101
|
Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T. Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. BMC Genomics 2013; 14:77. [PMID: 23379779 PMCID: PMC3598684 DOI: 10.1186/1471-2164-14-77] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/30/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for plant growth and development. To modulate their P homeostasis, plants must balance P uptake, mobilisation, and partitioning to various organs. Despite the worldwide importance of wheat as a cultivated food crop, molecular mechanisms associated with phosphate (Pi) starvation in wheat remain unclear. To elucidate these mechanisms, we used RNA-Seq methods to generate transcriptome profiles of the wheat variety 'Chinese Spring' responding to 10 days of Pi starvation. RESULTS We carried out de novo assembly on 73.8 million high-quality reads generated from RNA-Seq libraries. We then constructed a transcript dataset containing 29,617 non-redundant wheat transcripts, comprising 15,047 contigs and 14,570 non-redundant full-length cDNAs from the TriFLDB database. When compared with barley full-length cDNAs, 10,656 of the 15,047 contigs were unalignable, suggesting that many might be distinct from barley transcripts. The average expression level of the contigs was lower than that of the known cDNAs, implying that these contigs included transcripts that were rarely represented in the full-length cDNA library. Within the non-redundant transcript set, we identified 892-2,833 responsive transcripts in roots and shoots, corresponding on average to 23.4% of the contigs not covered by cDNAs in TriFLDB under Pi starvation. The relative expression level of the wheat IPS1 (Induced by Phosphate Starvation 1) homologue, TaIPS1, was 341-fold higher in roots and 13-fold higher in shoots; this finding was further confirmed by qRT-PCR analysis. A comparative analysis of the wheat- and rice-responsive transcripts for orthologous genes under Pi-starvation revealed commonly upregulated transcripts, most of which appeared to be involved in a general response to Pi starvation, namely, an IPS1-mediated signalling cascade and its downstream functions such as Pi remobilisation, Pi uptake, and changes in Pi metabolism. CONCLUSIONS Our transcriptome profiles demonstrated the impact of Pi starvation on global gene expression in wheat. This study revealed that enhancement of the Pi-mediated signalling cascade using IPS1 is a potent adaptation mechanism to Pi starvation that is conserved in both wheat and rice and validated the effectiveness of using short-read next-generation sequencing data for wheat transcriptome analysis in the absence of reference genome information.
Collapse
Affiliation(s)
- Youko Oono
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Fuminori Kobayashi
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoshihiro Kawahara
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takayuki Yazawa
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Government and Public Corporation Information Systems, Hitachi Co., Ltd., 2-4-18 Toyo, Koto-ku, Tokyo, 135-8633, Japan
| | - Hirokazu Handa
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takeshi Itoh
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takashi Matsumoto
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
102
|
O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. PLANT PHYSIOLOGY 2013; 161:705-24. [PMID: 23197803 PMCID: PMC3561014 DOI: 10.1104/pp.112.209254] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/21/2012] [Indexed: 05/18/2023]
Abstract
Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - S. Samuel Yang
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Susan S. Miller
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Bruna Bucciarelli
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Junqi Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Ariel Rydeen
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Zoltan Bozsoki
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Claudia Uhde-Stone
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | | | - Deborah Allan
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - John W. Gronwald
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Carroll P. Vance
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| |
Collapse
|
103
|
Bokszczanin KL, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. FRONTIERS IN PLANT SCIENCE 2013; 4:315. [PMID: 23986766 PMCID: PMC3750488 DOI: 10.3389/fpls.2013.00315] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/27/2013] [Indexed: 05/17/2023]
Abstract
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process.
Collapse
Affiliation(s)
- Kamila L. Bokszczanin
- GenXPro GmbH, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| |
Collapse
|
104
|
Schachtman DP. Recent advances in nutrient sensing and signaling. MOLECULAR PLANT 2012; 5:1170-1172. [PMID: 23041939 DOI: 10.1093/mp/sss109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
105
|
Amoah S, Kurup S, Rodriguez Lopez CM, Welham SJ, Powers SJ, Hopkins CJ, Wilkinson MJ, King GJ. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC PLANT BIOLOGY 2012; 12:193. [PMID: 23082790 DOI: 10.1186/1471-2229-12-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/09/2012] [Indexed: 05/28/2023]
Abstract
BACKGROUND Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC) provides selective targeting of 5 mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. RESULTS We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose-response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose-response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP) profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and decreased oil content, as well as decreased erucic acid and corresponding increases in linoleic and/or palmitic acid. Each 5-AzaC-treated line represents a unique combination of hypomethylated epialleles. CONCLUSIONS The approach and populations developed are available for forward and reverse screening of epiallelic variation and subsequent functional and inheritance studies. The generation of stochastically hypomethylated populations has utility in epiallele discovery for a wide range of crop plants, and has considerable potential as an intervention strategy for crop improvement.
Collapse
|
106
|
Amoah S, Kurup S, Rodriguez Lopez CM, Welham SJ, Powers SJ, Hopkins CJ, Wilkinson MJ, King GJ. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC PLANT BIOLOGY 2012; 12:193. [PMID: 23082790 PMCID: PMC3507869 DOI: 10.1186/1471-2229-12-193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/09/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC) provides selective targeting of 5 mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. RESULTS We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose-response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose-response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP) profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and decreased oil content, as well as decreased erucic acid and corresponding increases in linoleic and/or palmitic acid. Each 5-AzaC-treated line represents a unique combination of hypomethylated epialleles. CONCLUSIONS The approach and populations developed are available for forward and reverse screening of epiallelic variation and subsequent functional and inheritance studies. The generation of stochastically hypomethylated populations has utility in epiallele discovery for a wide range of crop plants, and has considerable potential as an intervention strategy for crop improvement.
Collapse
Affiliation(s)
| | - Smita Kurup
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Carlos Marcelino Rodriguez Lopez
- Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Sue J Welham
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | - Clare J Hopkins
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael J Wilkinson
- Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| | - Graham J King
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Current address: Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
107
|
Coleman-Derr D, Zilberman D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 2012; 8:e1002988. [PMID: 23071449 PMCID: PMC3469445 DOI: 10.1371/journal.pgen.1002988] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 08/10/2012] [Indexed: 01/07/2023] Open
Abstract
The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that loss of H2A.Z in Arabidopsis has only a minor effect on the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is primarily caused by the exclusion of H2A.Z from methylated DNA. RNA sequencing and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. Loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to environmental and developmental stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes. Eukaryotes package their DNA to fit within the nucleus using well-conserved proteins, called histones, that form the building blocks of nucleosomes, the fundamental units of chromatin. Histone variants are specialized versions of these proteins that change the chromatin landscape by altering the biochemical properties and interacting partners of the nucleosome. H2A.Z, a conserved eukaryotic histone variant, is preferentially enriched at the beginnings of genes, though the significance of this enrichment remains unknown. We and others have shown that H2A.Z is conspicuously absent from methylated DNA across the genome in plants and animals. Typically considered a mark of epigenetic silencing, DNA methylation has more recently been discovered in the bodies of many genes. Here, we present evidence that the genome-wide anticorrelation between DNA methylation and H2A.Z enrichment in Arabidopsis is the result of DNA methylation acting to prevent H2A.Z incorporation. We demonstrate that the presence of H2A.Z within gene bodies is correlated with lower transcription levels and higher variability in expression patterns across tissue types and environmental conditions, and we propose that a major function of gene-body DNA methylation is to exclude H2A.Z from the bodies of highly and constitutively expressed genes.
Collapse
Affiliation(s)
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
108
|
Jain A, Nagarajan VK, Raghothama KG. Transcriptional regulation of phosphate acquisition by higher plants. Cell Mol Life Sci 2012; 69:3207-24. [PMID: 22899310 PMCID: PMC11114959 DOI: 10.1007/s00018-012-1090-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 01/27/2023]
Abstract
Phosphorus (P), an essential macronutrient required for plant growth and development, is often limiting in natural and agro-climatic environments. To cope with heterogeneous or low phosphate (Pi) availability, plants have evolved an array of adaptive responses facilitating optimal acquisition and distribution of Pi. The root system plays a pivotal role in Pi-deficiency-mediated adaptive responses that are regulated by a complex interplay of systemic and local Pi sensing. Cross-talk with sugar, phytohormones, and other nutrient signaling pathways further highlight the intricacies involved in maintaining Pi homeostasis. Transcriptional regulation of Pi-starvation responses is particularly intriguing and involves a host of transcription factors (TFs). Although PHR1 of Arabidopsis is an extensively studied MYB TF regulating subset of Pi-starvation responses, it is not induced during Pi deprivation. Genome-wide analyses of Arabidopsis have shown that low Pi stress triggers spatiotemporal expression of several genes encoding different TFs. Functional characterization of some of these TFs reveals their diverse roles in regulating root system architecture, and acquisition and utilization of Pi. Some of the TFs are also involved in phytohormone-mediated root responses to Pi starvation. The biological roles of these TFs in transcriptional regulation of Pi homeostasis in model plants Arabidopsis thaliana and Oryza sativa are presented in this review.
Collapse
Affiliation(s)
- Ajay Jain
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, India.
| | | | | |
Collapse
|
109
|
Zahaf O, Blanchet S, de Zélicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M. Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. MOLECULAR PLANT 2012; 5:1068-81. [PMID: 22419822 DOI: 10.1093/mp/sss009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.
Collapse
Affiliation(s)
- Ons Zahaf
- Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Dai X, Wang Y, Yang A, Zhang WH. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. PLANT PHYSIOLOGY 2012; 159:169-83. [PMID: 22395576 PMCID: PMC3375959 DOI: 10.1104/pp.112.194217] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/02/2012] [Indexed: 05/18/2023]
Abstract
An R2R3 MYB transcription factor, OsMYB2P-1, was identified from microarray data by monitoring the expression profile of rice (Oryza sativa ssp. japonica) seedlings exposed to phosphate (Pi)-deficient medium. Expression of OsMYB2P-1 was induced by Pi starvation. OsMYB2P-1 was localized in the nuclei and exhibited transcriptional activation activity. Overexpression of OsMYB2P-1 in Arabidopsis (Arabidopsis thaliana) and rice enhanced tolerance to Pi starvation, while suppression of OsMYB2P-1 by RNA interference in rice rendered the transgenic rice more sensitive to Pi deficiency. Furthermore, primary roots of OsMYB2P-1-overexpressing plants were shorter than those in wild-type plants under Pi-sufficient conditions, while primary roots and adventitious roots of OsMYB2P-1-overexpressing plants were longer than those of wild-type plants under Pi-deficient conditions. These results suggest that OsMYB2P-1 may also be associated with the regulation of root system architecture. Overexpression of OsMYB2P-1 led to greater expression of Pi-responsive genes such as Oryza sativa UDP-sulfoquinovose synthase, OsIPS1, OsPAP10, OsmiR399a, and OsmiR399j. In contrast, overexpression of OsMYB2P-1 suppressed the expression of OsPHO2 under both Pi-sufficient and Pi-deficient conditions. Moreover, expression of OsPT2, which encodes a low-affinity Pi transporter, was up-regulated in OsMYB2P-1-overexpressing plants under Pi-sufficient conditions, whereas expression of the high-affinity Pi transporters OsPT6, OsPT8, and OsPT10 was up-regulated by overexpression of OsMYB2P-1 under Pi-deficient conditions, suggesting that OsMYB2P-1 may act as a Pi-dependent regulator in controlling the expression of Pi transporters. These findings demonstrate that OsMYB2P-1 is a novel R2R3 MYB transcriptional factor associated with Pi starvation signaling in rice.
Collapse
Affiliation(s)
| | | | | | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People’s Republic of China
| |
Collapse
|
111
|
Berr A, Ménard R, Heitz T, Shen WH. Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 2012; 14:829-39. [DOI: 10.1111/j.1462-5822.2012.01785.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
112
|
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC. Phosphate Import in Plants: Focus on the PHT1 Transporters. FRONTIERS IN PLANT SCIENCE 2011; 2:83. [PMID: 22645553 PMCID: PMC3355772 DOI: 10.3389/fpls.2011.00083] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/03/2011] [Indexed: 05/17/2023]
Abstract
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies.
Collapse
Affiliation(s)
- Laurent Nussaume
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Satomi Kanno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Hélène Javot
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Elena Marin
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Nathalie Pochon
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Amal Ayadi
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Marie-Christine Thibaud
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| |
Collapse
|
113
|
Hu Y, Shen Y, Conde e Silva N, Zhou DX. The role of histone methylation and H2A.Z occupancy during rapid activation of ethylene responsive genes. PLoS One 2011; 6:e28224. [PMID: 22140554 PMCID: PMC3225391 DOI: 10.1371/journal.pone.0028224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022] Open
Abstract
Ethylene signaling pathway leads to rapid gene activation by two hierarchies of transcription factors with EIN3/EIL proteins as primary ones and ERF proteins as secondary ones. The role of chromatin modifications during the rapid gene activation is not known. In this work we studied trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), two opposite histone methylation marks for gene activity, during the induction course of three ethylene-responsive genes (ERF1, AtERF14 and ChiB). We found that the three genes displayed different histone modification profiles before induction. After induction, H3K4me3 was increased in the 5′ region and the gene body of ERF1, while H3K27me3 was decreased in the promoter of AtERF14. But the modification changes were later than the gene activation. Analysis of other rapidly inducible ERF genes confirmed the observation. In addition, histone H2A.Z occupancy on the three genes and the association of the H3K27me3-binding protein LHP1 with AtERF14 and ChiB were not affected by the inductive signal. However, the mutation of genes encoding H2A.Z and LHP1 attenuated and enhanced respectively the induction of target genes and altered H3K4me3. These results indicate that the induction of ethylene-responsive genes does not require immediate modulation of H3K4me3 and H3K27me3 and dissociation of LHP1 and H2A.Z from the targets, and suggest that the chromatin structure of the genes before induction is committed for transcriptional activation and that H3K4me3 is not required for ethylene-responsive gene activation, but may serve as a mark for gene activity.
Collapse
Affiliation(s)
- Yongfeng Hu
- Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Yuan Shen
- Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | | | - Dao-Xiu Zhou
- Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
114
|
Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ. Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One 2011; 6:e24606. [PMID: 21935429 PMCID: PMC3173461 DOI: 10.1371/journal.pone.0024606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/14/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. RESULTS We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. CONCLUSIONS This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.
Collapse
Affiliation(s)
- John P Hammond
- Division of Plant and Crop Sciences, University of Nottingham, Loughborough, United Kingdom.
| | | | | | | | | | | |
Collapse
|
115
|
Sato A, Miura K. Root architecture remodeling induced by phosphate starvation. PLANT SIGNALING & BEHAVIOR 2011; 6:1122-6. [PMID: 21778826 PMCID: PMC3260708 DOI: 10.4161/psb.6.8.15752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/17/2023]
Abstract
Plants have evolved efficient strategies for utilizing nutrients in the soil in order to survive, grow, and reproduce. Inorganic phosphate (Pi) is a major macroelement source for plant growth; however, the availability and distribution of Pi are varying widely across locations. Thus, plants in many areas experience Pi deficiency. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition, limit Pi consumption, and adjust Pi recycling internally under Pi starvation conditions. This review focuses on the molecular regulators that modulate Pi starvation-induced root architectural changes.
Collapse
Affiliation(s)
- Aiko Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
116
|
Calderón-Vázquez C, Sawers RJ, Herrera-Estrella L. Phosphate deprivation in maize: genetics and genomics. PLANT PHYSIOLOGY 2011; 156:1067-77. [PMID: 21617030 PMCID: PMC3135936 DOI: 10.1104/pp.111.174987] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
117
|
Hammond JP, White PJ. Sugar signaling in root responses to low phosphorus availability. PLANT PHYSIOLOGY 2011; 156:1033-40. [PMID: 21487049 PMCID: PMC3135921 DOI: 10.1104/pp.111.175380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/10/2011] [Indexed: 05/18/2023]
Affiliation(s)
- John P Hammond
- Division of Plant and Crop Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | | |
Collapse
|
118
|
Abstract
This review addresses the mechanisms by which epigenetic variation modulates plant gene regulation and phenotype. In particular we explore the scope for harnessing such processes within the context of crop genetic improvement. We focus on the role of DNA methylation as an epigenetic mark that contributes to epiallelic diversity and modulation of gene regulation. We outline the prevalence and distribution of epigenetic marks in relation to eukaryote developmental processes, and in particular identify where this may be relevant to crop traits both in terms of specific developmental stages and in relation to physiological responses to environmental change. Recent whole genome surveys have identified specific characteristics of the distribution of DNA methylation within plant genomes. Together with greater understanding of the mode of action of different maintenance and de novo methyltransferases, this provides an opportunity to modulate DNA methylation status at specific loci as an intervention strategy in crop genetic improvement. We discuss alternative approaches that may be suitable for harnessing such induced epiallelic variation. Most of the discussion is associated with Brassica crops, which demonstrate considerable morphological plasticity, segmental chromosomal duplication, and polyploidy.
Collapse
|
119
|
Saidi Y, Finka A, Goloubinoff P. Heat perception and signalling in plants: a tortuous path to thermotolerance. THE NEW PHYTOLOGIST 2011; 190:556-65. [PMID: 21138439 DOI: 10.1111/j.1469-8137.2010.03571.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An accurate assessment of the rising ambient temperature by plant cells is crucial for the timely activation of various molecular defences before the appearance of heat damage. Recent findings have allowed a better understanding of the early cellular events that take place at the beginning of mild temperature rise, to timely express heat-shock proteins (HSPs), which will, in turn, confer thermotolerance to the plant. Here, we discuss the key components of the heat signalling pathway and suggest a model in which a primary sensory role is carried out by the plasma membrane and various secondary messengers, such as Ca(2+) ions, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). We also describe the role of downstream components, such as calmodulins, mitogen-activated protein kinases and Hsp90, in the activation of heat-shock transcription factors (HSFs). The data gathered for land plants suggest that, following temperature elevation, the heat signal is probably transduced by several pathways that will, however, coalesce into the final activation of HSFs, the expression of HSPs and the onset of cellular thermotolerance.
Collapse
Affiliation(s)
- Younousse Saidi
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
120
|
Schmidt W, Buckhout TJ. A hitchhiker's guide to the Arabidopsis ferrome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:462-70. [PMID: 21216153 DOI: 10.1016/j.plaphy.2010.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 11/25/2010] [Accepted: 12/01/2010] [Indexed: 05/06/2023]
Abstract
Unraveling the mysteries behind the perception and response to iron deficiency has resulted in a vast collection of data that is summarized under the topic "ferromics". The analysis of the immediate effects induced by iron deficiency has been facilitated and in most cases greatly accelerated by the development of analytical and computational tools. These tools permit on the one hand the collection of information from a large number of sources and on the other the analysis of this collection to detect patterns in the re-ordering homeostatic processes at the genomic, transcriptomic, and proteomic levels. Deciphering the encrypted information from high-throughput datasets have become a major challenge in plant biology, but this information also sets the stage for a more complete, integrative view on how plants respond to a varying supply of iron.
Collapse
Affiliation(s)
- Wolfgang Schmidt
- Academia Sinica, Institute of Plant and Microbial Biology, Taipei, Taiwan.
| | | |
Collapse
|
121
|
Deal RB, Henikoff S. Histone variants and modifications in plant gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:116-22. [PMID: 21159547 PMCID: PMC3093162 DOI: 10.1016/j.pbi.2010.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/17/2010] [Indexed: 05/19/2023]
Abstract
Genomes are packaged by complexing DNA with histone proteins, which provides an opportunity to regulate gene expression by dynamically impeding access of transcriptional regulatory proteins and RNA polymerases to DNA. The incorporation of histone variants into nucleosomes and addition of post-translational modifications to histones can alter the physical properties of nucleosomes and thereby serve as a mechanism for regulating DNA exposure. Chromatin-based gene regulation has profound effects on developmental processes including regulation of the vegetative to reproductive transition, as well as responses to pathogens and abiotic factors. Incorporation of the histone variant H2A.Z and methylation of histone H3 lysine residues 4 and 27 have emerged as key elements in the regulation of genes involved in each of these processes.
Collapse
Affiliation(s)
- Roger B. Deal
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
122
|
Vaahtera L, Brosché M. More than the sum of its parts--how to achieve a specific transcriptional response to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:421-30. [PMID: 21421388 DOI: 10.1016/j.plantsci.2010.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 05/08/2023]
Abstract
A rapid and appropriate response to stress is key to survival. A major part of plant adaptation to abiotic stresses is regulated at the level of gene expression. The regulatory steps involved in accurate expression of stress related genes need to be tailored to the specific stress for optimal plant performance. Accumulating evidence suggests that there are several processes contributing to signalling specificity: post-translational activation and selective nuclear import of transcription factors, regulation of DNA accessibility by chromatin modifying and remodelling enzymes, and cooperation between two or more response elements in a stress-responsive promoter. These mechanisms should not be viewed as independent events, instead the nuclear DNA is in a complex landscape where many proteins interact, compete, and regulate each other. Hence future studies should consider an integrated view of gene regulation composed of numerous chromatin associated proteins in addition to transcription factors. Although most studies have focused on a single regulatory mechanism, it is more likely the combined actions of several mechanisms that provide a stress specific output. In this review recent progress in abiotic stress signalling is discussed with emphasis on possible mechanisms for generating specific responses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65, Viikinkaari 1, FI-00014 Helsinki, Finland
| | | |
Collapse
|
123
|
|
124
|
Oma Y, Harata M. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2011; 2:38-46. [PMID: 21647298 PMCID: PMC3104808 DOI: 10.4161/nucl.2.1.14510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
The actin family consists of conventional actin and actin-related proteins (ARPs), and the members show moderate similarity and share the same basal structure. Following the finding of various ARPs in the cytoplasm in the 1990s, multiple subfamilies that are localized predominantly in the nucleus were identified. Consistent with these cytological observations, subsequent biochemical analyses revealed the involvement of the nuclear ARPs in ATP-dependent chromatin-remodeling and histone acetyltransferase complexes. In addition to their contribution to chromatin remodeling, recent studies have shown that nuclear ARPs have roles in the organization of the nucleus that are independent of the activity of the above-mentioned complexes. Therefore, nuclear ARPs are recognized as novel key regulators of genome function, and affect not only the remodeling of chromatin but also the spatial arrangement and dynamics of chromatin within the nucleus.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
125
|
Sánchez-Calderón L, Chacón-López A, Alatorre-Cobos F, Leyva-González MA, Herrera-Estrella L. Sensing and Signaling of PO 4 3−. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
126
|
Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. THE PLANT CELL 2011; 23:289-303. [PMID: 21282526 PMCID: PMC3051252 DOI: 10.1105/tpc.110.075911] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 12/07/2010] [Accepted: 01/04/2011] [Indexed: 05/18/2023]
Abstract
The flowering of Arabidopsis thaliana winter annuals is delayed until the subsequent spring by the strong floral repressor FLOWERING LOCUS C (FLC). FRIGIDA (FRI) activates the transcription of FLC, but the molecular mechanism remains elusive. The fri mutation causes early flowering with reduced FLC expression similar to frl1, fes1, suf4, and flx, which are mutants of FLC-specific regulators. Here, we report that FRI acts as a scaffold protein interacting with FRL1, FES1, SUF4, and FLX to form a transcription activator complex (FRI-C). Each component of FRI-C has a specialized function. SUF4 binds to a cis-element of the FLC promoter, FLX and FES1 have transcriptional activation potential, and FRL1 and FES1 stabilize the complex. FRI-C recruits a general transcription factor, a TAF14 homolog, and chromatin modification factors, the SWR1 complex and SET2 homolog. Complex formation was confirmed by the immunoprecipitation of FRI-associated proteins followed by mass spectrometric analysis. Our results provide insight into how a specific transcription activator recruits chromatin modifiers to regulate a key flowering gene.
Collapse
Affiliation(s)
- Kyuha Choi
- National Research Laboratory of Plant Developmental Genetics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Juhyun Kim
- National Research Laboratory of Plant Developmental Genetics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Hyun-Ju Hwang
- National Research Laboratory of Plant Developmental Genetics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Sanghee Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon 406-840, Korea
| | - Chulmin Park
- National Research Laboratory of Plant Developmental Genetics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Sang Yeol Kim
- National Research Laboratory of Plant Developmental Genetics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Ilha Lee
- National Research Laboratory of Plant Developmental Genetics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
- Global Research Laboratory for Flowering at Seoul National University and University of Wisconsin, Seoul 151-742, Korea
- Address correspondence to
| |
Collapse
|
127
|
Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:185-206. [PMID: 21370979 DOI: 10.1146/annurev-arplant-042110-103849] [Citation(s) in RCA: 450] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants acquire phosphorus in the form of phosphate (Pi), the concentration of which is often limited for plant uptake. Plants have developed diverse responses to conserve and remobilize internal Pi and to enhance Pi acquisition to secure them against Pi deficiency. These responses are achieved by the coordination of an elaborate signaling network comprising local and systemic machineries. Recent advances have revealed several important components involved in this network. Pi functions as a signal to report its own availability. miR399 and sugars act as systemic signals to regulate responses occurring in roots. Hormones also play crucial roles in modulating gene expression and in altering root system architecture. Transcription factors function as a hub to perceive the signals and to elicit steady outputs. In this review, we outline the current knowledge on this subject and present hypotheses pertaining to other potential signals and to the organization and coordination of signaling.
Collapse
Affiliation(s)
- Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
128
|
Vance CP. Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use. PLANT PHYSIOLOGY 2010; 154:582-8. [PMID: 20921189 PMCID: PMC2949005 DOI: 10.1104/pp.110.161067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/01/2010] [Indexed: 05/05/2023]
Affiliation(s)
- Carroll P Vance
- United States Department of Agriculture/Agricultural Research Service, Agronomy and Plant Genetics Department, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
129
|
Meagher RB. The evolution of epitype. THE PLANT CELL 2010; 22:1658-66. [PMID: 20551346 PMCID: PMC2910975 DOI: 10.1105/tpc.110.075481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/03/2010] [Accepted: 05/26/2010] [Indexed: 05/08/2023]
Abstract
The epitype of a single gene or entire genome is determined by cis-linked differences in chromatin structure. I explore the hypothesis that "epitype and associated phenotypes evolve by gene duplication, divergence, and subfunctionalization" parallel to models for the evolution of genotype. This hypothesis is dissected by considering the relationship between epigenetic control and phenotype, the phylogenetic evidence that epitype evolves from ancestral genes following gene duplication, and the possible evolutionary rates of change for different epitypes. Initial supporting arguments for this hypothesis are discussed based on conserved patterns of nucleosome phasing, DNA methylation, and histone variant H2AZ deposition that appear to contribute to the inheritance of epitype in plants and animals. However, patterns of histone modification in recent segmental chromosome duplications are not well conserved. A continued experimental examination of the link between gene phylogeny and epitype and the evolution of epigenetically determined phenotypes is needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
130
|
Rouached H, Arpat AB, Poirier Y. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. MOLECULAR PLANT 2010; 3:288-99. [PMID: 20142416 DOI: 10.1093/mp/ssp120] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) availability is a major factor limiting growth, development, and productivity of plants. In both ecological and agricultural contexts, plants often grow in soils with low soluble phosphate content. Plants respond to this situation by a series of developmental and metabolic adaptations that are aimed at increasing the acquisition of this vital nutrient from the soil, as well as to sustain plant growth and survival. The development of a comprehensive understanding of how plants sense phosphate deficiency and coordinate the responses via signaling pathways has become of major interest, and a number of signaling players and networks have begun to surface for the regulation of the phosphate-deficiency response. In practice, application of such knowledge to improve plant Pi nutrition is hindered by complex cross-talks, which are emerging in the face of new data, such as the coordination of the phosphate-deficiency signaling networks with those involved with hormones, photo-assimilates (sugar), as well as with the homeostasis of other ions, such as iron. In this review, we focus on these cross-talks and on recent progress in discovering new signaling players involved in the Pi-starvation responses, such as proteins having SPX domains.
Collapse
Affiliation(s)
- Hatem Rouached
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|