101
|
Li Y, Min Y, Zhu X, Cao J. Partner switching promotes cooperation among myopic agents on a geographical plane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022823. [PMID: 23496584 DOI: 10.1103/physreve.87.022823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/04/2012] [Indexed: 06/01/2023]
Abstract
We study the coupling dynamics between the evolution of cooperation and the evolution of partnership network on a geographical plane. While agents play networked prisoner's dilemma games, they can dynamically adjust their partnerships based on local information about reputation. We incorporate geographical features into the process of the agent's partner switching and investigate the corresponding effects. At each time step of the coevolution, a random agent can either update his strategy by imitation or adjust his partnership by switching from the lowest reputation partner to the highest reputation one among his neighbors. We differentiate two types of neighbors: geographical neighbors (i.e., the set of agents who are close to the focal agent in terms of geographical distance) and connectivity neighbors (i.e., the set of agents who are close to the focal agent in the partnership network in terms of geodesic distance). We find that switching to either geographical neighbors or connectivity neighbors enhances cooperation greatly in a wide parameter range. Cooperation can be favored in a much stricter condition when agents switch to connectivity neighbors more frequently. However, an increasing tendency of reconnecting to geographical neighbors shortens the geographical distance between a pair of partners on average. When agents consider the cost of geographical distance in adjusting the partnership, they are prone to reconnect to geographical neighbors.
Collapse
Affiliation(s)
- Yixiao Li
- School of Information, Zhejiang University of Finance and Economics, Hangzhou, Zhejiang 310018, China
| | | | | | | |
Collapse
|
102
|
Santos MD, Pinheiro FL, Santos FC, Pacheco JM. Dynamics of N-person snowdrift games in structured populations. J Theor Biol 2012; 315:81-6. [DOI: 10.1016/j.jtbi.2012.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
|
103
|
Chen YZ, Lai YC. Optimizing cooperation on complex networks in the presence of failure. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:045101. [PMID: 23214636 DOI: 10.1103/physreve.86.045101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 06/01/2023]
Abstract
Cooperation has been recognized as a fundamental driving force in many natural, social, and economic systems. We investigate whether, given a complex-networked system in which agents (nodes) interact with one another according to the rules of evolutionary games and are subject to failure or death, cooperation can prevail and be optimized. We articulate a control scheme to maximize cooperation by introducing a time tolerance, a time duration that sustains an agent even if its payoff falls below a threshold. Strikingly, we find that a significant cooperation cluster can emerge when the time tolerance is approximately uniformly distributed over the network. A heuristic theory is derived to understand the optimization mechanism, which emphasizes the role played by medium-degree nodes. Implications for policy making to prevent or mitigate large-scale cascading breakdown are pointed out.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
104
|
Peña J, Rochat Y. Bipartite graphs as models of population structures in evolutionary multiplayer games. PLoS One 2012; 7:e44514. [PMID: 22970237 PMCID: PMC3438187 DOI: 10.1371/journal.pone.0044514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 12/03/2022] Open
Abstract
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.
Collapse
Affiliation(s)
- Jorge Peña
- Faculty of Social and Political Sciences, Institute of Applied Mathematics, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
105
|
Chen X, Szolnoki A, Perc M, Wang L. Impact of generalized benefit functions on the evolution of cooperation in spatial public goods games with continuous strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066133. [PMID: 23005188 DOI: 10.1103/physreve.85.066133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 06/01/2023]
Abstract
Cooperation and defection may be considered to be two extreme responses to a social dilemma. Yet the reality is much less clear-cut. Between the two extremes lies an interval of ambivalent choices, which may be captured theoretically by means of continuous strategies defining the extent of the contributions of each individual player to the common pool. If strategies are chosen from the unit interval, where 0 corresponds to pure defection and 1 corresponds to the maximal contribution, the question is what is the characteristic level of individual investments to the common pool that emerges if the evolution is guided by different benefit functions. Here we consider the steepness and the threshold as two parameters defining an array of generalized benefit functions, and we show that in a structured population there exist intermediate values of both at which the collective contributions are maximal. However, as the cost-to-benefit ratio of cooperation increases, the characteristic threshold decreases while the corresponding steepness increases. Our observations remain valid if more complex sigmoid functions are used, thus reenforcing the importance of carefully adjusted benefits for high levels of public cooperation.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | | | |
Collapse
|
106
|
Adaptive and bounded investment returns promote cooperation in spatial public goods games. PLoS One 2012; 7:e36895. [PMID: 22615836 PMCID: PMC3353963 DOI: 10.1371/journal.pone.0036895] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022] Open
Abstract
The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.
Collapse
|
107
|
Chen X, Schick A, Doebeli M, Blachford A, Wang L. Reputation-based conditional interaction supports cooperation in well-mixed prisoner's dilemmas. PLoS One 2012; 7:e36260. [PMID: 22615761 PMCID: PMC3355160 DOI: 10.1371/journal.pone.0036260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
In the well-mixed prisoner's dilemma game, individuals are typically assumed to have no choice about whether to interact with other individuals in the population. In this paper, we instead consider reputation-based conditional interaction and its consequences for the evolution of cooperation. Each individual has a tolerance range, and only interacts with other individuals whose reputation lies within its tolerance range in a chosen sample of the population. Reputation contains information about the number of interaction partners an individual has just cooperated with. We find that the introduction of conditional interaction promotes cooperation in well-mixed populations, and there exist moderate tolerance ranges for which this effect is maximized. For a given tolerance range, there is a critical cost-to-benefit ratio below which cooperation can be promoted. Interestingly, we find that if cooperation evolves, different cooperators' interaction clusters are typically maintained in the population, each around a different reputation level. We further investigate some properties of these cooperators' clusters. Moreover, we examine the effects of the sample number on the evolution of cooperation. Our results highlight the importance of the detailed consideration of modes of interaction for the evolution of cooperation in well-mixed populations.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.
| | | | | | | | | |
Collapse
|
108
|
Sirakoulis GC, Karafyllidis IG. Cooperation in a Power-Aware Embedded-System Changing Environment: Public Goods Games With Variable Multiplication Factors. ACTA ACUST UNITED AC 2012. [DOI: 10.1109/tsmca.2011.2172417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
109
|
Van Segbroeck S, Pacheco JM, Lenaerts T, Santos FC. Emergence of fairness in repeated group interactions. PHYSICAL REVIEW LETTERS 2012; 108:158104. [PMID: 22587290 DOI: 10.1103/physrevlett.108.158104] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Indexed: 05/31/2023]
Abstract
Often groups need to meet repeatedly before a decision is reached. Hence, most individual decisions will be contingent on decisions taken previously by others. In particular, the decision to cooperate or not will depend on one's own assessment of what constitutes a fair group outcome. Making use of a repeated N-person prisoner's dilemma, we show that reciprocation towards groups opens a window of opportunity for cooperation to thrive, leading populations to engage in dynamics involving both coordination and coexistence, and characterized by cycles of cooperation and defection. Furthermore, we show that this process leads to the emergence of fairness, whose level will depend on the dilemma at stake.
Collapse
|
110
|
Han TA, Traulsen A, Gokhale CS. On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theor Popul Biol 2012; 81:264-72. [PMID: 22406614 DOI: 10.1016/j.tpb.2012.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The analysis of equilibrium points in biological dynamical systems has been of great interest in a variety of mathematical approaches to biology, such as population genetics, theoretical ecology or evolutionary game theory. The maximal number of equilibria and their classification based on stability have been the primary subjects of these studies, for example in the context of two-player games with multiple strategies. Herein, we address a different question using evolutionary game theory as a tool. If the payoff matrices are drawn randomly from an arbitrary distribution, what are the probabilities of observing a certain number of (stable) equilibria? We extend the domain of previous results for the two-player framework, which corresponds to a single diploid locus in population genetics, by addressing the full complexity of multi-player games with multiple strategies. In closing, we discuss an application and illustrate how previous results on the number of equilibria, such as the famous Feldman-Karlin conjecture on the maximal number of isolated fixed points in a viability selection model, can be obtained as special cases of our results based on multi-player evolutionary games. We also show how the probability of realizing a certain number of equilibria changes as we increase the number of players and number of strategies.
Collapse
Affiliation(s)
- The Anh Han
- Center of Artificial Intelligence, Department of Informatics, Faculty of Science and Technologies, New University of Lisbon, P-2829-516 Caparica, Portugal
| | | | | |
Collapse
|
111
|
Wang Z, Szolnoki A, Perc M. Percolation threshold determines the optimal population density for public cooperation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:037101. [PMID: 22587213 DOI: 10.1103/physreve.85.037101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 05/31/2023]
Abstract
While worldwide census data provide statistical evidence that firmly link the population density with several indicators of social welfare, the precise mechanisms underlying these observations are largely unknown. Here we study the impact of population density on the evolution of public cooperation in structured populations and find that the optimal density is uniquely related to the percolation threshold of the host graph irrespective of its topological details. We explain our observations by showing that spatial reciprocity peaks in the vicinity of the percolation threshold, when the emergence of a giant cooperative cluster is hindered neither by vacancy nor by invading defectors, thus discovering an intuitive yet universal law that links the population density with social prosperity.
Collapse
Affiliation(s)
- Zhen Wang
- School of Physics, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
112
|
Maintenance of cooperation in a public goods game: A new decision-making criterion with incomplete information. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-011-4893-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
113
|
Adami C, Schossau J, Hintze A. Evolution and stability of altruist strategies in microbial games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011914. [PMID: 22400598 DOI: 10.1103/physreve.85.011914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 11/04/2011] [Indexed: 05/31/2023]
Abstract
When microbes compete for limited resources, they often engage in chemical warfare using bacterial toxins. This competition can be understood in terms of evolutionary game theory (EGT). We study the predictions of EGT for the bacterial "suicide bomber" game in terms of the phase portraits of population dynamics, for parameter combinations that cover all interesting games for two-players, and seven of the 38 possible phase portraits of the three-player game. We compare these predictions to simulations of these competitions in finite well-mixed populations, but also allowing for probabilistic rather than pure strategies, as well as Darwinian adaptation over tens of thousands of generations. We find that Darwinian evolution of probabilistic strategies stabilizes games of the rock-paper-scissors type that emerge for parameters describing realistic bacterial populations, and point to ways in which the population fixed point can be selected by changing those parameters.
Collapse
Affiliation(s)
- Christoph Adami
- Department of Microbiology and Molecular Genetics, and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
114
|
Zhang Y, Fu F, Wu T, Xie G, Wang L. Inertia in strategy switching transforms the strategy evolution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:066103. [PMID: 22304151 DOI: 10.1103/physreve.84.066103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/11/2011] [Indexed: 05/31/2023]
Abstract
A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.
Collapse
Affiliation(s)
- Yanling Zhang
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
115
|
Cremer J, Melbinger A, Frey E. Evolutionary and population dynamics: a coupled approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051921. [PMID: 22181458 DOI: 10.1103/physreve.84.051921] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/08/2011] [Indexed: 05/31/2023]
Abstract
We study the interplay of population growth and evolutionary dynamics using a stochastic model based on birth and death events. In contrast to the common assumption of an independent population size, evolution can be strongly affected by population dynamics in general. Especially for fast reproducing microbes which are subject to selection, both types of dynamics are often closely intertwined. We illustrate this by considering different growth scenarios. Depending on whether microbes die or stop to reproduce (dormancy), qualitatively different behaviors emerge. For cooperating bacteria, a permanent increase of costly cooperation can occur. Even if not permanent, cooperation can still increase transiently due to demographic fluctuations. We validate our analysis via stochastic simulations and analytic calculations. In particular, we derive a condition for an increase in the level of cooperation.
Collapse
Affiliation(s)
- Jonas Cremer
- Arnold Sommerfeld Center for Theoretical Physics (ASC), Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
116
|
Xu Z, Zhi H, Zhang L. Survival via cooperation in the prisoner's dilemma game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051114. [PMID: 22181376 DOI: 10.1103/physreve.84.051114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/19/2011] [Indexed: 05/31/2023]
Abstract
By incorporating ecological dynamics into evolutionary games, we introduce natural and unnatural death to the spatial prisoner's dilemma game in which individuals can play mixed strategies. This introduction can give a simple explanation for the emergence and abundance of cooperation in animal and human societies. We found that individuals are more likely to cooperate in a highly competitive environment. In addition, our simulation results suggest that the individuals would tend to cooperate when the temptation to defect is small.
Collapse
Affiliation(s)
- Zhaojin Xu
- School of Science, Tianjin University of Technology, Tianjin 300384, China
| | | | | |
Collapse
|
117
|
Wu B, Zhou D, Wang L. Evolutionary dynamics on stochastic evolving networks for multiple-strategy games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046111. [PMID: 22181231 DOI: 10.1103/physreve.84.046111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/19/2011] [Indexed: 05/31/2023]
Abstract
Evolutionary game theory on dynamical networks has received much attention. Most of the work has been focused on 2×2 games such as prisoner's dilemma and snowdrift, with general n×n games seldom addressed. In particular, analytical methods are still lacking. Here we generalize the stochastic linking dynamics proposed by Wu, Zhou, Fu, Luo, Wang, and Traulsen [PLoS ONE 5, e11187 (2010)] to n×n games. We analytically obtain that the fast linking dynamics results in the replicator dynamics with a rescaled payoff matrix. In the rescaled matrix, intuitively, each entry is the product of the original entry and the average duration time of the corresponding link. This result is shown to be robust to a wide class of imitation processes. As applications, we show both analytically and numerically that the biodiversity, modeled as the stability of a zero-sum rock-paper-scissors game, cannot be altered by the fast linking dynamics. In addition, we show that the fast linking dynamics can stabilize tit-for-tat as an evolutionary stable strategy in the repeated prisoner's dilemma game provided the interaction between the identical strategies happens sufficiently often. Our method paves the way for an analytical study of the multiple-strategy coevolutionary dynamics.
Collapse
Affiliation(s)
- Bin Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
118
|
Vukov J, Santos FC, Pacheco JM. Escaping the tragedy of the commons via directed investments. J Theor Biol 2011; 287:37-41. [DOI: 10.1016/j.jtbi.2011.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/14/2011] [Accepted: 07/22/2011] [Indexed: 11/30/2022]
|
119
|
Szolnoki A, Szabó G, Czakó L. Competition of individual and institutional punishments in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046106. [PMID: 22181226 DOI: 10.1103/physreve.84.046106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 05/31/2023]
Abstract
We have studied the evolution of strategies in spatial public goods games where both individual (peer) and institutional (pool) punishments are present in addition to unconditional defector and cooperator strategies. The evolution of strategy distribution is governed by imitation based on the random sequential comparison of neighbors' payoff for a fixed level of noise. Using numerical simulations, we evaluate the strategy frequencies and phase diagrams when varying the synergy factor, punishment cost, and fine. Our attention is focused on two extreme cases describing all the relevant behaviors in such a complex system. According to our numerical data peer punishers prevail and control the system behavior in a large segments of parameters while pool punishers can only survive in the limit of weak peer punishment when a rich variety of solutions is observed. Paradoxically, the two types of punishment may extinguish each other's impact, resulting in the triumph of defectors. The technical difficulties and suggested methods are briefly discussed.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
120
|
Szolnoki A, Perc M. Group-size effects on the evolution of cooperation in the spatial public goods game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:047102. [PMID: 22181317 DOI: 10.1103/physreve.84.047102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Indexed: 05/31/2023]
Abstract
We study the evolution of cooperation in public goods games on the square lattice, focusing on the effects that are brought about by different sizes of groups where individuals collect their payoffs and search for potential strategy donors. We find that increasing the group size does not necessarily lead to mean-field behavior, as is traditionally observed for games governed by pairwise interactions, but rather that public cooperation may be additionally promoted by means of enhanced spatial reciprocity that sets in for very large groups. Our results highlight that the promotion of cooperation due to spatial interactions is not rooted solely in having restricted connections among players, but also in individuals having the opportunity to collect payoffs separately from their direct opponents. Moreover, in large groups the presence of a small number of defectors is bearable, which makes the mixed-phase region expand with increasing group size. Having a chance of exploiting distant players, however, offers defectors a different way to break the phalanx of cooperators and even to resurrect from small numbers to eventually completely invade the population.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | |
Collapse
|
121
|
Wang WX, Lai YC, Armbruster D. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks. CHAOS (WOODBURY, N.Y.) 2011; 21:033112. [PMID: 21974647 DOI: 10.1063/1.3621719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.
Collapse
Affiliation(s)
- Wen-Xu Wang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
122
|
Smaldino PE, Lubell M. An institutional mechanism for assortment in an ecology of games. PLoS One 2011; 6:e23019. [PMID: 21850249 PMCID: PMC3151282 DOI: 10.1371/journal.pone.0023019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/08/2011] [Indexed: 11/18/2022] Open
Abstract
Recent research has revived Long's "ecology of games" model to analyze how social actors cooperate in the context of multiple political and social games. However, there is still a paucity of theoretical work that considers the mechanisms by which large-scale cooperation can be promoted in a dynamic institutional landscape, in which actors can join new games and leave old ones. This paper develops an agent-based model of an ecology of games where agents participate in multiple public goods games. In addition to contribution decisions, the agents can leave and join different games, and these processes are de-coupled. We show that the payoff for cooperation is greater than for defection when limits to the number of actors per game ("capacity constraints") structure the population in ways that allow cooperators to cluster, independent of any complex individual-level mechanisms such as reputation or punishment. Our model suggests that capacity constraints are one effective mechanism for producing positive assortment and increasing cooperation in an ecology of games. The results suggest an important trade-off between the inclusiveness of policy processes and cooperation: Fully inclusive policy processes reduce the chances of cooperation.
Collapse
Affiliation(s)
- Paul E Smaldino
- Department of Psychology, University of California Davis, Davis, California, United States of America.
| | | |
Collapse
|
123
|
Strategy abundance in evolutionary many-player games with multiple strategies. J Theor Biol 2011; 283:180-91. [DOI: 10.1016/j.jtbi.2011.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/13/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
|
124
|
Vilone D, Robledo A, Sánchez A. Chaos and unpredictability in evolutionary dynamics in discrete time. PHYSICAL REVIEW LETTERS 2011; 107:038101. [PMID: 21838406 DOI: 10.1103/physrevlett.107.038101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 05/31/2023]
Abstract
A discrete-time version of the replicator equation for two-strategy games is studied. The stationary properties differ from those of continuous time for sufficiently large values of the parameters, where periodic and chaotic behavior replace the usual fixed-point population solutions. We observe the familiar period-doubling and chaotic-band-splitting attractor cascades of unimodal maps but in some cases more elaborate variations appear due to bimodality. Also unphysical stationary solutions can have unusual physical implications, such as the uncertainty of the final population caused by sensitivity to initial conditions and fractality of attractor preimage manifolds.
Collapse
Affiliation(s)
- Daniele Vilone
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | | | | |
Collapse
|
125
|
Arenas A, Camacho J, Cuesta JA, Requejo RJ. The joker effect: cooperation driven by destructive agents. J Theor Biol 2011; 279:113-9. [PMID: 21443880 DOI: 10.1016/j.jtbi.2011.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/24/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
Abstract
Understanding the emergence of cooperation is a central issue in evolutionary game theory. The hardest setup for the attainment of cooperation in a population of individuals is the Public Goods game in which cooperative agents generate a common good at their own expenses, while defectors "free-ride" this good. Eventually this causes the exhaustion of the good, a situation which is bad for everybody. Previous results have shown that introducing reputation, allowing for volunteer participation, punishing defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here we present a model which shows how the introduction of rare, malicious agents--that we term jokers--performing just destructive actions on the other agents induce bursts of cooperation. The appearance of jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of destructive agents acting indiscriminately promotes cooperation.
Collapse
Affiliation(s)
- Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | | | | | | |
Collapse
|
126
|
Szolnoki A, Szabó G, Perc M. Phase diagrams for the spatial public goods game with pool punishment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:036101. [PMID: 21517552 DOI: 10.1103/physreve.83.036101] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Indexed: 05/30/2023]
Abstract
The efficiency of institutionalized punishment is studied by evaluating the stationary states in the spatial public goods game comprising unconditional defectors, cooperators, and cooperating pool punishers as the three competing strategies. Fines and costs of pool punishment are considered as the two main parameters determining the stationary distributions of strategies on the square lattice. Each player collects a payoff from five five-person public goods games, and the evolution of strategies is subsequently governed by imitation based on pairwise comparisons at a low level of noise. The impact of pool punishment on the evolution of cooperation in structured populations is significantly different from that reported previously for peer punishment. Representative phase diagrams reveal remarkably rich behavior, depending also on the value of the synergy factor that characterizes the efficiency of investments payed into the common pool. Besides traditional single- and two-strategy stationary states, a rock-paper-scissors type of cyclic dominance can emerge in strikingly different ways.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, Post Office Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
127
|
Rong Z, Yang HX, Wang WX. Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:047101. [PMID: 21230418 DOI: 10.1103/physreve.82.047101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 05/27/2010] [Indexed: 05/30/2023]
Abstract
We study how the clustering coefficient influences the evolution of cooperation in scale-free public goods games. In games played by groups of individuals, triangle loops provide stronger support for mutual cooperation to resist invasion of selfish behavior than that in the absence of such loops, so that diffusion of cooperative behavior is relatively promoted. The feedback reciprocity mechanism of triangle plays a key role in facilitating cooperation in high clustered networks.
Collapse
Affiliation(s)
- Zhihai Rong
- Department of Automation, Donghua University, 201620 Shanghai, China.
| | | | | |
Collapse
|
128
|
Wu B, Altrock PM, Wang L, Traulsen A. Universality of weak selection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:046106. [PMID: 21230344 DOI: 10.1103/physreve.82.046106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Indexed: 05/30/2023]
Abstract
Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting case in evolutionary biology. Recently, it has been introduced into evolutionary game theory. In evolutionary game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection. In many models of both unstructured and structured populations, a key assumption allowing analytical calculations is weak selection, which means that all individuals perform approximately equally well. In the weak selection limit many different microscopic evolutionary models have the same or similar properties. How universal is weak selection for those microscopic evolutionary processes? We answer this question by investigating the fixation probability and the average fixation time not only up to linear but also up to higher orders in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection intensity. With this, we can identify specific models which violate (linear) weak selection results, such as the one-third rule of coordination games in finite but large populations.
Collapse
Affiliation(s)
- Bin Wu
- Research Group Evolutionary Theory, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
129
|
Szolnoki A, Wang Z, Wang J, Zhu X. Dynamically generated cyclic dominance in spatial prisoner's dilemma games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:036110. [PMID: 21230142 DOI: 10.1103/physreve.82.036110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/29/2010] [Indexed: 05/30/2023]
Abstract
We have studied the impact of time-dependent learning capacities of players in the framework of spatial prisoner's dilemma game. In our model, this capacity of players may decrease or increase in time after strategy adoption according to a steplike function. We investigated both possibilities separately and observed significantly different mechanisms that form the stationary pattern of the system. The time decreasing learning activity helps cooperator domains to recover the possible intrude of defectors hence supports cooperation. In the other case the temporary restrained learning activity generates a cyclic dominance between defector and cooperator strategies, which helps to maintain the diversity of strategies via propagating waves. The results are robust and remain valid by changing payoff values, interaction graphs or functions characterizing time dependence of learning activity. Our observations suggest that dynamically generated mechanisms may offer alternative ways to keep cooperators alive even at very larger temptation to defect.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | | | |
Collapse
|
130
|
Fu F, Rosenbloom DI, Wang L, Nowak MA. Imitation dynamics of vaccination behaviour on social networks. Proc Biol Sci 2010; 278:42-9. [PMID: 20667876 DOI: 10.1098/rspb.2010.1107] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The problem of achieving widespread immunity to infectious diseases by voluntary vaccination is often presented as a public-goods dilemma, as an individual's vaccination contributes to herd immunity, protecting those who forgo vaccination. The temptation to free-ride brings the equilibrium vaccination level below the social optimum. Here, we present an evolutionary game-theoretic approach to this problem, exploring the roles of individual imitation behaviour and population structure in vaccination. To this end, we integrate an epidemiological process into a simple agent-based model of adaptive learning, where individuals use anecdotal evidence to estimate costs and benefits of vaccination. In our simulations, we focus on parameter values that are realistic for a flu-like infection. Paradoxically, as agents become more adept at imitating successful strategies, the equilibrium level of vaccination falls below the rational individual optimum. In structured populations, the picture is only somewhat more optimistic: vaccination is widespread over a range of low vaccination costs, but coverage plummets after cost exceeds a critical threshold. This result suggests parallels to historical scenarios in which vaccination coverage provided herd immunity for some time, but then rapidly dropped. Our work sheds light on how imitation of peers shapes individual vaccination choices in social networks.
Collapse
Affiliation(s)
- Feng Fu
- Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, One Brattle Square, Suite 6, MA 02138, USA
| | | | | | | |
Collapse
|
131
|
Fu F, Nowak MA, Hauert C. Invasion and expansion of cooperators in lattice populations: prisoner's dilemma vs. snowdrift games. J Theor Biol 2010; 266:358-66. [PMID: 20619271 DOI: 10.1016/j.jtbi.2010.06.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/23/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.
Collapse
Affiliation(s)
- Feng Fu
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
132
|
Wang J, Fu F, Wang L. Effects of heterogeneous wealth distribution on public cooperation with collective risk. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:016102. [PMID: 20866684 DOI: 10.1103/physreve.82.016102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 05/20/2010] [Indexed: 05/29/2023]
Abstract
The distribution of wealth among individuals in real society can be well described by the Pareto principle or "80-20 rule." How does such heterogeneity in initial wealth distribution affect the emergence of public cooperation, when individuals, the rich and the poor, engage in a collective-risk enterprise, not to gain a profit but to avoid a potential loss? Here we address this issue by studying a simple but effective model based on threshold public goods games. We analyze the evolutionary dynamics for two distinct scenarios, respectively: one with fair sharers versus defectors and the other with altruists versus defectors. For both scenarios, particularly, we in detail study the dynamics of the population with dichotomic initial wealth-the rich versus the poor. Moreover, we demonstrate the possible steady compositions of the population and provide the conditions for stability of these steady states. We prove that in a population with heterogeneous wealth distribution, richer individuals are more likely to cooperate than poorer ones. Participants with lower initial wealth may choose to cooperate only if all players richer than them are cooperators. The emergence of pubic cooperation largely relies on rich individuals. Furthermore, whenever the wealth gap between the rich and the poor is sufficiently large, cooperation of a few rich individuals can substantially elevate the overall level of social cooperation, which is in line with the well-known Pareto principle. Our work may offer an insight into the emergence of cooperative behavior in real social situations where heterogeneous distribution of wealth among individual is omnipresent.
Collapse
Affiliation(s)
- Jing Wang
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China.
| | | | | |
Collapse
|
133
|
Altrock PM, Gokhale CS, Traulsen A. Stochastic slowdown in evolutionary processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011925. [PMID: 20866666 DOI: 10.1103/physreve.82.011925] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/12/2010] [Indexed: 05/29/2023]
Abstract
We examine birth-death processes with state dependent transition probabilities and at least one absorbing boundary. In evolution, this describes selection acting on two different types in a finite population where reproductive events occur successively. If the two types have equal fitness the system performs a random walk. If one type has a fitness advantage it is favored by selection, which introduces a bias (asymmetry) in the transition probabilities. How long does it take until advantageous mutants have invaded and taken over? Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows a more intuitive understanding. We show that this effect can occur for weak but nonvanishing bias (selection) in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to birth-death processes.
Collapse
Affiliation(s)
- Philipp M Altrock
- Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str 2, D-24306 Plön, Germany.
| | | | | |
Collapse
|
134
|
Wu B, Zhou D, Fu F, Luo Q, Wang L, Traulsen A. Evolution of cooperation on stochastic dynamical networks. PLoS One 2010; 5:e11187. [PMID: 20614025 PMCID: PMC2894855 DOI: 10.1371/journal.pone.0011187] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
Cooperative behavior that increases the fitness of others at a cost to oneself can be promoted by natural selection only in the presence of an additional mechanism. One such mechanism is based on population structure, which can lead to clustering of cooperating agents. Recently, the focus has turned to complex dynamical population structures such as social networks, where the nodes represent individuals and links represent social relationships. We investigate how the dynamics of a social network can change the level of cooperation in the network. Individuals either update their strategies by imitating their partners or adjust their social ties. For the dynamics of the network structure, a random link is selected and breaks with a probability determined by the adjacent individuals. Once it is broken, a new one is established. This linking dynamics can be conveniently characterized by a Markov chain in the configuration space of an ever-changing network of interacting agents. Our model can be analytically solved provided the dynamics of links proceeds much faster than the dynamics of strategies. This leads to a simple rule for the evolution of cooperation: The more fragile links between cooperating players and non-cooperating players are (or the more robust links between cooperators are), the more likely cooperation prevails. Our approach may pave the way for analytically investigating coevolution of strategy and structure.
Collapse
Affiliation(s)
- Bin Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
135
|
Xu Z, Wang Z, Zhang L. Bounded rationality in volunteering public goods games. J Theor Biol 2010; 264:19-23. [PMID: 20116386 DOI: 10.1016/j.jtbi.2010.01.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
136
|
Wang J, Wu B, Chen X, Wang L. Evolutionary dynamics of public goods games with diverse contributions in finite populations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:056103. [PMID: 20866293 DOI: 10.1103/physreve.81.056103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Indexed: 05/29/2023]
Abstract
The public goods game is a powerful metaphor for exploring the maintenance of social cooperative behavior in a group of interactional selfish players. Here we study the emergence of cooperation in the public goods games with diverse contributions in finite populations. The theory of stochastic process is innovatively adopted to investigate the evolutionary dynamics of the public goods games involving a diversity of contributions. In the limit of rare mutations, the general stationary distribution of this stochastic process can be analytically approximated by means of diffusion theory. Moreover, we demonstrate that increasing the diversity of contributions greatly reduces the probability of finding the population in a homogeneous state full of defectors. This increase also raises the expectation of the total contribution in the entire population and thus promotes social cooperation. Furthermore, by investigating the evolutionary dynamics of optional public goods games with diverse contributions, we find that nonparticipation can assist players who contribute more in resisting invasion and taking over individuals who contribute less. In addition, numerical simulations are performed to confirm our analytical results. Our results may provide insight into the effect of diverse contributions on cooperative behaviors in the real world.
Collapse
Affiliation(s)
- Jing Wang
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
137
|
Helbing D, Lozano S. Phase transitions to cooperation in the prisoner's dilemma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:057102. [PMID: 20866357 DOI: 10.1103/physreve.81.057102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 04/09/2010] [Indexed: 05/27/2023]
Abstract
Game theory formalizes certain interactions between physical particles or between living beings in biology, sociology, and economics and quantifies the outcomes by payoffs. The prisoner's dilemma (PD) describes situations in which it is profitable if everybody cooperates rather than defects (free rides or cheats), but as cooperation is risky and defection is tempting, the expected outcome is defection. Nevertheless, some biological and social mechanisms can support cooperation by effectively transforming the payoffs. Here, we study the related phase transitions, which can be of first order (discontinuous) or of second order (continuous), implying a variety of different routes to cooperation. After classifying the transitions into cases of equilibrium displacement, equilibrium selection, and equilibrium creation, we show that a transition to cooperation may take place even if the stationary states and the eigenvalues of the replicator equation for the PD stay unchanged. Our example is based on adaptive group pressure, which makes the payoffs dependent on the endogenous dynamics in the population. The resulting bistability can invert the expected outcome in favor of cooperation.
Collapse
Affiliation(s)
- Dirk Helbing
- ETH Zurich, CLU E1, Clasiusstr. 50, 8092 Zurich, Switzerland
| | | |
Collapse
|
138
|
Szolnoki A, Perc M. Impact of critical mass on the evolution of cooperation in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:057101. [PMID: 20866356 DOI: 10.1103/physreve.81.057101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Indexed: 05/16/2023]
Abstract
We study the evolution of cooperation under the assumption that the collective benefits of group membership can only be harvested if the fraction of cooperators within the group, i.e., their critical mass, exceeds a threshold value. Considering structured populations, we show that a moderate fraction of cooperators can prevail even at very low multiplication factors if the critical mass is minimal. For larger multiplication factors, however, the level of cooperation is highest at an intermediate value of the critical mass. The latter is robust to variations of the group size and the interaction network topology. Applying the optimal critical mass threshold, we show that the fraction of cooperators in public goods games is significantly larger than in the traditional linear model, where the produced public good is proportional to the fraction of cooperators within the group.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, PO Box 49, H-1525 Budapest, Hungary
| | | |
Collapse
|
139
|
Helbing D, Szolnoki A, Perc M, Szabó G. Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput Biol 2010; 6:e1000758. [PMID: 20454464 PMCID: PMC2861625 DOI: 10.1371/journal.pcbi.1000758] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
Situations where individuals have to contribute to joint efforts or share scarce resources are ubiquitous. Yet, without proper mechanisms to ensure cooperation, the evolutionary pressure to maximize individual success tends to create a tragedy of the commons (such as over-fishing or the destruction of our environment). This contribution addresses a number of related puzzles of human behavior with an evolutionary game theoretical approach as it has been successfully used to explain the behavior of other biological species many times, from bacteria to vertebrates. Our agent-based model distinguishes individuals applying four different behavioral strategies: non-cooperative individuals ("defectors"), cooperative individuals abstaining from punishment efforts (called "cooperators" or "second-order free-riders"), cooperators who punish non-cooperative behavior ("moralists"), and defectors, who punish other defectors despite being non-cooperative themselves ("immoralists"). By considering spatial interactions with neighboring individuals, our model reveals several interesting effects: First, moralists can fully eliminate cooperators. This spreading of punishing behavior requires a segregation of behavioral strategies and solves the "second-order free-rider problem". Second, the system behavior changes its character significantly even after very long times ("who laughs last laughs best effect"). Third, the presence of a number of defectors can largely accelerate the victory of moralists over non-punishing cooperators. Fourth, in order to succeed, moralists may profit from immoralists in a way that appears like an "unholy collaboration". Our findings suggest that the consideration of punishment strategies allows one to understand the establishment and spreading of "moral behavior" by means of game-theoretical concepts. This demonstrates that quantitative biological modeling approaches are powerful even in domains that have been addressed with non-mathematical concepts so far. The complex dynamics of certain social behaviors become understandable as the result of an evolutionary competition between different behavioral strategies.
Collapse
|
140
|
Wang WX, Yang R, Lai YC. Cascade of elimination and emergence of pure cooperation in coevolutionary games on networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:035102. [PMID: 20365803 DOI: 10.1103/physreve.81.035102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Indexed: 05/29/2023]
Abstract
We propose a coevolutionary game to study cooperative behavior in the presence of catastrophic phenomenon. We incorporate tolerance to elimination of individuals in network games where individuals update their strategies synchronously, and there are no birth of individuals and stochastic effects. We find that an avalanchelike death process can arise when defection strategies exist and individuals are vulnerable to deficiency of profits. Strikingly, we observe that, after such a cascading process terminates, cooperators are the sole survivors regardless of the game types and of the connection patterns among individuals as determined by the network topology. Cooperation thus becomes the optimal strategy and absolutely outperforms defection. Our results can yield insights into evolution of cooperation in the presence of catastrophic events in social and natural systems.
Collapse
Affiliation(s)
- Wen-Xu Wang
- Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
141
|
Helbing D, Johansson A. Evolutionary dynamics of populations with conflicting interactions: classification and analytical treatment considering asymmetry and power. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:016112. [PMID: 20365437 DOI: 10.1103/physreve.81.016112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Indexed: 05/29/2023]
Abstract
Evolutionary game theory has been successfully used to investigate the dynamics of systems, in which many entities have competitive interactions. From a physics point of view, it is interesting to study conditions under which a coordination or cooperation of interacting entities will occur, be it spins, particles, bacteria, animals, or humans. Here, we analyze the case, where the entities are heterogeneous, particularly the case of two populations with conflicting interactions and two possible states. For such systems, explicit mathematical formulas will be determined for the stationary solutions and the associated eigenvalues, which determine their stability. In this way, four different types of system dynamics can be classified and the various kinds of phase transitions between them will be discussed. While these results are interesting from a physics point of view, they are also relevant for social, economic, and biological systems, as they allow one to understand conditions for (1) the breakdown of cooperation, (2) the coexistence of different behaviors ("subcultures"), (3) the evolution of commonly shared behaviors ("norms"), and (4) the occurrence of polarization or conflict. We point out that norms have a similar function in social systems that forces have in physics.
Collapse
|
142
|
Du WB, Cao XB, Hu MB. The effect of asymmetric payoff mechanism on evolutionary networked prisoner’s dilemma game. PHYSICA A: STATISTICAL MECHANICS AND ITS APPLICATIONS 2009; 388:5005-5012. [DOI: 10.1016/j.physa.2009.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
143
|
Xu Z, Wang Z, Zhang L. Bounded rationality leads to equilibrium of public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061104. [PMID: 20365115 DOI: 10.1103/physreve.80.061104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/10/2009] [Indexed: 05/29/2023]
Abstract
In this work, we introduce a degree of rationality to the public goods games in which players can determine whether or not to participate, and with it a new mechanism has been established. Existence of the bounded rationality would lead to a new equilibrium which differs from the Nash equilibrium and qualitatively explains the fundamental role of loners' payoff for maintaining cooperation. Meanwhile, it is shown how the potential strategy influences the players' decision. Finally, we explicitly demonstrate a rock-scissors-paper dynamics which is a consequence of this model.
Collapse
Affiliation(s)
- Zhaojin Xu
- School of Science, Tianjin University of Technology, Tianjin 300384, China
| | | | | |
Collapse
|
144
|
Szolnoki A, Perc M, Szabó G. Phase diagrams for three-strategy evolutionary prisoner's dilemma games on regular graphs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:056104. [PMID: 20365040 DOI: 10.1103/physreve.80.056104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Indexed: 05/08/2023]
Abstract
Evolutionary prisoner's dilemma games are studied with players located on square lattice and random regular graph defining four neighbors for each one. The players follow one of the three strategies: tit-for-tat, unconditional cooperation, and defection. The simplified payoff matrix is characterized by two parameters: the temptation b to choose defection and the cost c of inspection reducing the income of tit-for-tat. The strategy imitation from one of the neighbors is controlled by pairwise comparison at a fixed level of noise. Using Monte Carlo simulations and the extended versions of pair approximation we have evaluated the b-c phase diagrams indicating a rich plethora of phase transitions between stationary coexistence, absorbing, and oscillatory states, including continuous and discontinuous phase transitions. By reasonable costs the tit-for-tat strategy prevents extinction of cooperators across the whole span of b determining the prisoner's dilemma game, irrespective of the connectivity structure. We also demonstrate that the system can exhibit a repetitive succession of oscillatory and stationary states upon changing a single payoff value, which highlights the remarkable sensitivity of cyclical interactions on the parameters that define the strength of dominance.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, Budapest, Hungary
| | | | | |
Collapse
|
145
|
Szolnoki A, Perc M, Szabó G. Topology-independent impact of noise on cooperation in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:056109. [PMID: 20365045 DOI: 10.1103/physreve.80.056109] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Indexed: 05/29/2023]
Abstract
We study the evolution of cooperation in public goods games on different regular graphs as a function of the noise level underlying strategy adoptions. We focus on the effects that are brought about by different group sizes of public goods games in which individuals participate, revealing that larger groups of players may induce qualitatively different behavior when approaching the deterministic limit of strategy adoption. While by pairwise interactions an intermediate uncertainty by strategy adoptions may ensure optimal conditions for the survival of cooperators at a specific graph topology, larger groups warrant this only in the vicinity of the deterministic limit independently from the underlying graph. These discrepancies are attributed to the indirect linkage of otherwise not directly connected players, which is brought about by joint memberships within the larger groups. Thus, we show that increasing the group size may introduce an effective transition of the interaction topology, and that the latter shapes the noise dependence of the evolution of cooperation in case of pairwise interactions only.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
146
|
Coevolutionary games--a mini review. Biosystems 2009; 99:109-25. [PMID: 19837129 DOI: 10.1016/j.biosystems.2009.10.003] [Citation(s) in RCA: 610] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 01/10/2023]
Abstract
Prevalence of cooperation within groups of selfish individuals is puzzling in that it contradicts with the basic premise of natural selection. Favoring players with higher fitness, the latter is key for understanding the challenges faced by cooperators when competing with defectors. Evolutionary game theory provides a competent theoretical framework for addressing the subtleties of cooperation in such situations, which are known as social dilemmas. Recent advances point towards the fact that the evolution of strategies alone may be insufficient to fully exploit the benefits offered by cooperative behavior. Indeed, while spatial structure and heterogeneity, for example, have been recognized as potent promoters of cooperation, coevolutionary rules can extend the potentials of such entities further, and even more importantly, lead to the understanding of their emergence. The introduction of coevolutionary rules to evolutionary games implies, that besides the evolution of strategies, another property may simultaneously be subject to evolution as well. Coevolutionary rules may affect the interaction network, the reproduction capability of players, their reputation, mobility or age. Here we review recent works on evolutionary games incorporating coevolutionary rules, as well as give a didactic description of potential pitfalls and misconceptions associated with the subject. In addition, we briefly outline directions for future research that we feel are promising, thereby particularly focusing on dynamical effects of coevolutionary rules on the evolution of cooperation, which are still widely open to research and thus hold promise of exciting new discoveries.
Collapse
|
147
|
|
148
|
Wu T, Fu F, Wang L. Partner selections in public goods games with constant group size. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:026121. [PMID: 19792214 DOI: 10.1103/physreve.80.026121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 05/28/2023]
Abstract
Most of previous studies concerning the public goods game assume either participation is unconditional or the number of actual participants in a competitive group changes over time. How the fixed group size, prescribed by social institutions, affects the evolution of cooperation is still unclear. We propose a model where individuals with heterogeneous social ties might well engage in differing numbers of public goods games, yet with each public goods game being constant size during the course of evolution. To do this, we assume that each focal individual unidirectionally selects a constant number of interaction partners from his immediate neighbors with probabilities proportional to the degrees or the reputations of these neighbors, corresponding to degree-based partner selection or reputation-based partner selection, respectively. Because of the stochasticity the group formation is dynamical. In both selection regimes, monotonical dependence of the stationary density of cooperators on the group size was found, the latter over the whole range but the former over a restricted range of the renormalized enhancement factor. Moreover, the reputation-based regime can substantially improve cooperation. To interpret these differences, the microscopic characteristics of individuals are probed. We later extend the degree-based partner selection to general cases where focal individuals have preferences toward their neighbors of varying social ties to form groups. As a comparison, we as well investigate the situation where individuals locating on the degree regular graphs choose their coplayers at random. Our results may give some insights into better understanding the widespread teamwork and cooperation in the real world.
Collapse
Affiliation(s)
- Te Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
149
|
Wu ZX, Holme P. Effects of strategy-migration direction and noise in the evolutionary spatial prisoner's dilemma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:026108. [PMID: 19792201 DOI: 10.1103/physreve.80.026108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/23/2009] [Indexed: 05/28/2023]
Abstract
Spatial games are crucial for understanding patterns of cooperation in nature (and to some extent society). They are known to be more sensitive to local symmetries than, e.g., spin models. This paper concerns the evolution of the prisoner's dilemma game on regular lattices with three different types of neighborhoods--the von Neumann, Moore, and kagomé types. We investigate two kinds of dynamics for the players to update their strategies (that can be unconditional cooperator or defector). Depending on the payoff difference, an individual can adopt the strategy of a random neighbor [a voter-model-like dynamics (VMLD)] or impose its strategy on a random neighbor, i.e., invasion-process-like dynamics (IPLD). In particular, we focus on the effects of noise, in combination with the strategy dynamics, on the evolution of cooperation. We find that VMLD, compared to IPLD, better supports the spreading and sustaining of cooperation. We see that noise has nontrivial effects on the evolution of cooperation: maximum cooperation density can be realized either at a medium noise level, in the limit of zero noise or in both these regions. The temptation to defect and the local interaction structure determine the outcome. Especially, in the low noise limit, the local interaction plays a crucial role in determining the fate of cooperators. We elucidate these both by numerical simulations and mean-field cluster approximation methods.
Collapse
Affiliation(s)
- Zhi-Xi Wu
- Department of Physics, Umeå University, 901 87 Umeå, Sweden.
| | | |
Collapse
|
150
|
Wang J, Fu F, Wu T, Wang L. Emergence of social cooperation in threshold public goods games with collective risk. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:016101. [PMID: 19658768 DOI: 10.1103/physreve.80.016101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/06/2009] [Indexed: 05/28/2023]
Abstract
In real situations, people are often faced with the option of voluntary contribution to achieve a collective goal, for example, building a dam or a fence, in order to avoid an unfavorable loss. Those who do not donate, however, can free ride on others' sacrifices. As a result, cooperation is difficult to maintain, leading to an enduring collective-risk social dilemma. To address this issue, here we propose a simple yet effective theoretical model of threshold public goods game with collective risk and focus on the effect of risk on the emergence of social cooperation. To do this, we consider the population dynamics represented by replicator equation for two simplifying scenarios, respectively: one with fair sharers, who contribute the minimum average amount versus defectors and the other with altruists contributing more than average versus defectors. For both cases, we find that the dilemma is relieved in high-risk situations where cooperation is likely to persist and dominate defection in the population. Large initial endowment to individuals also encourages the risk-averse action, which means that, as compared to poor players (with small initial endowment), wealthy individuals (with large initial endowment) are more likely to cooperate in order to protect their private accounts. In addition, we show that small donation amount and small threshold (collective target) can encourage and sustain cooperation. Furthermore, for other parameters fixed, the impacts of group size act differently on the two scenarios because of distinct mechanisms: in the former case where the cost of cooperation depends on the group size, large size of group readily results in defection, while easily maintains cooperation in the latter case where the cost of cooperation is fixed irrespective of the group size. Our theoretical results of the replicator dynamics are in excellent agreement with the individual based simulation results.
Collapse
Affiliation(s)
- Jing Wang
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|