berry curvature in terms of atomic charges and discuss its convergence in basis sets with and without London phase factors. The calculation of the Berry curvature allows for its inclusion in ab initio molecular dynamics simulations in a magnetic field.
Collapse
Affiliation(s)
- Tanner Culpitt
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laurens D M Peters
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
104
|
Vindel-Zandbergen P, Ibele LM, Ha JK, Min SK, Curchod BFE, Maitra NT. Study of the Decoherence Correction Derived from the Exact Factorization Approach for Nonadiabatic Dynamics. J Chem Theory Comput 2021; 17:3852-3862. [PMID: 34138553 PMCID: PMC8280698 DOI: 10.1021/acs.jctc.1c00346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
We present a detailed
study of the decoherence correction to surface
hopping that was recently derived from the exact factorization approach.
Ab initio multiple spawning calculations that use the same initial
conditions and the same electronic structure method are used as a
reference for three molecules: ethylene, the methaniminium cation,
and fulvene, for which nonadiabatic dynamics follows a photoexcitation.
A comparison with the Granucci–Persico energy-based decoherence
correction and the augmented fewest-switches surface-hopping scheme
shows that the three decoherence-corrected methods operate on individual
trajectories in a qualitatively different way, but the results averaged
over trajectories are similar for these systems.
Collapse
Affiliation(s)
| | - Lea M Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jong-Kwon Ha
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
105
|
Lee IS, Ha JK, Han D, Kim TI, Moon SW, Min SK. PyUNIxMD: A Python-based excited state molecular dynamics package. J Comput Chem 2021; 42:1755-1766. [PMID: 34197646 PMCID: PMC8362049 DOI: 10.1002/jcc.26711] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023]
Abstract
Theoretical/computational description of excited state molecular dynamics is nowadays a crucial tool for understanding light-matter interactions in many materials. Here we present an open-source Python-based nonadiabatic molecular dynamics program package, namely PyUNIxMD, to deal with mixed quantum-classical dynamics for correlated electron-nuclear propagation. The PyUNIxMD provides many interfaces for quantum chemical calculation methods with commercial and noncommercial ab initio and semiempirical quantum chemistry programs. In addition, the PyUNIxMD offers many nonadiabatic molecular dynamics algorithms such as fewest-switch surface hopping and its derivatives as well as decoherence-induced surface hopping based on the exact factorization (DISH-XF) and coupled-trajectory mixed quantum-classical dynamics (CTMQC) for general purposes. Detailed structures and flows of PyUNIxMD are explained for the further implementations by developers. We perform a nonadiabatic molecular dynamics simulation for a molecular motor system as a simple demonstration.
Collapse
Affiliation(s)
- In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jong-Kwon Ha
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Daeho Han
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae In Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung Wook Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
106
|
Xu X, Yang Y. Molecular vibrational frequencies from analytic Hessian of constrained nuclear-electronic orbital density functional theory. J Chem Phys 2021; 154:244110. [PMID: 34241362 DOI: 10.1063/5.0055506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear quantum effects are important in a variety of chemical and biological processes. The constrained nuclear-electronic orbital density functional theory (cNEO-DFT) has been developed to include nuclear quantum effects in energy surfaces. Herein, we develop the analytic Hessian for cNEO-DFT energy with respect to the change in nuclear (expectation) positions, which can be used to characterize stationary points on energy surfaces and compute molecular vibrational frequencies. This is achieved by constructing and solving the multicomponent cNEO coupled-perturbed Kohn-Sham (cNEO-CPKS) equations, which describe the response of electronic and nuclear orbitals to the displacement of nuclear (expectation) positions. With the analytic Hessian, the vibrational frequencies of a series of small molecules are calculated and compared to those from conventional DFT Hessian calculations as well as those from the vibrational second-order perturbation theory (VPT2). It is found that even with a harmonic treatment, cNEO-DFT significantly outperforms DFT and is comparable to DFT-VPT2 in the description of vibrational frequencies in regular polyatomic molecules. Furthermore, cNEO-DFT can reasonably describe the proton transfer modes in systems with a shared proton, whereas DFT-VPT2 often faces great challenges. Our results suggest the importance of nuclear quantum effects in molecular vibrations, and cNEO-DFT is an accurate and inexpensive method to describe molecular vibrations.
Collapse
Affiliation(s)
- Xi Xu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
107
|
Gonoskov I, Gräfe S. Light-matter quantum dynamics of complex laser-driven systems. J Chem Phys 2021; 154:234106. [PMID: 34241243 DOI: 10.1063/5.0048930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a novel general approximation to transform and simplify the description of a complex fully quantized system describing the interacting light and matter. The method has some similarities to the time-dependent Born-Oppenheimer approach: we consider a quantum description of light rather than of nuclei and follow a similar separation procedure. Our approximation allows us to obtain a decoupled system for the light-excited matter and "dressed" light connected parametrically. With these equations at hand, we study how intense light as a quantum state is affected due to the back-action of the interacting matter. We discuss and demonstrate the possibility of the light-mode entanglement and nonclassical light generation during the interaction.
Collapse
Affiliation(s)
- Ivan Gonoskov
- Institute for Physical Chemistry, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute for Physical Chemistry, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| |
Collapse
|
108
|
Olivucci M, Tran T, Worth GA, Robb MA. Unlocking the Double Bond in Protonated Schiff Bases by Coherent Superposition of S 1 and S 2. J Phys Chem Lett 2021; 12:5639-5643. [PMID: 34110826 DOI: 10.1021/acs.jpclett.1c01379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The primary event occurring during the E-to-Z photoisomerization reaction of retinal protonated Schiff base (rPSB) is single-to-double bond inversion. In this work we examine the nuclear dynamics that occurs when the initial excited state is a superposition of the S1 and S2 electronic excited states that might be created in a laser experiment. The nuclear dynamics is dominated by double bond inversion that is parallel to the derivative coupling vector of S1 and S2. Thus, the molecule behaves as if it were at a conical intersection even if the states are nondegenerate.
Collapse
Affiliation(s)
- Massimo Olivucci
- Chemistry Deparment, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Thierry Tran
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London SW7 2AZ, United Kingdom
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
109
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
110
|
Filatov M, Lee S, Nakata H, Choi CH. Signatures of Conical Intersection Dynamics in the Time-Resolved Photoelectron Spectrum of Furan: Theoretical Modeling with an Ensemble Density Functional Theory Method. Int J Mol Sci 2021; 22:4276. [PMID: 33924097 PMCID: PMC8074317 DOI: 10.3390/ijms22084276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck-Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Hiroya Nakata
- R & D Center Kagoshima, Kyocera, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan;
| | - Cheol-Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
111
|
Heindl M, González L. Validating fewest-switches surface hopping in the presence of laser fields. J Chem Phys 2021; 154:144102. [PMID: 33858152 DOI: 10.1063/5.0044807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The capability of fewest-switches surface hopping (FSSH) to describe non-adiabatic dynamics under explicit excitation with external fields is evaluated. Different FSSH parameters are benchmarked against multi-configurational time dependent Hartree (MCTDH) reference calculations using SO2 and 2-thiocytosine as model, yet realistic, molecular systems. Qualitatively, FSSH is able to reproduce the trends in the MCTDH dynamics with (also without) an explicit external field; however, no set of FSSH parameters is ideal. The adequate treatment of the overcoherence in FSSH is revealed as the driving factor to improve the description of the excitation process with respect to the MCTDH reference. Here, two corrections were tested: the augmented-FSSH (AFSSH) correction and the energy-based decoherence correction. A dependence on the employed basis is detected in AFSSH, performing better when spin-orbit and external laser field couplings are treated as off-diagonal elements instead of projecting them onto the diagonal of the Hamilton operator. In the presence of an electric field, the excited state dynamics was found to depend strongly on the vector used to rescale the kinetic energy along after a transition between surfaces. For SO2, recurrence of the excited wave packet throughout the duration of the applied laser pulse is observed for laser pulses (>100 fs), resulting in additional interferences missed by FSSH and only visible in variational multi-configurational Gaussian when utilizing a large number of Gaussian basis functions. This feature vanishes when going toward larger molecules, such as 2-thiocytosine, where this effect is barely visible in a laser pulse 200 fs long.
Collapse
Affiliation(s)
- Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| |
Collapse
|
112
|
Schnappinger T, de Vivie-Riedle R. Coupled nuclear and electron dynamics in the vicinity of a conical intersection. J Chem Phys 2021; 154:134306. [PMID: 33832271 DOI: 10.1063/5.0041365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultrafast optical techniques allow us to study ultrafast molecular dynamics involving both nuclear and electronic motion. To support interpretation, theoretical approaches are needed that can describe both the nuclear and electron dynamics. Hence, we revisit and expand our ansatz for the coupled description of the nuclear and electron dynamics in molecular systems (NEMol). In this purely quantum mechanical ansatz, the quantum-dynamical description of the nuclear motion is combined with the calculation of the electron dynamics in the eigenfunction basis. The NEMol ansatz is applied to simulate the coupled dynamics of the molecule NO2 in the vicinity of a conical intersection (CoIn) with a special focus on the coherent electron dynamics induced by the non-adiabatic coupling. Furthermore, we aim to control the dynamics of the system when passing the CoIn. The control scheme relies on the carrier envelope phase of a few-cycle IR pulse. The laser pulse influences both the movement of the nuclei and the electrons during the population transfer through the CoIn.
Collapse
|
113
|
Kocák J, Kraisler E, Schild A. Charge-Transfer Steps in Density Functional Theory from the Perspective of the Exact Electron Factorization. J Phys Chem Lett 2021; 12:3204-3209. [PMID: 33761257 DOI: 10.1021/acs.jpclett.1c00467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When a molecule dissociates, the exact Kohn-Sham (KS) and Pauli potentials may form step structures. Reproducing these steps correctly is central for the description of dissociation and charge-transfer processes in density functional theory (DFT): The steps align the KS eigenvalues of the dissociating subsystems relative to each other and determine where electrons localize. While the step height can be calculated from the asymptotic behavior of the KS orbitals, this provides limited insight into what causes the steps. We give an explanation of the steps with an exact mapping of the many-electron problem to a one-electron problem, the exact electron factorization (EEF). The potentials appearing in the EEF have a clear physical meaning that translates to the DFT potentials by replacing the interacting many-electron system with the KS system. With a simple model of a diatomic, we illustrate that the steps are a consequence of spatial electron entanglement and are the result of a charge transfer. From this mechanism, the step height can immediately be deduced. Moreover, two methods to approximately reproduce the potentials during dissociation are proposed. One is based on the states of the dissociated system, while the other one is based on an analogy to the Born-Oppenheimer treatment of a molecule. The latter method also shows that the steps connect adiabatic potential energy surfaces. The view of DFT from the EEF thus provides a better understanding of how many-electron effects are encoded in a one-electron theory and how they can be modeled.
Collapse
Affiliation(s)
- Jakub Kocák
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Eli Kraisler
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Axel Schild
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
114
|
Choi S, Vaníček J. How important are the residual nonadiabatic couplings for an accurate simulation of nonadiabatic quantum dynamics in a quasidiabatic representation? J Chem Phys 2021; 154:124119. [PMID: 33810696 DOI: 10.1063/5.0046067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diabatization of the molecular Hamiltonian is a standard approach to remove the singularities of nonadiabatic couplings at conical intersections of adiabatic potential energy surfaces. In general, it is impossible to eliminate the nonadiabatic couplings entirely-the resulting "quasidiabatic" states are still coupled by smaller but nonvanishing residual nonadiabatic couplings, which are typically neglected. Here, we propose a general method for assessing the validity of this potentially drastic approximation by comparing quantum dynamics simulated either with or without the residual couplings. To make the numerical errors negligible to the errors due to neglecting the residual couplings, we use the highly accurate and general eighth-order composition of the implicit midpoint method. The usefulness of the proposed method is demonstrated on nonadiabatic simulations in the cubic Jahn-Teller model of nitrogen trioxide and in the induced Renner-Teller model of hydrogen cyanide. We find that, depending on the system, initial state, and employed quasidiabatization scheme, neglecting the residual couplings can result in wrong dynamics. In contrast, simulations with the exact quasidiabatic Hamiltonian, which contains the residual couplings, always yield accurate results.
Collapse
Affiliation(s)
- Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
115
|
Schirò M, Eich FG, Agostini F. Quantum-classical nonadiabatic dynamics of Floquet driven systems. J Chem Phys 2021; 154:114101. [PMID: 33752379 DOI: 10.1063/5.0043790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a trajectory-based approach for excited-state molecular dynamics simulations of systems subject to an external periodic drive. We combine the exact-factorization formalism, allowing us to treat electron-nuclear systems in nonadiabatic regimes, with the Floquet formalism for time-periodic processes. The theory is developed starting with the molecular time-dependent Schrödinger equation with the inclusion of an external periodic drive that couples to the system dipole moment. With the support of the Floquet formalism, quantum dynamics is approximated by combining classical-like, trajectory-based, nuclear evolution with electronic dynamics represented in the Floquet basis. The resulting algorithm, which is an extension of the coupled-trajectory mixed quantum-classical scheme for periodically driven systems, is applied to a model study, exactly solvable, with different field intensities.
Collapse
Affiliation(s)
- Marco Schirò
- JEIP, USR 3573 CNRS, Collège de France, PSL Research University, 11 Place Marcelin Berthelot, 75321 Paris Cedex 05, France
| | - Florian G Eich
- HQS Quantum Simulations GmbH, Haid-und-Neu-Straße 7, D-76131 Karlsruhe, Germany
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
116
|
Bian X, Wu Y, Teh HH, Zhou Z, Chen HT, Subotnik JE. Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing, and spin separation: A key goal for chemical physics. J Chem Phys 2021; 154:110901. [DOI: 10.1063/5.0039371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hung-Hsuan Teh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zeyu Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
117
|
Mukherjee S, Ravi S, Naskar K, Sardar S, Adhikari S. A beyond Born–Oppenheimer treatment of C6H6+ radical cation for diabatic surfaces: Photoelectron spectra of its neutral analog using time-dependent discrete variable representation. J Chem Phys 2021; 154:094306. [DOI: 10.1063/5.0040361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhankar Sardar
- Department of Chemistry, Bhatter College, Dantan, Paschim Medinipur 721426, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
118
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
119
|
Pieroni C, Marsili E, Lauvergnat D, Agostini F. Relaxation dynamics through a conical intersection: Quantum and quantum-classical studies. J Chem Phys 2021; 154:034104. [PMID: 33499611 DOI: 10.1063/5.0036726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We study the relaxation process through a conical intersection of a photo-excited retinal chromophore model. The analysis is based on a two-electronic-state two-dimensional Hamiltonian developed by Hahn and Stock [J. Phys. Chem. B 104 1146 (2000)] to reproduce, with a minimal model, the main features of the 11-cis to all-trans isomerization of the retinal of rhodopsin. In particular, we focus on the performance of various trajectory-based schemes to nonadiabatic dynamics, and we compare quantum-classical results to the numerically exact quantum vibronic wavepacket dynamics. The purpose of this work is to investigate, by analyzing electronic and nuclear observables, how the sampling of initial conditions for the trajectories affects the subsequent dynamics.
Collapse
Affiliation(s)
- Carlotta Pieroni
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Emanuele Marsili
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
120
|
Martinez P, Rosenzweig B, Hoffmann NM, Lacombe L, Maitra NT. Case studies of the time-dependent potential energy surface for dynamics in cavities. J Chem Phys 2021; 154:014102. [PMID: 33412864 PMCID: PMC7968936 DOI: 10.1063/5.0033386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/10/2020] [Indexed: 11/14/2022] Open
Abstract
The exact time-dependent potential energy surface driving the nuclear dynamics was recently shown to be a useful tool to understand and interpret the coupling of nuclei, electrons, and photons in cavity settings. Here, we provide a detailed analysis of its structure for exactly solvable systems that model two phenomena: cavity-induced suppression of proton-coupled electron-transfer and its dependence on the initial state, and cavity-induced electronic excitation. We demonstrate the inadequacy of simply using a weighted average of polaritonic surfaces to determine the dynamics. Such a weighted average misses a crucial term that redistributes energy between the nuclear and the polaritonic systems, and this term can in fact become a predominant term in determining the nuclear dynamics when several polaritonic surfaces are involved. Evolving an ensemble of classical trajectories on the exact potential energy surface reproduces the nuclear wavepacket quite accurately, while evolving on the weighted polaritonic surface fails after a short period of time. The implications and prospects for application of mixed quantum-classical methods based on this surface are discussed.
Collapse
Affiliation(s)
- Phillip Martinez
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | | | - Norah M. Hoffmann
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Lionel Lacombe
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Neepa T. Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
121
|
Dutta J, Mukherjee S, Naskar K, Ghosh S, Mukherjee B, Ravi S, Adhikari S. The role of electron-nuclear coupling on multi-state photoelectron spectra, scattering processes and phase transitions. Phys Chem Chem Phys 2020; 22:27496-27524. [PMID: 33283826 DOI: 10.1039/d0cp04052e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present first principle based beyond Born-Oppenheimer (BBO) theory and its applications on various models as well as realistic spectroscopic and scattering processes, where the Jahn-Teller (JT) theory is brought in conjunction with the BBO approach on the phase transition of lanthanide complexes. Over one and half decades, our development of BBO theory is demonstrated with ab initio calculations on representative molecules of spectroscopic interest (NO2 radical, Na3 and K3 clusters, NO3 radical, C6H6+ and 1,3,5-C6H3F3+ radical cations) as well as triatomic reactive scattering processes (H+ + H2 and F + H2). Such an approach exhibits the effect of JT, Renner-Teller (RT) and pseudo Jahn-Teller (PJT) type of interactions. While implementing the BBO theory, we generate highly accurate diabatic potential energy surfaces (PESs) to carry out quantum dynamics calculation and find excellent agreement with experimental photoelectron spectra of spectroscopic systems and cross-sections/rate constants of scattering processes. On the other hand, such electron-nuclear couplings incorporated through JT theory play a crucial role in dictating higher energy satellite transitions in the dielectric function spectra of the LaMnO3 complex. Overall, this article thoroughly sketches the current perspective of the BBO approach and its connection with JT theory with various applications on physical and chemical processes.
Collapse
Affiliation(s)
- Joy Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | | | | | | | | | |
Collapse
|
122
|
Zhao L, Wildman A, Tao Z, Schneider P, Hammes-Schiffer S, Li X. Nuclear–electronic orbital Ehrenfest dynamics. J Chem Phys 2020; 153:224111. [DOI: 10.1063/5.0031019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luning Zhao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Andrew Wildman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Zhen Tao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Patrick Schneider
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
123
|
Choi S, Vaníček J. Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection? J Chem Phys 2020; 153:211101. [DOI: 10.1063/5.0033410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
124
|
Sasmal S, Vendrell O. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method. J Chem Phys 2020; 153:154110. [PMID: 33092359 DOI: 10.1063/5.0028116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A first principles quantum formalism to describe the non-adiabatic dynamics of electrons and nuclei based on a second quantization representation (SQR) of the electronic motion combined with the usual representation of the nuclear coordinates is introduced. This procedure circumvents the introduction of potential energy surfaces and non-adiabatic couplings, providing an alternative to the Born-Oppenheimer approximation. An important feature of the molecular Hamiltonian in the mixed first quantized representation for the nuclei and the SQR representation for the electrons is that all degrees of freedom, nuclear positions and electronic occupations, are distinguishable. This makes the approach compatible with various tensor decomposition Ansätze for the propagation of the nuclear-electronic wavefunction. Here, we describe the application of this formalism within the multi-configuration time-dependent Hartree framework and its multilayer generalization, corresponding to Tucker and hierarchical Tucker tensor decompositions of the wavefunction, respectively. The approach is applied to the calculation of the photodissociation cross section of the HeH+ molecule under extreme ultraviolet irradiation, which features non-adiabatic effects and quantum interferences between the two possible fragmentation channels, He + H+ and He+ + H. These calculations are compared with the usual description based on ab initio potential energy surfaces and non-adiabatic coupling matrix elements, which fully agree. The proof-of-principle calculations serve to illustrate the advantages and drawbacks of this formalism, which are discussed in detail, as well as possible ways to overcome them. We close with an outlook of possible application domains where the formalism might outperform the usual approach, for example, in situations that combine a strong static correlation of the electrons with non-adiabatic electronic-nuclear effects.
Collapse
Affiliation(s)
- Sudip Sasmal
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuneheimer Feld 229, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuneheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
125
|
Marsili E, Olivucci M, Lauvergnat D, Agostini F. Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model. J Chem Theory Comput 2020; 16:6032-6048. [PMID: 32931266 DOI: 10.1021/acs.jctc.0c00679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report an in-depth analysis of the photo-induced isomerization of the 2-cis-penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.
Collapse
Affiliation(s)
- Emanuele Marsili
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France.,Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
126
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
127
|
Hoffmann NM, Lacombe L, Rubio A, Maitra NT. Effect of many modes on self-polarization and photochemical suppression in cavities. J Chem Phys 2020; 153:104103. [PMID: 32933282 DOI: 10.1063/5.0012723] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality, the quantum cavity supports a range of photon modes. Here, we demonstrate that as more photon modes are accounted for, physicochemical phenomena can dramatically change, as illustrated by the cavity-induced suppression of the important and ubiquitous process of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-modes, we find that self-polarization effects become essential, and we introduce the concept of self-polarization-modified Born-Oppenheimer surfaces as a new construct to analyze dynamics. As the number of cavity photon modes increases, the increasing deviation of these surfaces from the cavity-free Born-Oppenheimer surfaces, together with the interplay between photon emission and absorption inside the widening bands of these surfaces, leads to enhanced suppression. The present findings are general and will have implications for the description and control of cavity-driven physical processes of molecules, nanostructures, and solids embedded in cavities.
Collapse
Affiliation(s)
- Norah M Hoffmann
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| | - Lionel Lacombe
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| | - Angel Rubio
- Department of Physics, Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Neepa T Maitra
- Department of Physics, Rutgers University at Newark, Newark, New Jersey 07102, USA
| |
Collapse
|
128
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
129
|
Ravi S, Mukherjee S, Mukherjee B, Adhikari S, Sathyamurthy N, Baer M. Non-adiabatic coupling as a frictional force in (He, H, H)+ dynamics and the formation of HeH2+. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | | | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
130
|
Xu X, Yang Y. Full-quantum descriptions of molecular systems from constrained nuclear–electronic orbital density functional theory. J Chem Phys 2020; 153:074106. [DOI: 10.1063/5.0014001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Xi Xu
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
131
|
Talotta F, Agostini F, Ciccotti G. Quantum Trajectories for the Dynamics in the Exact Factorization Framework: A Proof-of-Principle Test. J Phys Chem A 2020; 124:6764-6777. [PMID: 32786992 DOI: 10.1021/acs.jpca.0c03969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation. Those characteristics are referred to as quantum trajectories, since they are generated via ordinary differential equations similar to Hamilton's equations, but including the so-called quantum potential, and they can be used to reconstruct exactly the quantum-mechanical nuclear wave function, provided infinite initial conditions are propagated in time.
Collapse
Affiliation(s)
- Francesco Talotta
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France.,Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France.,Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Giovanni Ciccotti
- CNR, Institute for Applied Computing "Mauro Picone" (IAC), Via dei Taurini 19, 00185 Rome, Italy.,School of Physics, University College of Dublin UCD - Belfield, Dublin 4, Ireland.,Dipartimento di Fisica, Università di Roma La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
132
|
Talotta F, Morisset S, Rougeau N, Lauvergnat D, Agostini F. Internal Conversion and Intersystem Crossing with the Exact Factorization. J Chem Theory Comput 2020; 16:4833-4848. [PMID: 32633509 DOI: 10.1021/acs.jctc.0c00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a detailed derivation of the generalized coupled-trajectory mixed quantum-classical (G-CT-MQC) algorithm based on the exact-factorization equations. The ultimate goal is to propose an algorithm that can be employed for molecular dynamics simulations of nonradiative phenomena, as the spin-allowed internal conversions and the spin-forbidden intersystem crossings. Internal conversions are nonadiabatic processes driven by the kinetic coupling between electronic states, whereas intersystem crossings are mediated by the spin-orbit coupling. In this paper, we discuss computational issues related to the suitable representation for electronic dynamics and the different natures of kinetic and spin-orbit coupling. Numerical studies on model systems allow us to test the performance of the G-CT-MQC algorithm in different situations.
Collapse
Affiliation(s)
- Francesco Talotta
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.,Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Sabine Morisset
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Nathalie Rougeau
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - David Lauvergnat
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Federica Agostini
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
133
|
Chen HT, Zhou Z, Subotnik JE. On the proper derivation of the Floquet-based quantum classical Liouville equation and surface hopping describing a molecule or material subject to an external field. J Chem Phys 2020; 153:044116. [PMID: 32752688 DOI: 10.1063/5.0013873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate different approaches to derive the proper Floquet-based quantum-classical Liouville equation (F-QCLE) for laser-driven electron-nuclear dynamics. The first approach projects the operator form of the standard QCLE onto the diabatic Floquet basis and then transforms to the adiabatic representation. The second approach directly projects the QCLE onto the Floquet adiabatic basis. Both approaches yield a form that is similar to the usual QCLE with two modifications: (1) The electronic degrees of freedom are expanded to infinite dimension and (2) the nuclear motion follows Floquet quasi-energy surfaces. However, the second approach includes an additional cross derivative force due to the dual dependence on time and nuclear motion of the Floquet adiabatic states. Our analysis and numerical tests indicate that this cross derivative force is a fictitious artifact, suggesting that one cannot safely exchange the order of Floquet state projection with adiabatic transformation. Our results are in accord with similar findings by Izmaylov et al., [J. Chem. Phys. 140, 084104 (2014)] who found that transforming to the adiabatic representation must always be the last operation applied, although now we have extended this result to a time-dependent Hamiltonian. This paper and the proper derivation of the F-QCLE should lay the basis for further improvements of Floquet surface hopping.
Collapse
Affiliation(s)
- Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zeyu Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
134
|
Tran T, Jenkins AJ, Worth GA, Robb MA. The quantum-Ehrenfest method with the inclusion of an IR pulse: Application to electron dynamics of the allene radical cation. J Chem Phys 2020; 153:031102. [PMID: 32716173 DOI: 10.1063/5.0015937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe the implementation of a laser control pulse in the quantum-Ehrenfest method, a molecular quantum dynamics method that solves the time-dependent Schrödinger equation for both electrons and nuclei. The oscillating electric field-dipole interaction is incorporated directly in the one-electron Hamiltonian of the electronic structure part of the algorithm. We then use the coupled electron-nuclear dynamics of the π-system in the allene radical cation (•CH2=C=CH2)+ as a simple model of a pump-control experiment. We start (pump) with a two-state superposition of two cationic states. The resulting electron dynamics corresponds to the rapid oscillation of the unpaired electron between the two terminal methylenes. This electron dynamics is, in turn, coupled to the torsional motion of the terminal methylenes. There is a conical intersection at 90° twist, where the electron dynamics collapses because the adiabatic states become degenerate. After passing the conical intersection, the electron dynamics revives. The IR pulse (control) in our simulations is timed to have its maximum at the conical intersection. Our simulations show that the effect of the (control) pulse is to change the electron dynamics at the conical intersection and, as a consequence, the concomitant nuclear dynamics, which is dominated by the change in the torsional angle.
Collapse
Affiliation(s)
- Thierry Tran
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Graham A Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ London, United Kingdom
| |
Collapse
|
135
|
You P, Chen D, Lian C, Zhang C, Meng S. First‐principles dynamics of photoexcited molecules and materials towards a quantum description. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Chao Lian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| |
Collapse
|
136
|
Shao X, Jiang K, Mi W, Genova A, Pavanello M. DFTpy
: An efficient and object‐oriented platform for orbital‐free
DFT
simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1482] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuecheng Shao
- Department of Chemistry Rutgers University Newark New Jersey USA
| | - Kaili Jiang
- Department of Chemistry Rutgers University Newark New Jersey USA
| | - Wenhui Mi
- Department of Chemistry Rutgers University Newark New Jersey USA
| | - Alessandro Genova
- Department of Chemistry Rutgers University Newark New Jersey USA
- Kitware Inc., 1712 U.S. 9 Suite 300, Clifton Park New York New York USA
| | - Michele Pavanello
- Department of Chemistry Rutgers University Newark New Jersey USA
- Department of Physics Rutgers University Newark New Jersey USA
| |
Collapse
|
137
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
138
|
Schaupp T, Engel V. Born–Oppenheimer and non-Born–Oppenheimer contributions to time-dependent electron momenta. J Chem Phys 2020; 152:204310. [DOI: 10.1063/5.0004560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Thomas Schaupp
- Universität Würzburg Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Volker Engel
- Universität Würzburg Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
139
|
Lacombe L, Maitra NT. Embedding via the Exact Factorization Approach. PHYSICAL REVIEW LETTERS 2020; 124:206401. [PMID: 32501082 DOI: 10.1103/physrevlett.124.206401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
We present a quantum electronic embedding method derived from the exact factorization approach to calculate static properties of a many-electron system. The method is exact in principle but the practical power lies in utilizing input from a low-level calculation on the entire system in a high-level method computed on a small fragment, as in other embedding methods. Here, the exact factorization approach defines an embedding Hamiltonian on the fragment. Various Hubbard models demonstrate that remarkably accurate ground-state energies are obtained over the full range of weak to strongly correlated systems.
Collapse
Affiliation(s)
- Lionel Lacombe
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
140
|
Pavošević F, Culpitt T, Hammes-Schiffer S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear–Electronic Orbital Method. Chem Rev 2020; 120:4222-4253. [DOI: 10.1021/acs.chemrev.9b00798] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabijan Pavošević
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tanner Culpitt
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
141
|
Xu X, Yang Y. Constrained nuclear-electronic orbital density functional theory: Energy surfaces with nuclear quantum effects. J Chem Phys 2020; 152:084107. [DOI: 10.1063/1.5143371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Xi Xu
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
142
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
143
|
Zhou Z, Chen HT, Nitzan A, Subotnik JE. Nonadiabatic Dynamics in a Laser Field: Using Floquet Fewest Switches Surface Hopping To Calculate Electronic Populations for Slow Nuclear Velocities. J Chem Theory Comput 2020; 16:821-834. [PMID: 31951404 DOI: 10.1021/acs.jctc.9b00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigate two well-known approaches for extending the fewest switches surface hopping (FSSH) algorithm to periodic time-dependent couplings. The first formalism acts as if the instantaneous adiabatic electronic states were standard adiabatic states, which just happen to evolve in time. The second formalism replaces the role of the usual adiabatic states by the time-independent adiabatic Floquet states. For a set of modified Tully model problems, the Floquet FSSH (F-FSSH) formalism gives a better estimate for both transmission and reflection probabilities than the instantaneous adiabatic FSSH (IA-FSSH) formalism, especially for slow nuclear velocities. More importantly, only F-FSSH predicts the correct final scattering momentum. Finally, in order to use Floquet theory accurately, we find that it is crucial to account for the interference between wavepackets on different Floquet states. Our results should be of interest to all those interested in laser-induced molecular dynamics.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Hsing-Ta Chen
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Abraham Nitzan
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joseph Eli Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
144
|
Talotta F, Morisset S, Rougeau N, Lauvergnat D, Agostini F. Spin-Orbit Interactions in Ultrafast Molecular Processes. PHYSICAL REVIEW LETTERS 2020; 124:033001. [PMID: 32031839 DOI: 10.1103/physrevlett.124.033001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
We investigate spin-orbit interactions in ultrafast molecular processes employing the exact factorization of the electron-nuclear wave function. We revisit the original derivation by including spin-orbit coupling, and show how the dynamics driven by the time-dependent potential energy surface alleviates inconsistencies arising from different electronic representations. We propose a novel trajectory-based scheme to simulate spin-forbidden non-radiative processes, and we show its performance in the treatment of excited-state dynamics where spin-orbit effects couple different spin multiplets.
Collapse
Affiliation(s)
- Francesco Talotta
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
- Institut de Sciences Moléculaires d'Orsay, UMR 8214 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Sabine Morisset
- Institut de Sciences Moléculaires d'Orsay, UMR 8214 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Nathalie Rougeau
- Institut de Sciences Moléculaires d'Orsay, UMR 8214 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - David Lauvergnat
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Federica Agostini
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
145
|
Kraisler E. Asymptotic Behavior of the Exchange‐Correlation Energy Density and the Kohn‐Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. Isr J Chem 2020. [DOI: 10.1002/ijch.201900103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry The Hebrew University of Jerusalem 9091401 Jerusalem Israel
| |
Collapse
|
146
|
Carof A, Giannini S, Blumberger J. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm. Phys Chem Chem Phys 2019; 21:26368-26386. [PMID: 31793569 DOI: 10.1039/c9cp04770k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Charge transport in high mobility organic semiconductors is in an intermediate regime between small polaron hopping and band transport limits. We have recently shown that surface hopping non-adiabatic molecular dynamics is a powerful method for prediction of charge transport mechanisms in organic materials and for near-quantitative prediction of charge mobilities at room temperature where the effects of nuclear zero-point motion and tunneling are still relatively small [S. Giannini et al., Nat. Commun., 2019, 10, 3843]. Here we assess and critically discuss the extensions to Tully's original method that have led to this success: (i) correction for missing electronic decoherence, (ii) detection of trivial crossings and (iii) removal of decoherence correction-induced spurious charge transfer. If any one of these corrections is not included, the charge mobility diverges with system size, each for different physical reasons. Yet if they are included, convergence with system size, detailed balance and good internal consistency are achieved.
Collapse
Affiliation(s)
- Antoine Carof
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | - Samuele Giannini
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK. and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| |
Collapse
|
147
|
Fang W, Thapa MJ, Richardson JO. Nonadiabatic quantum transition-state theory in the golden-rule limit. II. Overcoming the pitfalls of the saddle-point and semiclassical approximations. J Chem Phys 2019; 151:214101. [DOI: 10.1063/1.5131092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Manish J. Thapa
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
148
|
Kumar N, Raj P, Balanarayan P. Hovering States of Ammonia in a High-Intensity, High-Frequency Oscillating Field: Trapped into Planarity by Laser-Induced Hybridization. J Phys Chem Lett 2019; 10:6813-6819. [PMID: 31609625 DOI: 10.1021/acs.jpclett.9b02659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A high-intensity, high-frequency laser can create an oscillating induced dipole moment in a molecule. At high laser frequencies with a long pulse width, a stable non-ionizing state with a laser-induced hybridization of the electrons is formed. For ammonia, aligned with the linear polarization direction of the laser, such stable states can be realized. Electronic hybridization in the presence of the high-frequency field is such that the lone pair propensity is dynamically equalized on either side of ammonia. This leads to a destabilization of pyramidal ammonia and hovering states with the electron density flipping to either side of the geometry. Electronic structure calculations in an oscillating frame of reference anticipate this effect with a predicted classical quiver distance of 0.1 Å. Electronic dynamics at a laser intensity of 1.14 × 1013 W/cm2 and a frequency of 8.16 eV predicts negligible ionization for the planar geometry. Approximate nuclear wave packet dynamics in the oscillating potential energy generated by the electrons predicts a trapping of ammonia in its planar transition state geometry.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemical Sciences , Indian Institute of Science Education Research , Mohali 140306 , India
| | - Prashant Raj
- Department of Chemical Sciences , Indian Institute of Science Education Research , Mohali 140306 , India
| | - P Balanarayan
- Department of Chemical Sciences , Indian Institute of Science Education Research , Mohali 140306 , India
| |
Collapse
|
149
|
Mukherjee B, Naskar K, Mukherjee S, Ghosh S, Sahoo T, Adhikari S. Beyond Born–Oppenheimer theory for spectroscopic and scattering processes. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1672987] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| |
Collapse
|
150
|
Ibele LM, Nicolson A, Curchod BFE. Excited-state dynamics of molecules with classically driven trajectories and Gaussians. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1665199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|