101
|
Busch H, Boerries M, Bao J, Hanke ST, Hiss M, Tiko T, Rensing SA. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. PLoS One 2013; 8:e60494. [PMID: 23637751 PMCID: PMC3630159 DOI: 10.1371/journal.pone.0060494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/27/2013] [Indexed: 01/07/2023] Open
Abstract
Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.
Collapse
Affiliation(s)
- Hauke Busch
- ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
102
|
de León IP, Montesano M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int J Mol Sci 2013; 14:3178-200. [PMID: 23380962 PMCID: PMC3588038 DOI: 10.3390/ijms14023178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 01/09/2023] Open
Abstract
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +598-24872605; Fax: +598-24875548
| | - Marcos Montesano
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Mataojo 2055, CP 11400, Montevideo, Uruguay; E-Mail:
| |
Collapse
|
103
|
Cooper L, Walls RL, Elser J, Gandolfo MA, Stevenson DW, Smith B, Preece J, Athreya B, Mungall CJ, Rensing S, Hiss M, Lang D, Reski R, Berardini TZ, Li D, Huala E, Schaeffer M, Menda N, Arnaud E, Shrestha R, Yamazaki Y, Jaiswal P. The plant ontology as a tool for comparative plant anatomy and genomic analyses. PLANT & CELL PHYSIOLOGY 2013; 54:e1. [PMID: 23220694 PMCID: PMC3583023 DOI: 10.1093/pcp/pcs163] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary ('ontology') of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs.
Collapse
Affiliation(s)
- Laurel Cooper
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
- These authors contributed equally to this work
- These authors contributed equally to the development of the Plant Ontology
| | - Ramona L. Walls
- New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA
- These authors contributed equally to this work
- These authors contributed equally to the development of the Plant Ontology
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
- These authors contributed equally to the development of the Plant Ontology
| | - Maria A. Gandolfo
- L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA
- These authors contributed equally to the development of the Plant Ontology
| | - Dennis W. Stevenson
- New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA
- These authors contributed equally to the development of the Plant Ontology
| | - Barry Smith
- Department of Philosophy, University at Buffalo, 126 Park Hall, Buffalo, NY 14260, USA
- These authors contributed equally to the development of the Plant Ontology
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
| | - Balaji Athreya
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
| | - Christopher J. Mungall
- Berkeley Bioinformatics Open-Source Projects, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 64-121, Berkeley, CA 94720, USA
| | - Stefan Rensing
- Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Manuel Hiss
- Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Tanya Z. Berardini
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Donghui Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Eva Huala
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mary Schaeffer
- Agriculture Research Services, United States Department of Agriculture, Columbia, MO 65211, USA
- Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | - Naama Menda
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 148533, USA
| | - Elizabeth Arnaud
- Bioversity International, via dei Tre Denari, 174/a, Maccarese, Rome, Italy
| | - Rosemary Shrestha
- Genetic Resources Program, Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico
| | - Yukiko Yamazaki
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
- These authors contributed equally to the development of the Plant Ontology
- *Corresponding author: E-mail,: ; Fax, +1-541-737-3573
| |
Collapse
|
104
|
Kim SY, Colpitts CC, Wiedemann G, Jepson C, Rahimi M, Rothwell JR, McInnes AD, Hasebe M, Reski R, Sterenberg BT, Suh DY. Physcomitrella PpORS, basal to plant type III polyketide synthases in phylogenetic trees, is a very long chain 2'-oxoalkylresorcinol synthase. J Biol Chem 2012; 288:2767-77. [PMID: 23223578 DOI: 10.1074/jbc.m112.430686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant type III polyketide synthases (PKSs), which produce diverse secondary metabolites with different biological activities, have successfully co-evolved with land plants. To gain insight into the roles that ancestral type III PKSs played during the early evolution of land plants, we cloned and characterized PpORS from the moss Physcomitrella. PpORS has been proposed to closely resemble the most recent common ancestor of the plant type III PKSs. PpORS condenses a very long chain fatty acyl-CoA with four molecules of malonyl-CoA and catalyzes decarboxylative aldol cyclization to yield the pentaketide 2'-oxoalkylresorcinol. Therefore, PpORS is a 2'-oxoalkylresorcinol synthase. Structure modeling and sequence alignments identified a unique set of amino acid residues (Gln(218), Val(277), and Ala(286)) at the putative PpORS active site. Substitution of the Ala(286) to Phe apparently constricted the active site cavity, and the A286F mutant instead produced triketide alkylpyrones from fatty acyl-CoA substrates with shorter chain lengths. Phylogenetic analysis and comparison of the active sites of PpORS and alkylresorcinol synthases from sorghum and rice suggested that the gramineous enzymes evolved independently from PpORS to have similar functions but with distinct active site architecture. Microarray analysis revealed that PpORS is exclusively expressed in nonprotonemal moss cells. The in planta function of PpORS, therefore, is probably related to a nonprotonemal structure, such as the cuticle.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J, Chen H, Deng XW. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. THE PLANT CELL 2012; 24:4590-606. [PMID: 23150635 PMCID: PMC3531854 DOI: 10.1105/tpc.112.103994] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/19/2012] [Accepted: 10/28/2012] [Indexed: 05/19/2023]
Abstract
As sessile organisms, higher plants have evolved the capacity to sense and interpret diverse light signals to modulate their development. In Arabidopsis thaliana, low-intensity and long-wavelength UV-B light is perceived as an informational signal to mediate UV-B-induced photomorphogenesis. Here, we report that the multifunctional E3 ubiquitin ligase, CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1), a known key player in UV-B photomorphogenic responses, is also a UV-B-inducible gene. Two transcription factors, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and ELONGATED HYPOCOTYL5 (HY5), directly bind to distinct regulatory elements within the COP1 promoter, which are essential for the induction of the COP1 gene mediated by photomorphogenic UV-B signaling. Absence of FHY3 results in impaired UV-B-induced hypocotyl growth and reduced tolerance against damaging UV-B. Thus, FHY3 positively regulates UV-B-induced photomorphogenesis by directly activating COP1 transcription, while HY5 promotes COP1 expression via a positive feedback loop. Furthermore, FHY3 and HY5 physically interact with each other, and this interaction is diminished by UV-B. Together, our findings reveal that COP1 gene expression in response to photomorphogenic UV-B is controlled by a combinatorial regulation of FHY3 and HY5, and this UV-B-specific working mode of FHY3 and HY5 is distinct from that in far-red light and circadian conditions.
Collapse
Affiliation(s)
- Xi Huang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Xinhao Ouyang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Panyu Yang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - On Sun Lau
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Haodong Chen
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Shenzhen Institute of Crop Molecular Design, Shenzhen 518107, China
- Address correspondence to
| |
Collapse
|
106
|
Valledor L, Cañal MJ, Pascual J, Rodríguez R, Meijón M. Early induced protein 1 (PrELIP1) and other photosynthetic, stress and epigenetic regulation genes are involved in Pinus radiata D. don UV-B radiation response. PHYSIOLOGIA PLANTARUM 2012; 146:308-20. [PMID: 22471584 DOI: 10.1111/j.1399-3054.2012.01629.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The continuous atmospheric and environmental deterioration is likely to increase, among others, the influx of ultraviolet B (UV-B) radiation. The plants have photoprotective responses, which are complex mechanisms involving different physiological responses, to avoid the damages caused by this radiation that may lead to plant death. We have studied the adaptive responses to UV-B in Pinus radiata, given the importance of this species in conifer forests and reforestation programs. We analyzed the photosynthetic activity, pigments content, and gene expression of candidate genes related to photosynthesis, stress and gene regulation in needles exposed to UV-B during a 96 h time course. The results reveal a clear increase of pigments under UV-B stress while photosynthetic activity decreased. The expression levels of the studied genes drastically changed after UV-B exposure, were stress related genes were upregulated while photosynthesis (RBCA and RBCS) and epigenetic regulation were downregulated (MSI1, CSDP2, SHM4). The novel gene PrELIP1, fully sequenced for this work, was upregulated and expressed mainly in the palisade parenchyma of needles. This gene has conserved domains related to the dissipation of the UV-B radiation that give to this protein a key role during photoprotection response of the needles in Pinus radiata.
Collapse
Affiliation(s)
- Luis Valledor
- Área de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/ Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
107
|
Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 196:67-76. [PMID: 23017900 DOI: 10.1016/j.plantsci.2012.07.014] [Citation(s) in RCA: 984] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 05/18/2023]
Abstract
Stress-responsive dihydroxy B-ring-substituted flavonoids have great potential to inhibit the generation of reactive oxygen species (ROS) and reduce the levels of ROS once they are formed, i.e., to perform antioxidant functions. These flavonoids are located within or in the proximity of centers of ROS generation in severely stressed plants. Efficient mechanisms have been recently identified for the transport of flavonoids from the endoplasmic reticulum, the site of their biosynthesis, to different cellular compartments. The mechanism underlying flavonoid-mediated ROS reduction in plants is still unclear. 'Antioxidant' flavonoids are found in the chloroplast, which suggests a role as scavengers of singlet oxygen and stabilizers of the chloroplast outer envelope membrane. Dihydroxy B-ring substituted flavonoids are present in the nucleus of mesophyll cells and may inhibit ROS-generation making complexes with Fe and Cu ions. The genes that govern the biosynthesis of antioxidant flavonoids are present in liverworts and mosses and are mostly up-regulated as a consequence of severe stress. This suggests that the antioxidant flavonoid metabolism is a robust trait of terrestrial plants. Vacuolar dihydroxy B-ring flavonoids have been reported to serve as co-substrates for vacuolar peroxidases to reduce H(2)O(2) escape from the chloroplast, following the depletion of ascorbate peroxidase activity. Antioxidant flavonoids may effectively control key steps of cell growth and differentiation, thus acting regulating the development of the whole plant and individual organs.
Collapse
Affiliation(s)
- Giovanni Agati
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata 'Carrara', Via Madonna del Piano 10, I-50019 Sesto F. No, Firenze, Italy
| | | | | | | |
Collapse
|
108
|
Ponce De León I, Schmelz EA, Gaggero C, Castro A, Álvarez A, Montesano M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. MOLECULAR PLANT PATHOLOGY 2012. [PMID: 22551417 DOI: 10.1111/j.1364-703.2012.00806.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants.
Collapse
Affiliation(s)
- Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
109
|
Azzabi G, Pinnola A, Betterle N, Bassi R, Alboresi A. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:1815-25. [PMID: 22952250 DOI: 10.1093/pcp/pcs124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.
Collapse
Affiliation(s)
- Ghazi Azzabi
- Università di Verona, Dipartimento di Biotecnologie. Strada le Grazie 15-I, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
110
|
Ponce De León I, Schmelz EA, Gaggero C, Castro A, Álvarez A, Montesano M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. MOLECULAR PLANT PATHOLOGY 2012; 13:960-74. [PMID: 22551417 PMCID: PMC6638766 DOI: 10.1111/j.1364-3703.2012.00806.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants.
Collapse
Affiliation(s)
- Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
111
|
Richter H, Lieberei R, Strnad M, Novák O, Gruz J, Rensing SA, von Schwartzenberg K. Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent development in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5121-35. [PMID: 22865913 PMCID: PMC3430990 DOI: 10.1093/jxb/ers169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyphenol oxidases (PPOs) are copper-binding enzymes of the plant secondary metabolism that oxidize polyphenols to quinones. Although PPOs are nearly ubiquitous in seed plants, knowledge on their evolution and function in other plant groups is missing. This study reports on the PPO gene family in the moss Physcomitrella patens (Hedw.) B.S.G. asan example for an early divergent plant. The P. patens PPO multigene family comprises 13 paralogues. Phylogenetic analyses suggest that plant PPOs evolved with the colonization of land and that PPO duplications within the monophyletic P. patens paralogue clade occurred after the separation of the moss and seed plant lineages. PPO functionality was demonstrated for recombinant PPO6. P. patens was analysed for phenolic compounds and six substances were detected intracellularly by LC-MS analysis: 4-hydroxybenzoic acid, p-cumaric acid, protocatechuic acid, salicylic acid, caffeic acid, and an ester of caffeic acid. Targeted PPO1 knockout (d|ppo1) plants were generated and plants lacking PPO1 exhibited only ~30% of the wild-type PPO activity in the culture medium, thus suggesting extracellular localization of PPO1, which is in contrast to the mostly plastidic PPO localization in seed plants. Further, d|ppo1 lines formed significantly more gametophores with a reduced areal plant size, which could be related to an increase of endogenously produced cytokinins and indicates an impact of PPO1 on plant development. d|ppo1 plants were less tolerant towards applied 4-methylcatechol compared to the wild type, which suggests a role of extracellular PPO1 in establishing appropriate conditions by the removal of inhibitory extracellular phenolic compounds.
Collapse
Affiliation(s)
- Hanna Richter
- University of Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609Hamburg, Germany
- University of Amsterdam, Swammerdam Institute for Life Sciences, Molecular Plant Pathology, PO Box 94215 1090 GEAmsterdam, The Netherlands
| | - Reinhard Lieberei
- University of Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609Hamburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, CZ-78371Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, CZ-78371Olomouc, Czech Republic
| | - Jiri Gruz
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, CZ-78371Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371Olomouc, Czech Republic
| | - Stefan A. Rensing
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, D-79104Freiburg, Germany
- University of Freiburg, BIOSS Centre for Biological Signalling Studies, Hebelstr. 25, D-79104Freiburg, Germany
| | - Klaus von Schwartzenberg
- University of Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609Hamburg, Germany
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
112
|
Rahman RNZRA, Zakaria II, Salleh AB, Basri M. Enzymatic properties and mutational studies of chalcone synthase from Physcomitrella patens. Int J Mol Sci 2012; 13:9673-9691. [PMID: 22949824 PMCID: PMC3431822 DOI: 10.3390/ijms13089673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 12/03/2022] Open
Abstract
PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant’s active site.
Collapse
Affiliation(s)
- Raja Noor Zaliha Raja Abdul Rahman
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Group, Universiti Putra Malaysia, Selangor 43400, Malaysia; E-Mails: (I.I.Z.); (A.B.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +603-8946-7592
| | - Iffah Izzati Zakaria
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Group, Universiti Putra Malaysia, Selangor 43400, Malaysia; E-Mails: (I.I.Z.); (A.B.S.)
| | - Abu Bakar Salleh
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Group, Universiti Putra Malaysia, Selangor 43400, Malaysia; E-Mails: (I.I.Z.); (A.B.S.)
| | - Mahiran Basri
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mail:
| |
Collapse
|
113
|
Fini A, Guidi L, Ferrini F, Brunetti C, Di Ferdinando M, Biricolti S, Pollastri S, Calamai L, Tattini M. Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: an excess light stress affair? JOURNAL OF PLANT PHYSIOLOGY 2012; 169:929-39. [PMID: 22537713 DOI: 10.1016/j.jplph.2012.02.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 05/18/2023]
Abstract
The experiment was conducted using Fraxinus ornus plants grown outside under full sunlight irradiance, and supplied with 100% (well-watered, WW), 40% (mild drought, MD), or 20% (severe drought, SD) of the daily evapotranspiration demand, with the main objective of exploring the effect of excess light stress on the activity of antioxidant enzymes and phenylpropanoid biosynthesis. Net CO₂ assimilation rate at saturating light and daily assimilated CO₂ were significantly smaller in SD than in WW and MD plants. Xanthophyll-cycle pigments supported nonphotochemical quenching to a significantly greater extent in SD than in MD and WW leaves. As a consequence, the actual efficiency of PSII (Φ(PSII)) was smaller, while the excess excitation-energy in the photosynthetic apparatus was greater in SD than in WW or MD plants. The concentrations of violaxanthin-cycle pigments relative to total chlorophyll (Chl(tot)) exceeded 200 mmol mol⁻¹ Chl(tot) in SD leaves at the end of the experiment. This leads to hypothesize for zeaxanthin a role not only as nonphotochemical quencher, but also as chloroplast antioxidant. Reductions in ascorbate peroxidase and catalase activities, as drought-stress progressed, were paralleled by greater accumulations of esculetin and quercetin 3-O-glycosides, both phenylpropanoids having effective capacity to scavenge H₂O₂. The drought-induced accumulation of esculetin and quercetin 3-O-glycosides in the vacuoles of mesophyll cells is consistent with their putative functions as reducing agents for H₂O₂ in excess light-stressed leaves. Nonetheless, the concentration of H₂O₂ and the lipid peroxidation were significantly greater in SD than in MD and WW leaves. It is speculated that vacuolar phenylpropanoids may constitute a secondary antioxidant system, even on a temporal basis, activated upon the depletion of primary antioxidant defences, and aimed at keeping whole-cell H₂O₂ within a sub-lethal concentration range.
Collapse
Affiliation(s)
- Alessio Fini
- Dipartimento di Scienze delle Produzioni Vegetali, del Suolo e dell'Ambiente Agroforestale, Università di Firenze, Viale delle Idee 30, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Ponce de León I. The Moss Physcomitrella patens as a Model System to Study Interactions between Plants and Phytopathogenic Fungi and Oomycetes. J Pathog 2011; 2011:719873. [PMID: 22567339 PMCID: PMC3335576 DOI: 10.4061/2011/719873] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/16/2011] [Indexed: 01/05/2023] Open
Abstract
The moss Physcomitrella patens has a great potential as a model system to perform functional studies of plant interacting with microbial pathogens. P. patens is susceptible to fungal and oomycete infection, which colonize and multiply in plant tissues generating disease symptoms. In response to infection, P. patens activates defense mechanisms similar to those induced in flowering plants, including the accumulation of reactive oxygen species, cell death with hallmarks of programmed cell death, cell wall fortification, and induction of defense-related genes like PAL, LOX, CHS, and PR-1. Functional analysis of genes with possible roles in defense can be performed due to the high rate of homologous recombination present in this plant that enables targeted gene disruption. This paper reviews the current knowledge of defense responses activated in P. patens after pathogen assault and analyzes the advantages of using this plant to gain further insight into plant defense strategies.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay
| |
Collapse
|
115
|
Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:182-93. [PMID: 21443631 DOI: 10.1111/j.1365-313x.2011.04493.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.
Collapse
|
116
|
Amino Acid Compositional Shifts During Streptophyte Transitions to Terrestrial Habitats. J Mol Evol 2010; 72:204-14. [DOI: 10.1007/s00239-010-9416-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|
117
|
Dittami SM, Michel G, Collén J, Boyen C, Tonon T. Chlorophyll-binding proteins revisited--a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 2010; 10:365. [PMID: 21110855 PMCID: PMC3008699 DOI: 10.1186/1471-2148-10-365] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/26/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chlorophyll-binding proteins (CBPs) constitute a large family of proteins with diverse functions in both light-harvesting and photoprotection. The evolution of CBPs has been debated, especially with respect to the origin of the LI818 subfamily, members of which function in non-photochemical quenching and have been found in chlorophyll a/c-containing algae and several organisms of the green lineage, but not in red algae so far. The recent publication of the Ectocarpus siliculosus genome represents an opportunity to expand on previous work carried out on the origin and function of CBPs. RESULTS The Ectocarpus genome codes for 53 CBPs falling into all major families except the exclusively green family of chlorophyll a/b binding proteins. Most stress-induced CBPs belong to the LI818 family. However, we highlight a few stress-induced CBPs from Phaeodactylum tricornutum and Chondrus crispus that belong to different sub-families and are promising targets for future functional studies. Three-dimensional modeling of two LI818 proteins revealed features common to all LI818 proteins that are likely to interfere with their capacity to bind chlorophyll b and lutein, but may enable binding of chlorophyll c and fucoxanthin. In the light of this finding, we examined the possibility that LI818 proteins may have originated in a chlorophyll c/fucoxanthin containing organism and compared this scenario to three alternatives: an independent evolution of LI818 proteins in different lineages, an ancient origin together with the first CBPs, before the separation of the red and the green lineage, or an origin in the green lineage and a transfer to an ancestor of haptophytes and heterokonts during a cryptic endosymbiosis event. CONCLUSIONS Our findings reinforce the idea that the LI818 family of CBPs has a role in stress response. In addition, statistical analyses of phylogenetic trees show an independent origin in different eukaryotic lineages or a green algal origin of LI818 proteins to be highly unlikely. Instead, our data favor an origin in an ancestral chlorophyll a/c-containing organism and a subsequent lateral transfer to some green algae, although an origin of LI818 proteins in a common ancestor of red and green algae cannot be ruled out.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Gurvan Michel
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Jonas Collén
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Catherine Boyen
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Thierry Tonon
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| |
Collapse
|