101
|
Bui LT, Novi G, Lombardi L, Iannuzzi C, Rossi J, Santaniello A, Mensuali A, Corbineau F, Giuntoli B, Perata P, Zaffagnini M, Licausi F. Conservation of ethanol fermentation and its regulation in land plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1815-1827. [PMID: 30861072 PMCID: PMC6436157 DOI: 10.1093/jxb/erz052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/24/2019] [Indexed: 05/18/2023]
Abstract
Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future.
Collapse
Affiliation(s)
- Liem T Bui
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Giacomo Novi
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Cristina Iannuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Anna Mensuali
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Françoise Corbineau
- UMR 7622 CNRS-UPMC, Biologie du développement, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Biology Department, University of Pisa, Pisa, Italy
| | | | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Biology Department, University of Pisa, Pisa, Italy
| |
Collapse
|
102
|
Wany A, Gupta AK, Kumari A, Mishra S, Singh N, Pandey S, Vanvari R, Igamberdiev AU, Fernie AR, Gupta KJ. Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. ANNALS OF BOTANY 2019; 123:691-705. [PMID: 30535180 PMCID: PMC6417481 DOI: 10.1093/aob/mcy202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3-) or ammonium (NH4+). Recent studies revealed that NO3- nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3- or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. METHODS We used Arabidopsis plants grown on Hoagland medium with either NO3- or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin-nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription-PCR methods. KEY RESULTS Under NO3- nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3- nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3- nutrition. CONCLUSIONS The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonal Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Namrata Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rhythm Vanvari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, Canada
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
103
|
Pan DL, Wang G, Wang T, Jia ZH, Guo ZR, Zhang JY. AdRAP2.3, a Novel Ethylene Response Factor VII from Actinidia deliciosa, Enhances Waterlogging Resistance in Transgenic Tobacco through Improving Expression Levels of PDC and ADH Genes. Int J Mol Sci 2019; 20:E1189. [PMID: 30857203 PMCID: PMC6429156 DOI: 10.3390/ijms20051189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
APETALA2/ethylene-responsive factor superfamily (AP2/ERF) is a transcription factor involved in abiotic stresses, for instance, cold, drought, and low oxygen. In this study, a novel ethylene-responsive transcription factor named AdRAP2.3 was isolated from Actinidia deliciosa 'Jinkui'. AdRAP2.3 transcription levels in other reproductive organs except for the pistil were higher than those in the vegetative organs (root, stem, and leaf) in kiwi fruit. Plant hormones (Salicylic acid (SA), Methyl-jasmonate acid (MeJA), 1-Aminocyclopropanecarboxylic Acid (ACC), Abscisic acid (ABA)), abiotic stresses (waterlogging, heat, 4 °C and NaCl) and biotic stress (Pseudomonas Syringae pv. Actinidiae, Psa) could induce the expression of AdRAP2.3 gene in kiwi fruit. Overexpression of the AdRAP2.3 gene conferred waterlogging stress tolerance in transgenic tobacco plants. When completely submerged, the survival rate, fresh weight, and dry weight of transgenic tobacco lines were significantly higher than those of wile type (WT). Upon the roots being submerged, transgenic tobacco lines grew aerial roots earlier. Overexpression of AdRAP2.3 in transgenic tobacco improved the pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzyme activities, and improved the expression levels of waterlogging mark genes NtPDC, NtADH, NtHB1, NtHB2, NtPCO1, and NtPCO2 in roots under waterlogging treatment. Overall, these results demonstrated that AdRAP2.3 might play an important role in resistance to waterlogging through regulation of PDC and ADH genes in kiwi fruit.
Collapse
Affiliation(s)
- De-Lin Pan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Gang Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhan-Hui Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhong-Ren Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Ji-Yu Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
104
|
Lin CC, Chao YT, Chen WC, Ho HY, Chou MY, Li YR, Wu YL, Yang HA, Hsieh H, Lin CS, Wu FH, Chou SJ, Jen HC, Huang YH, Irene D, Wu WJ, Wu JL, Gibbs DJ, Ho MC, Shih MC. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc Natl Acad Sci U S A 2019; 116:3300-3309. [PMID: 30723146 PMCID: PMC6386710 DOI: 10.1073/pnas.1818507116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.
Collapse
Affiliation(s)
- Chih-Cheng Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University, Academia Sinica, 11529 Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hsiu-Yin Ho
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Ya-Ru Li
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Yu-Lin Wu
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hung-An Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hsiang Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Hao-Chung Jen
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Yung-Hsiang Huang
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Deli Irene
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Jian-Li Wu
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan;
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University, Academia Sinica, 11529 Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, 40227 Taichung, Taiwan
| |
Collapse
|
105
|
Chen MX, Zhu FY, Wang FZ, Ye NH, Gao B, Chen X, Zhao SS, Fan T, Cao YY, Liu TY, Su ZZ, Xie LJ, Hu QJ, Wu HJ, Xiao S, Zhang J, Liu YG. Alternative splicing and translation play important roles in hypoxic germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:817-833. [PMID: 30535157 PMCID: PMC6363088 DOI: 10.1093/jxb/ery393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/27/2018] [Indexed: 05/04/2023]
Abstract
Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Shan-Shan Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yun-Ying Cao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Tie-Yuan Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ze-Zhuo Su
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hui-Jie Wu
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: or
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Correspondence: or
| |
Collapse
|
106
|
Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:228. [PMID: 30873200 PMCID: PMC6403161 DOI: 10.3389/fpls.2019.00228] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Dynamic environmental changes such as extreme temperature, water scarcity and high salinity affect plant growth, survival, and reproduction. Plants have evolved sophisticated regulatory mechanisms to adapt to these unfavorable conditions, many of which interface with plant hormone signaling pathways. Abiotic stresses alter the production and distribution of phytohormones that in turn mediate stress responses at least in part through hormone- and stress-responsive transcription factors. Among these, the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors (AP2/ERFs) have emerged as key regulators of various stress responses, in which they also respond to hormones with improved plant survival during stress conditions. Apart from participation in specific stresses, AP2/ERFs are involved in a wide range of stress tolerance, enabling them to form an interconnected stress regulatory network. Additionally, many AP2/ERFs respond to the plant hormones abscisic acid (ABA) and ethylene (ET) to help activate ABA and ET dependent and independent stress-responsive genes. While some AP2/ERFs are implicated in growth and developmental processes mediated by gibberellins (GAs), cytokinins (CTK), and brassinosteroids (BRs). The involvement of AP2/ERFs in hormone signaling adds the complexity of stress regulatory network. In this review, we summarize recent studies on AP2/ERF transcription factors in hormonal and abiotic stress responses with an emphasis on selected family members in Arabidopsis. In addition, we leverage publically available Arabidopsis gene networks and transcriptome data to investigate AP2/ERF regulatory networks, providing context and important clues about the roles of diverse AP2/ERFs in controlling hormone and stress responses.
Collapse
|
107
|
Eysholdt‐Derzsó E, Sauter M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:103-108. [PMID: 29996004 PMCID: PMC6585952 DOI: 10.1111/plb.12873] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 05/17/2023]
Abstract
Soil water-logging and flooding are common environmental stress conditions that can impair plant fitness. Roots are the first organs to be confronted with reduced oxygen tension as a result of flooding. While anatomical and morphological adaptations of roots are extensively studied, the root system architecture is only now becoming a focus of flooding research. Adventitious root (AR) formation shifts the root system higher up the plant, thereby facilitating supply with oxygen, and thus improving root and plant survival. We used Arabidopsis knockout mutants and overexpressors of ERFVII transcription factors to study their role in AR formation under hypoxic conditions and in response to ethylene. Results show that ethylene inhibits AR formation. Hypoxia mainly promotes AR elongation rather than formation mediated by ERFVII transcription factors, as indicated by reduced AR elongation in erfVII seedlings. Overexpression of HRE2 induces AR elongation to the same degree as hypoxia, while ethylene overrides HRE2-induced AR elongation. The ERFVII transcription factors promote establishment of an AR system that is under negative control by ethylene. Inhibition of growth of the main root system and promotion of AR elongation under hypoxia strengthens the root system in upper soil layers where oxygen shortage may last for shorter time periods.
Collapse
Affiliation(s)
- E. Eysholdt‐Derzsó
- Plant Developmental Biology and Plant PhysiologyUniversity of KielKielGermany
| | - M. Sauter
- Plant Developmental Biology and Plant PhysiologyUniversity of KielKielGermany
| |
Collapse
|
108
|
Yin D, Sun D, Han Z, Ni D, Norris A, Jiang CZ. PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia. HORTICULTURE RESEARCH 2019; 6:83. [PMID: 31645944 PMCID: PMC6804856 DOI: 10.1038/s41438-019-0165-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 05/22/2023]
Abstract
Ethylene-responsive element binding factors (ERFs) are involved in regulation of various stress responses in plants, but their biological functions in waterlogging stress are largely unclear. In this study, we identified a petunia (Petunia × hybrida) ERF gene, PhERF2, that was significantly induced by waterlogging in wild-type (WT). To study the regulatory role of PhERF2 in waterlogging responses, transgenic petunia plants with RNAi silencing and overexpression of PhERF2 were generated. Compared with WT plants, PhERF2 silencing compromised the tolerance of petunia seedlings to waterlogging, shown as 96% mortality after 4 days waterlogging and 14 days recovery, while overexpression of PhERF2 improved the survival of seedlings subjected to waterlogging. PhERF2-RNAi lines exhibited earlier and more severe leaf chlorosis and necrosis than WT, whereas plants overexpressing PhERF2 showed promoted growth vigor under waterlogging. Chlorophyll content was dramatically lower in PhERF2-silenced plants than WT or overexpression plants. Typical characteristics of programmed cell death (PCD), DNA condensation, and moon-shaped nuclei were only observed in PhERF2-overexpressing lines but not in PhERF2-RNAi or control lines. Furthermore, transcript abundances of the alcoholic fermentation-related genes ADH1-1, ADH1-2, ADH1-3, PDC1, and PDC2 were reduced in PhERF2-silenced plants, but increased in PhERF2-overexpressing plants following exposure to 12-h waterlogging. In contrast, expression of the lactate fermentation-related gene LDH was up-regulated in PhERF2-silenced plants, but down-regulated in its overexpressing plants. Moreover, PhERF2 was observed to directly bind to the ADH1-2 promoter bearing ATCTA motifs. Our results demonstrate that PhERF2 contributes to petunia waterlogging tolerance through modulation of PCD and alcoholic fermentation system.
Collapse
Affiliation(s)
- Dongmei Yin
- College of Ecology, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Zhuqing Han
- College of Ecology, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Dian Ni
- College of Ecology, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ayla Norris
- Crops Pathology & Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616 USA
| | - Cai-Zhong Jiang
- Crops Pathology & Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616 USA
- Department of Plant Sciences, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
109
|
Cukrov D. Progress toward Understanding the Molecular Basis of Fruit Response to Hypoxia. PLANTS 2018; 7:plants7040078. [PMID: 30248917 PMCID: PMC6314085 DOI: 10.3390/plants7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/23/2023]
Abstract
Oxygen has shaped life on Earth as we know it today. Molecular oxygen is essential for normal cellular function, i.e., plants need oxygen to maintain cellular respiration and for a wide variety of biochemical reactions. When oxygen levels in the cell are lower than levels needed for respiration, then the cell experiences hypoxia. Plants are known to experience root hypoxia during natural environmental conditions like flooding. Fruit, on the other hand, is known to be hypoxic under normal oxygen conditions. This observation could be explained (at least partially) as a consequence of diffusional barriers, low tissue diffusivity, and high oxygen consumption by respiration. From the physiological point of view, hypoxia is known to have a profound impact on fruit development, since it is well documented that a low oxygen environment can significantly delay ripening and senescence of some fruit. This effect of a low-oxygen environment is readily used for optimizing storage conditions and transport, and for prolonging the shelf life of several fruit commodities. Therefore, further understanding of the complex relationship between oxygen availability within the cell and fruit development could assist postharvest management.
Collapse
Affiliation(s)
- Dubravka Cukrov
- Italian National Research Council (CNR), Via Giuseppe Moruzzi 1, 56127 Pisa, Italy.
| |
Collapse
|
110
|
Sun X, Yu G, Li J, Liu J, Wang X, Zhu G, Zhang X, Pan H. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:32-43. [PMID: 30080618 DOI: 10.1016/j.plantsci.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 05/02/2023]
Abstract
Ethylene-responsive factors (ERFs) comprise a large family of transcription factors in plants and play important roles in developmental processes and stress responses. Here, we characterized a novel AP2/ERF transcription factor, AcERF2, from the halophyte Atriplex canescens (four-wing saltbush, Chenopodiaceae). AcERF2 was proved to be a transcriptional activator in yeast and localized to the nucleus upon transient expression in Nicotiana benthamiana, indicating its potential role as a transcription factor. Overexpression of AcERF2 driven by a CaMV35S promoter led to decreased accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased antioxidant enzymatic activities, as well as rapid stomatal closure under osmotic treatment in Arabidopsis. Arabidopsis plants overexpressing AcERF2 were hypersensitive to abscisic acid (ABA) during germination, seedling establishment, and primary root elongation, and exhibited significant tolerance to osmotic stress. Furthermore, overexpression of AcERF2 induced transcript accumulation of plant defense-related genes (PR1, PR2, PR5, ERF1 and ERF3) and increased Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungal pathogen Botrytis cinerea. These results suggest that AcERF2 may play a positive modulation role in response to osmotic stress and pathogen infection in plants.
Collapse
Affiliation(s)
- Xinhua Sun
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Xueliang Wang
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Genglin Zhu
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
111
|
Schneider HM, Wojciechowski T, Postma JA, Brown KM, Lynch JP. Ethylene modulates root cortical senescence in barley. ANNALS OF BOTANY 2018; 122:95-105. [PMID: 29897390 PMCID: PMC6025243 DOI: 10.1093/aob/mcy059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Background and Aims Root cortical senescence (RCS) is a poorly understood phenomenon with implications for adaptation to edaphic stress. It was hypothesized that RCS in barley (Hordeum vulgare L.) is (1) accelerated by exogenous ethylene exposure; (2) accompanied by differential expression of ethylene synthesis and signalling genes; and (3) associated with differential expression of programmed cell death (PCD) genes. Methods Gene expression of root segments from four barley genotypes with and without RCS was evaluated using quantitative real-time PCR (qRT-PCR). The progression of RCS was manipulated with root zone ethylene and ethylene inhibitor applications. Key Results The results demonstrate that ethylene modulates RCS. Four genes related to ethylene synthesis and signalling were upregulated during RCS in optimal, low nitrogen and low phosphorus nutrient regimes. RCS was accelerated by root zone ethylene treatment, and this effect was reversed by an ethylene action inhibitor. Roots treated with exogenous ethylene had 35 and 46 % more cortical senescence compared with the control aeration treatment in seminal and nodal roots, respectively. RCS was correlated with expression of two genes related to programmed cell death (PCD). Conclusions The development of RCS is similar to root cortical aerenchyma formation with respect to ethylene modulation of the PCD process.
Collapse
Affiliation(s)
- Hannah M Schneider
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich, Germany
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Tobias Wojciechowski
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich, Germany
| | - Johannes A Postma
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich, Germany
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
112
|
Wang B, Jin Q, Zhang X, Mattson NS, Ren H, Cao J, Wang Y, Yao D, Xu Y. Genome-wide transcriptional analysis of submerged lotus reveals cooperative regulation and gene responses. Sci Rep 2018; 8:9187. [PMID: 29907819 PMCID: PMC6003939 DOI: 10.1038/s41598-018-27530-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
Flooding severely limits plant growth even for some aquatic plants. Although much work has been done on submergence response of some important crop plants, little is known about the response mechanism of aquatic plants, i.e. lotus (Nelumbo nucifera). In this study, we investigated the genome-wide regulation lotus genes in response to submergence stress by high-throughput mRNA sequencing. A total of 4002 differentially expressed genes (DEGs) in lotus upon submergence stress. Among them, 1976 genes were up-regulated and 2026 down-regulated. Functional annotation of these genes by Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that they were mainly involved in processes of oxidation-reduction, abiotic stimuli, cellular metabolism and small molecule metabolism. Based on these data, previous work and quantitative RT-PCR (RT-qPCR) validation, we constructed a cooperative regulation network involved in several important DEGs in regards to the antioxidant system, disease resistance, hypoxia resistance and morphological adaptation. Further work confirmed that several innate immunity genes were induced during submergence and might confer higher resistance to lotus rot disease. In conclusion, these results provide useful information on molecular mechanisms underlying lotus responses to submergence stress.
Collapse
Affiliation(s)
- Bei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijiang Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Neil S Mattson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, USA
| | - Huihui Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
113
|
Seesangboon A, Gruneck L, Pokawattana T, Eungwanichayapant PD, Tovaranonte J, Popluechai S. Transcriptome analysis of Jatropha curcas L. flower buds responded to the paclobutrazol treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:276-286. [PMID: 29631212 DOI: 10.1016/j.plaphy.2018.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 05/15/2023]
Abstract
Jatropha seeds can be used to produce high-quality biodiesel due to their high oil content. However, Jatropha produces low numbers of female flowers, which limits seed yield. Paclobutrazol (PCB), a plant growth retardant, can increase number of Jatropha female flowers and seed yield. However, the underlying mechanisms of flower development after PCB treatment are not well understood. To identify the critical genes associated with flower development, the transcriptome of flower buds following PCB treatment was analyzed. Scanning Electron Microscope (SEM) analysis revealed that the flower developmental stage between PCB-treated and control flower buds was similar. Based on the presence of sex organs, flower buds at 0, 4, and 24 h after treatment were chosen for global transcriptome analysis. In total, 100,597 unigenes were obtained, 174 of which were deemed as interesting based on their response to PCB treatment. Our analysis showed that the JcCKX5 and JcTSO1 genes were up-regulated at 4 h, suggesting roles in promoting organogenic capacity and ovule primordia formation in Jatropha. The JcNPGR2, JcMGP2-3, and JcHUA1 genes were down-regulated indicating that they may contribute to increased number of female flowers and amount of seed yield. Expression of cell division and cellulose biosynthesis-related genes, including JcGASA3, JcCycB3;1, JcCycP2;1, JcKNAT7, and JcCSLG3 was decreased, which might have caused the compacted inflorescences. This study represents the first report combining SEM-based morphology, qRT-PCR and transcriptome analysis of PCB-treated Jatropha flower buds at different stages of flower development.
Collapse
Affiliation(s)
- Anupharb Seesangboon
- School of Science, Mae Fah Luang University, 333 moo 1, Thasud, Muang, ChiangRai, 57100, Thailand.
| | - Lucsame Gruneck
- School of Science, Mae Fah Luang University, 333 moo 1, Thasud, Muang, ChiangRai, 57100, Thailand.
| | - Tittinat Pokawattana
- School of Science, Mae Fah Luang University, 333 moo 1, Thasud, Muang, ChiangRai, 57100, Thailand.
| | | | - Jantrararuk Tovaranonte
- School of Science, Mae Fah Luang University, 333 moo 1, Thasud, Muang, ChiangRai, 57100, Thailand.
| | - Siam Popluechai
- School of Science, Mae Fah Luang University, 333 moo 1, Thasud, Muang, ChiangRai, 57100, Thailand.
| |
Collapse
|
114
|
White MD, Kamps JJAG, East S, Taylor Kearney LJ, Flashman E. The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. J Biol Chem 2018; 293:11786-11795. [PMID: 29848548 PMCID: PMC6066304 DOI: 10.1074/jbc.ra118.003496] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/25/2018] [Indexed: 01/02/2023] Open
Abstract
Group VII ethylene response factors (ERF-VIIs) regulate transcriptional adaptation to flooding-induced hypoxia in plants. ERF-VII stability is controlled in an O2-dependent manner by the Cys/Arg branch of the N-end rule pathway whereby oxidation of a conserved N-terminal cysteine residue initiates target degradation. This oxidation is catalyzed by plant cysteine oxidases (PCOs), which use O2 as cosubstrate to generate Cys-sulfinic acid. The PCOs directly link O2 availability to ERF-VII stability and anaerobic adaptation, leading to the suggestion that they act as plant O2 sensors. However, their ability to respond to fluctuations in O2 concentration has not been established. Here, we investigated the steady-state kinetics of Arabidopsis thaliana PCOs 1–5 to ascertain whether their activities are sensitive to O2 levels. We found that the most catalytically competent isoform is AtPCO4, both in terms of responding to O2 and oxidizing AtRAP2.2/2,12 (two of the most prominent ERF-VIIs responsible for promoting the hypoxic response), which suggests that AtPCO4 plays a central role in ERF-VII regulation. Furthermore, we found that AtPCO activity is susceptible to decreases in pH and that the hypoxia-inducible AtPCOs 1/2 and the noninducible AtPCOs 4/5 have discrete AtERF-VII substrate preferences. Pertinently, the AtPCOs had Km(O2)app values in a physiologically relevant range, which should enable them to sensitively react to changes in O2 availability. This work validates an O2-sensing role for the PCOs and suggests that differences in expression pattern, ERF-VII selectivity, and catalytic capability may enable the different isoforms to have distinct biological functions. Individual PCOs could therefore be targeted to manipulate ERF-VII levels and improve stress tolerance in plants.
Collapse
Affiliation(s)
- Mark D White
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jos J A G Kamps
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Samuel East
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leah J Taylor Kearney
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emily Flashman
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
115
|
Zhao N, Li C, Yan Y, Cao W, Song A, Wang H, Chen S, Jiang J, Chen F. Comparative Transcriptome Analysis of Waterlogging-Sensitive and Waterlogging-Tolerant Chrysanthemum morifolium Cultivars under Waterlogging Stress and Reoxygenation Conditions. Int J Mol Sci 2018; 19:E1455. [PMID: 29757964 PMCID: PMC5983694 DOI: 10.3390/ijms19051455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
Waterlogging stress is among the most severe abiotic stressors in the breeding and the production of Chrysanthemum morifolium. However, the mechanism underlying the response to waterlogging and post-waterlogging reoxygenation in C. morifolium remains unknown. In this study, we compared the differences between the transcriptomes of two chrysanthemum cultivars, i.e., the waterlogging-tolerant cultivar "Nannongxuefeng" and the waterlogging-sensitive cultivar "Qinglu", by performing RNA-seq to elucidate the possible mechanism of waterlogging and reoxygenation in C. morifolium. "Nannongxuefeng" had a higher ethylene production under the waterlogging and reoxygenation conditions. Furthermore, the expression of transcription factors and genes that are involved in the hormone response, N-end rule pathway and ROS signaling significantly differed between the two cultivars. "Nannongxuefeng" and "Qinglu" significantly differed in their response to waterlogging and reoxygenation, providing a deeper understanding of the mechanism underlying the response to waterlogging and guidance for the breeding of C. morifolium.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chuanwei Li
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yajun Yan
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen Cao
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aiping Song
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haibin Wang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiafu Jiang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
116
|
Dixit A, Tomar P, Vaine E, Abdullah H, Hazen S, Dhankher OP. A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. PLANT, CELL & ENVIRONMENT 2018; 41:1171-1185. [PMID: 29194659 DOI: 10.1111/pce.13103] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 05/28/2023]
Abstract
Members of Stress-Associated Protein (SAP) family in plants have been shown to impart tolerance to multiple abiotic stresses, however, their mode of action in providing tolerance to multiple abiotic stresses is largely unknown. There are 14 SAP genes in Arabidopsis thaliana containing A20, AN1, and Cys2-His2 zinc finger domains. AtSAP13, a member of the SAP family, carries two AN1 zinc finger domains and an additional Cys2-His2 domain. AtSAP13 transcripts showed upregulation in response to Cd, ABA, and salt stresses. AtSAP13 overexpression lines showed strong tolerance to toxic metals (AsIII, Cd, and Zn), drought, and salt stress. Further, transgenic lines accumulated significantly higher amounts of Zn, but less As and Cd accumulation in shoots and roots. AtSAP13 promoter-GUS fusion studies showed GUS expression predominantly in the vascular tissue, hydathodes, and the apical meristem and region of root maturation and elongation as well as the root hairs. At the subcellular level, the AtSAP13-eGFP fusion protein was found to localize in both nucleus and cytoplasm. Through yeast one-hybrid assay, we identified several AP2/EREBP family transcription factors that interacted with the AtSAP13 promoter. AtSAP13 and its homologues will be highly useful for developing climate resilient crops.
Collapse
Affiliation(s)
- Anirudha Dixit
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Parul Tomar
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Evan Vaine
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Hesham Abdullah
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Samuel Hazen
- Biology Department, University of Massachusetts Amherst, MA, 01003, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|
117
|
Zhu QG, Gong ZY, Wang MM, Li X, Grierson D, Yin XR, Chen KS. A transcription factor network responsive to high CO2/hypoxia is involved in deastringency in persimmon fruit. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2061-2070. [PMID: 29390151 PMCID: PMC6018754 DOI: 10.1093/jxb/ery028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 05/09/2023]
Abstract
Plant responses to anaerobic environments are regulated by ethylene-response factors (ERFs) in both vegetative and productive organs, but the roles of other transcription factors (TFs) in hypoxia responses are poorly understood. In this study, eight TFs (DkbHLH1, DkMYB9/10/11, DkRH2-1, DkGT3-1, DkAN1-1, DkHSF1) were shown to be strongly up-regulated by an artificial high-CO2 atmosphere (1% O2 and 95% CO2). Dual-luciferase assays indicated that some TFs were activators of previously characterized DkERFs, including DkMYB10 for the DkERF9 promoter, DkERF18/19 and DkMYB6 for the DkERF19 promoter, and DkERF21/22 for the DkERF10 promoter. Yeast one-hybrid and cis-element mutagenesis confirmed these physical interactions with one exception. The potential roles of these TFs in persimmon fruit deastringency were analysed by investigating their transient over-expression (TOX) in persimmon fruit discs, which indicated that DkMYB6TOX, DkMYB10TOX, DkERF18TOX, and DkERF19TOX were all effective in causing insolubilization of tannins, concomitantly with the up-regulation of the corresponding genes. These results indicated that multiple TFs of different classes are responsive to high-CO2/hypoxia in fruit tissues, and that a TF-TF regulatory cascade is involved in the hypoxia responses involving the Group VII DkERF10, and DkERFs and DkMYBs.
Collapse
Affiliation(s)
- Qing-gang Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Zi-yuan Gong
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Miao-miao Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Correspondence:
| | - Kun-song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|
118
|
Jin R, Zhu QG, Shen XY, Wang MM, Jamil W, Grierson D, Yin XR, Chen KS. DkNAC7, a novel high-CO2/hypoxia-induced NAC transcription factor, regulates persimmon fruit de-astringency. PLoS One 2018. [PMID: 29538450 PMCID: PMC5851633 DOI: 10.1371/journal.pone.0194326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Artificial high-CO2 atmosphere (AHCA, 95% CO2 and 1% O2) has been widely applied as a postharvest de-astringency treatment for persimmon fruit. AHCA increases expression of transcription factors, including ethylene response factors (DkERF), that target de-astringency genes. Here, the promoter of DkERF9, a previously characterized AHCA-inducible and de-astringency regulator, was utilized to screen a cDNA library by yeast one hybrid assay. A novel NAC transcription factor, named DkNAC7, was identified. Dual-luciferase assay indicated that DkNAC7 could not only trans-activate the promoter of DkERF9, but also activated the previously identified deastringency-related gene DkPDC2. Real-time PCR analysis showed that DkNAC7 was up-regulated by AHCA treatment, in concert with the removal of astringency from persimmon fruit and subcellular localization showed DkNAC7 was located in the nucleus. Thus, these results indicate that DkNAC7 is a putative transcriptional activator involved in regulating persimmon fruit deastringency by trans-activition on both DkERF9 and DkPDC2, which encodes pyruvate decarboxylase.
Collapse
Affiliation(s)
- Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Agricultural Experiment Station, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Qing-gang Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Xin-yue Shen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Miao-miao Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Wajeeha Jamil
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- * E-mail:
| | - Kun-song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|
119
|
Giuntoli B, Perata P. Group VII Ethylene Response Factors in Arabidopsis: Regulation and Physiological Roles. PLANT PHYSIOLOGY 2018; 176:1143-1155. [PMID: 29269576 PMCID: PMC5813551 DOI: 10.1104/pp.17.01225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/19/2017] [Indexed: 05/19/2023]
Abstract
The role of ERF-VII TFs in higher plants is to coordinate their signature response to oxygen deficiency, but additional layers of modulation of ERF-VII activity enrich their regulatory range.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola superiore Sant'Anna, Via Guidiccioni 8/10, 56017 Pisa, Italy
- Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy
| | - Pierdomenico Perata
- Plantlab, Institute of Life Sciences, Scuola superiore Sant'Anna, Via Guidiccioni 8/10, 56017 Pisa, Italy
| |
Collapse
|
120
|
Loreti E, Valeri MC, Novi G, Perata P. Gene Regulation and Survival under Hypoxia Requires Starch Availability and Metabolism. PLANT PHYSIOLOGY 2018; 176:1286-1298. [PMID: 29084901 PMCID: PMC5813553 DOI: 10.1104/pp.17.01002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 05/05/2023]
Abstract
Plants respond to hypoxia, often caused by submergence, by expressing a specific set of genes that contribute to acclimation to this unfavorable environmental condition. Genes induced by low oxygen include those encoding enzymes for carbohydrate metabolism and fermentation, pathways that are required for survival. Sugar availability is therefore of crucial importance for energy production under hypoxia. Here, we show that Arabidopsis (Arabidopsis thaliana) plants require starch for surviving submergence as well as for ensuring the rapid induction of genes encoding enzymes required for anaerobic metabolism. The starchless pgm mutant is highly susceptible to submergence and also fails to induce anaerobic genes at the level of the wild type. Treating wild-type plants under conditions inducing sugar starvation results in a weak induction of alcohol dehydrogenase and other anaerobic genes. Induction of gene expression under hypoxia requires transcription factors belonging to group VII ethylene response factors (ERF-VII) that, together with plant Cys oxidases, act as an oxygen-sensing mechanism. We show that repression of this pathway by sugar starvation occurs downstream of the hypoxia-dependent stabilization of ERF-VII proteins and independently of the energy sensor protein kinases SnRK1.1 (SNF1-related kinase 1.1).
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, 56124 Pisa, Italy
| | - Maria Cristina Valeri
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56017 San Giuliano Terme (Pisa), Italy
| | - Giacomo Novi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56017 San Giuliano Terme (Pisa), Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56017 San Giuliano Terme (Pisa), Italy
| |
Collapse
|
121
|
Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ. Signal Dynamics and Interactions during Flooding Stress. PLANT PHYSIOLOGY 2018; 176:1106-1117. [PMID: 29097391 PMCID: PMC5813540 DOI: 10.1104/pp.17.01232] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Flooding is detrimental for nearly all higher plants, including crops. The compound stress elicited by slow gas exchange and low light levels under water is responsible for both a carbon and an energy crisis ultimately leading to plant death. The endogenous concentrations of four gaseous compounds, oxygen, carbon dioxide, ethylene, and nitric oxide, change during the submergence of plant organs in water. These gases play a pivotal role in signal transduction cascades, leading to adaptive processes such as metabolic adjustments and anatomical features. Of these gases, ethylene is seen as the most consistent, pervasive, and reliable signal of early flooding stress, most likely in tight interaction with the other gases. The production of reactive oxygen species (ROS) in plant cells during flooding and directly after subsidence, during which the plant is confronted with high light and oxygen levels, is characteristic for this abiotic stress. Low, well-controlled levels of ROS are essential for adaptive signaling pathways, in interaction with the other gaseous flooding signals. On the other hand, excessive uncontrolled bursts of ROS can be highly damaging for plants. Therefore, a fine-tuned balance is important, with a major role for ROS production and scavenging. Our understanding of the temporal dynamics of the four gases and ROS is basal, whereas it is likely that they form a signature readout of prevailing flooding conditions and subsequent adaptive responses.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sjon Hartman
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Zeguang Liu
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Shanice Martopawiro
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Nikita Sajeev
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Elaine Yeung
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
122
|
Kim NY, Jang YJ, Park OK. AP2/ERF Family Transcription Factors ORA59 and RAP2.3 Interact in the Nucleus and Function Together in Ethylene Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1675. [PMID: 30510560 PMCID: PMC6254012 DOI: 10.3389/fpls.2018.01675] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 05/19/2023]
Abstract
The gaseous plant hormone ethylene is a key signaling molecule regulating plant growth, development, and defense against pathogens. Octadecanoid-responsive arabidopsis 59 (ORA59) is an ethylene response factor (ERF) transcription factor and has been suggested to integrate ethylene and jasmonic acid signaling and regulate resistance to necrotrophic pathogens. Here we screened for ORA59 interactors using the yeast two-hybrid system to elucidate the molecular function of ORA59. This led to the identification of RELATED TO AP2.3 (RAP2.3), another ERF transcription factor belonging to the group VII ERF family. In binding assays, ORA59 and RAP2.3 interacted in the nucleus and showed ethylene-dependent nuclear localization. ORA59 played a positive role in ethylene-regulated responses, including the triple response, featured by short, thick hypocotyl and root, and exaggerated apical hook in dark-grown seedlings, and resistance to the necrotrophic pathogen Pectobacterium carotovorum, as shown by the increased and decreased ethylene sensitivity and disease resistance in ORA59-overexpressing (ORA59OE) and null mutant (ora59) plants, respectively. In genetic crosses, ORA59OE rap2.3 crossed lines lost ORA59-mediated positive effects and behaved like rap2.3 mutant. These results suggest that ORA59 physically interacts with RAP2.3 and that this interaction is important for the regulatory roles of ORA59 in ethylene responses.
Collapse
|
123
|
Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LSP. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr Genomics 2017. [PMID: 29204078 DOI: 10.2174/1389101918666170227150057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
In agricultural production, abiotic stresses are known as the main disturbance leading to negative impacts on crop performance. Research on elucidating plant defense mechanisms against the stresses at molecular level has been addressed for years in order to identify the major contributors in boosting the plant tolerance ability. From literature, numerous genes from different species, and from both functional and regulatory gene categories, have been suggested to be on the list of potential candidates for genetic engineering. Noticeably, enhancement of plant stress tolerance by manipulating expression of Transcription Factors (TFs) encoding genes has emerged as a popular approach since most of them are early stress-responsive genes and control the expression of a set of downstream target genes. Consequently, there is a higher chance to generate novel cultivars with better tolerance to either single or multiple stresses. Perhaps, the difficult task when deploying this approach is selecting appropriate gene(s) for manipulation. In this review, on the basis of the current findings from molecular and post-genomic studies, our interest is to highlight the current understanding of the roles of TFs in signal transduction and mediating plant responses towards abiotic stressors. Furthermore, interactions among TFs within the stress-responsive network will be discussed. The last section will be reserved for discussing the potential applications of TFs for stress tolerance improvement in plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Du Ngoc Hai Nhi
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
124
|
Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LSP. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr Genomics 2017; 18:483-497. [PMID: 29204078 PMCID: PMC5684650 DOI: 10.2174/1389202918666170227150057] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022] Open
Abstract
In agricultural production, abiotic stresses are known as the main disturbance leading to negative impacts on crop performance. Research on elucidating plant defense mechanisms against the stresses at molecular level has been addressed for years in order to identify the major contributors in boosting the plant tolerance ability. From literature, numerous genes from different species, and from both functional and regulatory gene categories, have been suggested to be on the list of potential candidates for genetic engineering. Noticeably, enhancement of plant stress tolerance by manipulating expression of Transcription Factors (TFs) encoding genes has emerged as a popular approach since most of them are early stress-responsive genes and control the expression of a set of downstream target genes. Consequently, there is a higher chance to generate novel cultivars with better tolerance to either single or multiple stresses. Perhaps, the difficult task when deploying this approach is selecting appropriate gene(s) for manipulation. In this review, on the basis of the current findings from molecular and post-genomic studies, our interest is to highlight the current understanding of the roles of TFs in signal transduction and mediating plant responses towards abiotic stressors. Furthermore, interactions among TFs within the stress-responsive network will be discussed. The last section will be reserved for discussing the potential applications of TFs for stress tolerance improvement in plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Du Ngoc Hai Nhi
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
125
|
Wang M, Zhu Q, Deng C, Luo Z, Sun N, Grierson D, Yin X, Chen K. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1409-1419. [PMID: 28301712 PMCID: PMC5633758 DOI: 10.1111/pbi.12725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 05/03/2023]
Abstract
Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de-astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia-responsive ethylene response factors (ERFs) participate in anaerobic de-astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO2 (95%) was ameliorated by adding the ethylene inhibitor 1-MCP (1 μL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO2 -induced softening involves ethylene signalling. Among the hypoxia-responsive genes, expression of eight involved in fruit cell wall metabolism (Dkβ-gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual-luciferase assay indicated that DkERF8/16/19 could trans-activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C-repeat/dehydration-responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia-responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1-MCP. Fruit of the Japanese cultivar 'Tonewase' provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO2 treatment without 1-MCP and changes in cell wall enzymes and ERFs did not occur.
Collapse
Affiliation(s)
- Miao‐miao Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Qing‐gang Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Chu‐li Deng
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Zheng‐rong Luo
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Ning‐jing Sun
- Department of Horticultural SciencesCollege of AgricultureGuangxi UniversityNanningChina
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- Plant & Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Xue‐ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Kun‐song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
126
|
Zhang Y, Kong X, Dai J, Luo Z, Li Z, Lu H, Xu S, Tang W, Zhang D, Li W, Xin C, Dong H. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. PLoS One 2017; 12:e0185075. [PMID: 28953908 PMCID: PMC5617174 DOI: 10.1371/journal.pone.0185075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022] Open
Abstract
Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.
Collapse
Affiliation(s)
- Yanjun Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiangqiang Kong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jianlong Dai
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhen Luo
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhenhuai Li
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Hequan Lu
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shizhen Xu
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Wei Tang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongmei Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Weijiang Li
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengsong Xin
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Hezhong Dong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- School of Life Sciences, Shandong University, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
127
|
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem 2017; 71:32-56. [PMID: 28961511 DOI: 10.1016/j.compbiolchem.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa.
Collapse
Affiliation(s)
- Hajar Owji
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
128
|
Eysholdt-Derzsó E, Sauter M. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. PLANT PHYSIOLOGY 2017; 175:412-423. [PMID: 28698356 PMCID: PMC5580755 DOI: 10.1104/pp.17.00555] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/07/2017] [Indexed: 05/02/2023]
Abstract
When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip.
Collapse
Affiliation(s)
- Emese Eysholdt-Derzsó
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
129
|
Yu Y, Duan X, Ding X, Chen C, Zhu D, Yin K, Cao L, Song X, Zhu P, Li Q, Nisa ZU, Yu J, Du J, Song Y, Li H, Liu B, Zhu Y. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2017; 94:509-530. [PMID: 28681139 DOI: 10.1007/s11103-017-0623-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Here we first found that GsERF71, an ERF factor from wild soybean could increase plant alkaline stress tolerance by up-regulating H+-ATPase and by modifing the accumulation of Auxin. Alkaline soils are widely distributed all over the world and greatly limit plant growth and development. In our previous transcriptome analyses, we have identified several ERF (ethylene-responsive factor) genes that responded strongly to bicarbonate stress in the roots of wild soybean G07256 (Glycine soja). In this study, we cloned and functionally characterized one of the genes, GsERF71. When expressed in epidermal cells of onion, GsERF71 localized to the nucleus. It can activate the reporters in yeast cells, and the C-terminus of 170 amino acids is essential for its transactivation activity. Yeast one-hybrid and EMSA assays indicated that GsERF71 specifically binds to the cis-acting elements of the GCC-box, suggesting that GsERF71 may participate in the regulation of transcription of the relevant biotic and abiotic stress-related genes. Furthermore, transgenic Arabidopsis plants overexpressing GsERF71 showed significantly higher tolerance to bicarbonate stress generated by NaHCO3 or KHCO3 than the wild type (WT) plants, i.e., the transgenic plants had greener leaves, longer roots, higher total chlorophyll contents and lower MDA contents. qRT-PCR and rhizosphere acidification assays indicated that the expression level and activity of H+-ATPase (AHA2) were enhanced in the transgenic plants under alkaline stress. Further analysis indicated that the expression of auxin biosynthetic genes and IAA contents were altered to a lower extent in the roots of transgenic plants than WT plants under alkaline stress in a short-term. Together, our data suggest that GsERF71 enhances the tolerance to alkaline stress by up-regulating the expression levels of H+-ATPase and by modifying auxin accumulation in transgenic plants.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kuide Yin
- School of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xuewei Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Pinghui Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Zaib Un Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jiyang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jianying Du
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Huiqing Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 413, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
130
|
Wang F, Chen ZH, Shabala S. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. PLANT & CELL PHYSIOLOGY 2017; 58:1126-1142. [PMID: 28838128 DOI: 10.1093/pcp/pcx079] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
131
|
Du H, Zhu J, Su H, Huang M, Wang H, Ding S, Zhang B, Luo A, Wei S, Tian X, Xu Y. Bulked Segregant RNA-seq Reveals Differential Expression and SNPs of Candidate Genes Associated with Waterlogging Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:1022. [PMID: 28659961 PMCID: PMC5470080 DOI: 10.3389/fpls.2017.01022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/29/2017] [Indexed: 05/24/2023]
Abstract
Waterlogging has increasingly become one of the major constraints to maize productivity in some maize production zones because it causes serious yield loss. Bulked segregant RNA-seq (BSR-seq) has been widely applied to profile candidate genes and map associated Single Nucleotide Polymorphism (SNP) markers in many species. In this study, 10 waterlogging sensitive and eight tolerant inbred lines were selected from 60 maize inbred lines with waterlogging response determined and preselected by the International Maize and Wheat Improvement Center (CIMMYT) from over 400 tropical maize inbred lines. BSR-seq was performed to identify differentially expressed genes and SNPs associated with waterlogging tolerance. Upon waterlogging stress, 354 and 1094 genes were differentially expressed in the tolerant and sensitive pools, respectively, compared to untreated controls. When tolerant and sensitive pools were compared, 593 genes were differentially expressed under untreated and 431 genes under waterlogged conditions, of which 122 genes overlapped. To validate the BSR-seq results, the expression levels of six genes were determined by qRT-PCR. The qRT-PCR results were consistent with BSR-seq results. Comparison of allelic polymorphism in mRNA sequences between tolerant and sensitive pools revealed 165 (normal condition) and 128 (waterlogged condition) high-probability SNPs. We found 18 overlapping SNPs with genomic positions mapped. Eighteen SNPs were contained in 18 genes, and eight and nine of 18 genes were responsive to waterlogging stress in tolerant and sensitive lines, respectively. Six alleles of the 18 originated from tolerant pool were significantly up-regulated under waterlogging, but not those from sensitive pool. Importantly, one allele (GRMZM2G055704) of the six genes was mapped between umc1619 and umc1948 on chromosome 1 where a QTL associated with waterlogging tolerance was identified in a previous research, strongly indicating that GRMZM2G055704 is a candidate gene responsive to waterlogging. Our research contributes to the knowledge of the molecular mechanism for waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Hewei Du
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
- College of Life Science, Yangtze UniversityJingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze UniversityJingzhou, China
| | - Jianxiong Zhu
- College of Life Science, Yangtze UniversityJingzhou, China
| | - Hang Su
- College of Life Science, Yangtze UniversityJingzhou, China
| | - Ming Huang
- College of Life Science, Yangtze UniversityJingzhou, China
| | - Hongwei Wang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Shuangcheng Ding
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Binglin Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - An Luo
- College of Life Science, Yangtze UniversityJingzhou, China
| | - Shudong Wei
- College of Life Science, Yangtze UniversityJingzhou, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Yunbi Xu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco, Mexico
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
132
|
Yao Y, Chen X, Wu AM. ERF-VII members exhibit synergistic and separate roles in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1329073. [PMID: 28537474 PMCID: PMC5566254 DOI: 10.1080/15592324.2017.1329073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ethylene response factor VII (ERF-VII) transcription factor has been reported to be involved in multiple different stress responses. In a previous study, we showed that ERF74 and ERF75 play a redundant role in the upregulation of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD) transcription and enhance the oxygen species (ROS) burst during early stages of the stress response. Induction of stress marker genes and ROS-scavenging enzymes under various stress conditions are dependent on this ROS burst. Here, we propose an assumption that ERF71-ERF75 have different functions and act synergistically in response to stresses in Arabidopsis. ERF74 and ERF75 are involved in controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining H2O2 homeostasis in Arabidopsis as we previously reported. ERF71 and ERF73 may have a role in supervising plant intracellular ROS homeostasis, whereas ERF72 may only act as an activator of ERF74 and ERF75 in the stress response.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- CONTACT Ai-Min Wu College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Road, Guangzhou, Guangdong 510642, China
| |
Collapse
|
133
|
Liu B, Sun L, Ma L, Hao FS. Both AtrbohD and AtrbohF are essential for mediating responses to oxygen deficiency in Arabidopsis. PLANT CELL REPORTS 2017; 36:947-957. [PMID: 28337518 DOI: 10.1007/s00299-017-2128-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/10/2017] [Indexed: 05/21/2023]
Abstract
Both AtrbohD and AtrbohF promote the increases in activities of ADH, PDC, LDH, and Ca2+ levels, and induce the expression of multiple hypoxia response genes, thus improving Arabidopsis adaptation to oxygen deficiency. NADPH oxidase AtrbohD and AtrbohF cooperatively play key roles in regulation of growth and stress signaling in Arabidopsis. However, reports on AtrbohD and AtrbohF functioning together in hypoxia signaling are scarce, and the underlying mechanisms remain elusive. Here, we show that the double null mutant atrbohD/F is more sensitive to oxygen deprivation compared with wild type (WT) and the single mutant atrbohD and atrbohF. Under oxygen deficiency, enhancements of the transcripts of alcohol dehydrogenase 1 (ADH1) and pyruvate decarboxylase 1 (PDC1) and the activities of ADH, PDC and lactate dehydrogenase in WT are clearly reduced in the single mutants, and more strongly reduced in the double mutant. Moreover, increases in the production of ATP, H2O2 and Ca2+ in WT are significantly arrested in atrbohD, atrbohF, and especially in atrbohD/F. Hypoxia-promoted rise in the expression of some hypoxic responsive genes is also inhibited in atrbohD/F relative to WT, atrbohD and atrbohF. These genes include ethylene response factor 73, lactate dehydrogenase, MYB transcription factor 2, sucrose synthase 1 (SUS1), SUS4, heat stress transcription factor A2 and heat-shock protein 18.2. These results suggest that both AtrbohD and AtrbohF are essential for mediating hypoxia signaling. H2O2 derived from AtrbohD and AtrbohF triggers the Ca2+ increase and induces the expression of multiple hypoxia response genes, thus improving Arabidopsis tolerance to low-oxygen stress. These findings provide new insights into the mechanisms of AtrbohF in regulating the responses to oxygen deprivation in Arabidopsis.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University Jinming Campus, Kaifeng, 475004, China
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lirong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University Jinming Campus, Kaifeng, 475004, China
| | - Liya Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University Jinming Campus, Kaifeng, 475004, China
- Anci District Agricultural Bureau of Langfang, Langfang, 065000, China
| | - Fu-Shun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University Jinming Campus, Kaifeng, 475004, China.
| |
Collapse
|
134
|
Li Z, Yuan S, Jia H, Gao F, Zhou M, Yuan N, Wu P, Hu Q, Sun D, Luo H. Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:433-446. [PMID: 27638479 PMCID: PMC5362689 DOI: 10.1111/pbi.12638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 05/18/2023]
Abstract
Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild-type controls, modified expression of heat-shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up-regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress-related genes was also impacted in Fld-expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.
Collapse
Affiliation(s)
- Zhigang Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Shuangrong Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Haiyan Jia
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centreand National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Fangyuan Gao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- Crop Research InstituteSichuan Academy of Agricultural SciencesChengduSichuanChina
| | - Man Zhou
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Ning Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Peipei Wu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
135
|
Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat Commun 2017; 8:14690. [PMID: 28332493 PMCID: PMC5376641 DOI: 10.1038/ncomms14690] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023] Open
Abstract
Crop yield loss due to flooding is a threat to food security. Submergence-induced hypoxia in plants results in stabilization of group VII ETHYLENE RESPONSE FACTORs (ERF-VIIs), which aid survival under these adverse conditions. ERF-VII stability is controlled by the N-end rule pathway, which proposes that ERF-VII N-terminal cysteine oxidation in normoxia enables arginylation followed by proteasomal degradation. The PLANT CYSTEINE OXIDASEs (PCOs) have been identified as catalysts of this oxidation. ERF-VII stabilization in hypoxia presumably arises from reduced PCO activity. We directly demonstrate that PCO dioxygenase activity produces Cys-sulfinic acid at the N terminus of an ERF-VII peptide, which then undergoes efficient arginylation by an arginyl transferase (ATE1). This provides molecular evidence of N-terminal Cys-sulfinic acid formation and arginylation by N-end rule pathway components, and a substrate of ATE1 in plants. The PCOs and ATE1 may be viable intervention targets to stabilize N-end rule substrates, including ERF-VIIs, to enhance submergence tolerance in agriculture. The N-end rule pathway targets substrate proteins for proteasomal degradation. Here, White et al. show that Arabidopsis PLANT CYSTEINE OXIDASEs show dioxygenase activity producing Cys-sulfinic acid at the N-terminus of target proteins, which then act as direct substrates for arginyl transferase.
Collapse
|
136
|
Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, Song L, He J, Marchant A, Chen XY, Wu AM. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1667-1681. [PMID: 28164334 DOI: 10.1111/nph.14278] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/15/2016] [Indexed: 05/22/2023]
Abstract
Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74-RbohD-ROS signal pathway. We propose a pathway that involves ERF74 acting as an on-off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2 O2 ) homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Run Jun He
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, the First Hospital Affiliated to Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiao Li Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Hai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Mei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Bo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Song
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Alan Marchant
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xiao-Yang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
137
|
Yuan LB, Dai YS, Xie LJ, Yu LJ, Zhou Y, Lai YX, Yang YC, Xu L, Chen QF, Xiao S. Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis. PLANT PHYSIOLOGY 2017; 173:1864-1880. [PMID: 28082717 PMCID: PMC5338657 DOI: 10.1104/pp.16.01803] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Submergence induces hypoxia in plants; exposure to oxygen following submergence, termed reoxygenation, produces a burst of reactive oxygen species. The mechanisms of hypoxia sensing and signaling in plants have been well studied, but how plants respond to reoxygenation remains unclear. Here, we show that reoxygenation in Arabidopsis (Arabidopsis thaliana) involves rapid accumulation of jasmonates (JAs) and increased transcript levels of JA biosynthesis genes. Application of exogenous methyl jasmonate improved tolerance to reoxygenation in wild-type Arabidopsis; also, mutants deficient in JA biosynthesis and signaling were very sensitive to reoxygenation. Moreover, overexpression of the transcription factor gene MYC2 enhanced tolerance to posthypoxic stress, and myc2 knockout mutants showed increased sensitivity to reoxygenation, indicating that MYC2 functions as a key regulator in the JA-mediated reoxygenation response. MYC2 transcriptionally activates members of the VITAMIN C DEFECTIVE (VTC) and GLUTATHIONE SYNTHETASE (GSH) gene families, which encode rate-limiting enzymes in the ascorbate and glutathione synthesis pathways. Overexpression of VTC1 and GSH1 in the myc2-2 mutant suppressed the posthypoxic hypersensitive phenotype. The JA-inducible accumulation of antioxidants may alleviate oxidative damage caused by reoxygenation, improving plant survival after submergence. Taken together, our findings demonstrate that JA signaling interacts with the antioxidant pathway to regulate reoxygenation responses in Arabidopsis.
Collapse
Affiliation(s)
- Li-Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang-Shuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Cong Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Le Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
138
|
Akman M, Kleine R, van Tienderen PH, Schranz EM. Identification of the Submergence Tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana. J Hered 2017; 108:308-317. [DOI: 10.1093/jhered/esx014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/12/2017] [Indexed: 01/03/2023] Open
|
139
|
Narsai R, Secco D, Schultz MD, Ecker JR, Lister R, Whelan J. Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re-oxygenation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:805-824. [PMID: 27859855 DOI: 10.1111/tpj.13418] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
Detailed molecular profiling of Oryza sativa (rice) was carried out to uncover the features that are essential for germination and early seedling growth under anoxic conditions. Temporal analysis of the transcriptome and methylome from germination to young seedlings under aerobic and anaerobic conditions revealed 82% similarity in the transcriptome and no differences in the epigenome up to 24 h. Following germination, significant changes in the transcriptome and DNA methylation were observed between 4-day aerobically and anaerobically grown coleoptiles. A link between the epigenomic state and cell division versus cell elongation is suggested, as no differences in DNA methylation were observed between 24-h aerobically and anaerobically germinating embryos, when there is little cell division. After that, epigenetic changes appear to correlate with differences between cell elongation (anaerobic conditions) versus cell division (aerobic conditions) in the coleoptiles. Re-oxygenation of 3-day anaerobically grown seedlings resulted in rapid transcriptomic changes in DNA methylation in these coleoptiles. Unlike the transcriptome, changes in DNA methylation upon re-oxygenation did not reflect those seen in aerobic coleoptiles, but instead, reverted to a pattern similar to dry seeds. Reversion to the 'dry seed' state of DNA methylation upon re-oxygenation may act to 'reset the clock' for the rapid molecular changes and cell division that result upon re-oxygenation.
Collapse
Affiliation(s)
- Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Vic, 3086, Australia
| | - David Secco
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Matthew D Schultz
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Vic, 3086, Australia
| |
Collapse
|
140
|
Giuntoli B, Licausi F, van Veen H, Perata P. Functional Balancing of the Hypoxia Regulators RAP2.12 and HRA1 Takes Place in vivo in Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:591. [PMID: 28487707 PMCID: PMC5403939 DOI: 10.3389/fpls.2017.00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Plants are known to respond to variations in cellular oxygen availability and distribution by quickly adapting the transcription rate of a number of genes, generally associated to improved energy usage pathways, oxygen homeostasis and protection from harmful products of anaerobic metabolism. In terrestrial plants, such coordinated gene expression program is promoted by a conserved subfamily of ethylene responsive transcription factors called ERF-VII, which act as master activators of hypoxic gene transcription. Their abundance is directly regulated by oxygen through a mechanism of targeted proteolysis present under aerobic conditions, which is triggered by ERF-VII protein oxidation. Beside this, in Arabidopsis thaliana, the activity of the ERF-VII factor RAP2.12 has been shown to be restrained and made transient by the hypoxia-inducible transcription factor HRA1. This feedback mechanism has been proposed to modulate ERF-VII activity in the plant under fluctuating hypoxia, thereby enhancing the flexibility of the response. So far, functional balancing between RAP2.12 and HRA1 has been assessed in isolated leaf protoplasts, resulting in an inverse relationship between HRA1 amount and activation of RAP2.12 target promoters. In the present work, we showed that HRA1 is effective in balancing RAP2.12 activity in whole arabidopsis plants. Examination of a segregating population, generated from RAP2.12 and HRA1 over-expressing plants, led to the first quantitative proof that, over a range of either transgene expression levels, HRA1 counteracts the phenotypic and transcriptional effects of RAP2.12. This report supports the occurrence of fine-tuned regulation of the hypoxic response under physiological growth conditions.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Francesco Licausi
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Biology Department, University of PisaPisa, Italy
| | - Hans van Veen
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- *Correspondence: Pierdomenico Perata
| |
Collapse
|
141
|
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/Ethylene Response Factors in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:150. [PMID: 28270817 PMCID: PMC5318435 DOI: 10.3389/fpls.2017.00150] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Multiple environmental stresses affect growth and development of plants. Plants try to adapt under these unfavorable condition through various evolutionary mechanisms like physiological and biochemical alterations connecting various network of regulatory processes. Transcription factors (TFs) like APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs) are an integral component of these signaling cascades because they regulate expression of a wide variety of down stream target genes related to stress response and development through different mechanism. This downstream regulation of transcript does not always positively or beneficially affect the plant but also they display some developmental defects like senescence and reduced growth under normal condition or sensitivity to stress condition. Therefore, tight auto/cross regulation of these TFs at transcriptional, translational and domain level is crucial to understand. The present manuscript discuss the multiple regulation and advantage of plasticity and specificity of these family of TFs to a wide or single downstream target(s) respectively. We have also discussed the concern which comes with the unwanted associated traits, which could only be averted by further study and exploration of these AP2/ERFs.
Collapse
Affiliation(s)
- Ujjal J. Phukan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Gajendra S. Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Vineeta Tripathi
- Botany Division, CSIR-Central Drug Research InstituteLucknow, India
| | - Rakesh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
- *Correspondence: Rakesh K. Shukla
| |
Collapse
|
142
|
The ERF transcription factor family in cassava: genome-wide characterization and expression analyses against drought stress. Sci Rep 2016; 6:37379. [PMID: 27869212 PMCID: PMC5116755 DOI: 10.1038/srep37379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Cassava (Manihot esculenta) shows strong tolerance to drought stress; however, the mechanisms underlying this tolerance are poorly understood. Ethylene response factor (ERF) family genes play a crucial role in plants responding to abiotic stress. Currently, less information is known regarding the ERF family in cassava. Herein, 147 ERF genes were characterized from cassava based on the complete genome data, which was further supported by phylogenetic relationship, gene structure, and conserved motif analyses. Transcriptome analysis suggested that most of the MeERF genes have similar expression profiles between W14 and Arg7 during organ development. Comparative expression profiles revealed that the function of MeERFs in drought tolerance may be differentiated in roots and leaves of different genotypes. W14 maintained strong tolerance by activating more MeERF genes in roots compared to Arg7 and SC124, whereas Arg7 and SC124 maintained drought tolerance by inducing more MeERF genes in leaves relative to W14. Expression analyses of the selected MeERF genes showed that most of them are significantly upregulated by osmotic and salt stresses, whereas slightly induced by cold stress. Taken together, this study identified candidate MeERF genes for genetic improvement of abiotic stress tolerance and provided new insights into ERF-mediated cassava tolerance to drought stress.
Collapse
|
143
|
Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 2016; 6:37389. [PMID: 27869215 PMCID: PMC5116747 DOI: 10.1038/srep37389] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere.
Collapse
|
144
|
Tsai KJ, Lin CY, Ting CY, Shih MC. Ethylene-Regulated Glutamate Dehydrogenase Fine-Tunes Metabolism during Anoxia-Reoxygenation. PLANT PHYSIOLOGY 2016; 172:1548-1562. [PMID: 27677986 PMCID: PMC5100772 DOI: 10.1104/pp.16.00985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/24/2016] [Indexed: 05/19/2023]
Abstract
Ethylene is an essential hormone in plants that is involved in low-oxygen and reoxygenation responses. As a key transcription factor in ethylene signaling, ETHYLENE INSENSITIVE3 (EIN3) activates targets that trigger various responses. However, most of these targets are still poorly characterized. Through analyses of our microarray data and the published Arabidopsis (Arabidopsis thaliana) EIN3 chromatin immunoprecipitation sequencing data set, we inferred the putative targets of EIN3 during anoxia-reoxygenation. Among them, GDH2, which encodes one subunit of glutamate dehydrogenase (GDH), was chosen for further studies for its role in tricarboxylic acid cycle replenishment. We demonstrated that both GDH1 and GDH2 are induced during anoxia and reoxygenation and that this induction is mediated via ethylene signaling. In addition, the results of enzymatic assays showed that the level of GDH during anoxia-reoxygenation decreased in the ethylene-insensitive mutants ein2-5 and ein3eil1 Global metabolite analysis indicated that the deamination activity of GDH might regenerate 2-oxoglutarate, which is a cosubstrate that facilitates the breakdown of alanine by alanine aminotransferase when reoxygenation occurs. Moreover, ineffective tricarboxylic acid cycle replenishment, disturbed carbohydrate metabolism, reduced phytosterol biosynthesis, and delayed energy regeneration were found in gdh1gdh2 and ethylene mutants during reoxygenation. Taken together, these data illustrate the essential role of EIN3-regulated GDH activity in metabolic adjustment during anoxia-reoxygenation.
Collapse
Affiliation(s)
- Kuen-Jin Tsai
- Institute of Plant Biology, National Taiwan University, Taipei 115, Taiwan (K.-J.T., M.-C.S.); and
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (K.-J.T., C.-Y.L., C.-Y.T., M.-C.S.)
| | - Chih-Yu Lin
- Institute of Plant Biology, National Taiwan University, Taipei 115, Taiwan (K.-J.T., M.-C.S.); and
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (K.-J.T., C.-Y.L., C.-Y.T., M.-C.S.)
| | - Chen-Yun Ting
- Institute of Plant Biology, National Taiwan University, Taipei 115, Taiwan (K.-J.T., M.-C.S.); and
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (K.-J.T., C.-Y.L., C.-Y.T., M.-C.S.)
| | - Ming-Che Shih
- Institute of Plant Biology, National Taiwan University, Taipei 115, Taiwan (K.-J.T., M.-C.S.); and
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (K.-J.T., C.-Y.L., C.-Y.T., M.-C.S.)
| |
Collapse
|
145
|
Chen L, Liao B, Qi H, Xie LJ, Huang L, Tan WJ, Zhai N, Yuan LB, Zhou Y, Yu LJ, Chen QF, Shu W, Xiao S. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. Autophagy 2016; 11:2233-46. [PMID: 26566261 PMCID: PMC4835207 DOI: 10.1080/15548627.2015.1112483] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy involves massive degradation of intracellular components and functions as a conserved system that helps cells to adapt to adverse conditions. In mammals, hypoxia rapidly stimulates autophagy as a cell survival response. Here, we examine the function of autophagy in the regulation of the plant response to submergence, an abiotic stress that leads to hypoxia and anaerobic respiration in plant cells. In Arabidopsis thaliana, submergence induces the transcription of autophagy-related (ATG) genes and the formation of autophagosomes. Consistent with this, the autophagy-defective (atg) mutants are hypersensitive to submergence stress and treatment with ethanol, the end product of anaerobic respiration. Upon submergence, the atg mutants have increased levels of transcripts of anaerobic respiration genes (alcohol dehydrogenase 1, ADH1 and pyruvate decarboxylase 1, PDC1), but reduced levels of transcripts of other hypoxia- and ethylene-responsive genes. Both submergence and ethanol treatments induce the accumulation of reactive oxygen species (ROS) in the rosettes of atg mutants more than in the wild type. Moreover, the production of ROS by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases is necessary for plant tolerance to submergence and ethanol, submergence-induced expression of ADH1 and PDC1, and activation of autophagy. The submergence- and ethanol-sensitive phenotypes in the atg mutants depend on a complete salicylic acid (SA) signaling pathway. Together, our findings demonstrate that submergence-induced autophagy functions in the hypoxia response in Arabidopsis by modulating SA-mediated cellular homeostasis.
Collapse
Affiliation(s)
- Liang Chen
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Bin Liao
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Hua Qi
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Li-Juan Xie
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Li Huang
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Wei-Juan Tan
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Ning Zhai
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Li-Bing Yuan
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Ying Zhou
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Lu-Jun Yu
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Qin-Fang Chen
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Wensheng Shu
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| | - Shi Xiao
- a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China
| |
Collapse
|
146
|
Yu Y, Liu A, Duan X, Wang S, Sun X, Duanmu H, Zhu D, Chen C, Cao L, Xiao J, Li Q, Nisa ZU, Zhu Y, Ding X. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. PLANTA 2016; 244:681-98. [PMID: 27125386 DOI: 10.1007/s00425-016-2532-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION This is an original study focus on ERF gene response to alkaline stress. GsERF6 functions as transcription factor and significantly enhanced plant tolerance to bicarbonate (HCO 3 (-) ) in transgenic Arabidopsis . Alkaline stress is one of the most harmful, but little studied environmental factors, which negatively affects plant growth, development and yield. The cause of alkaline stress is mainly due to the damaging consequence of high concentration of the bicarbonate ion, high-pH, and osmotic shock to plants. The AP2/ERF family genes encode plant-specific transcription factors involved in diverse environmental stresses. However, little is known about their physiological functions, especially in alkaline stress responses. In this study, we functionally characterized a novel ERF subfamily gene, GsERF6 from alkaline-tolerant wild soybean (Glycine soja). In wild soybean, GsERF6 was rapidly induced by NaHCO3 treatment, and its overexpression in Arabidopsis enhanced transgenic plant tolerance to NaHCO3 challenge. Interestingly, GsERF6 transgenic lines also displayed increased tolerance to KHCO3 treatment, but not to high pH stress, implicating that GsERF6 may participate specifically in bicarbonate stress responses. We also found that GsERF6 overexpression up-regulated the transcription levels of bicarbonate-stress-inducible genes such as NADP-ME, H (+)-Ppase and H (+)-ATPase, as well as downstream stress-tolerant genes such as RD29A, COR47 and KINI. GsERF6 overexpression and NaHCO3 stress also altered the expression patterns of plant hormone synthesis and hormone-responsive genes. Conjointly, our results suggested that GsERF6 is a positive regulator of plant alkaline stress by increasing bicarbonate ionic resistance specifically, providing a new insight into the regulation of gene expression under alkaline conditions.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Sunting Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Zaib Un Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
147
|
Zhang JY, Huang SN, Wang G, Xuan JP, Guo ZR. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:244-52. [PMID: 27191596 DOI: 10.1016/j.plaphy.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 05/25/2023]
Abstract
Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress.
Collapse
Affiliation(s)
- Ji-Yu Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Sheng-Nan Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Gang Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ji-Ping Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhong-Ren Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
148
|
Paul MV, Iyer S, Amerhauser C, Lehmann M, van Dongen JT, Geigenberger P. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia. PLANT PHYSIOLOGY 2016; 172:141-53. [PMID: 27372243 PMCID: PMC5074624 DOI: 10.1104/pp.16.00460] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Melanie Verena Paul
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Srignanakshi Iyer
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Carmen Amerhauser
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Martin Lehmann
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Joost T van Dongen
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| | - Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany (M.V.P., S.I., C.A., M.L., P.G.); andInstitute of Biology I, RWTH Aachen University, 52074 Aachen, Germany (J.T.v.D.)
| |
Collapse
|
149
|
Diab H, Limami AM. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH). PLANTS (BASEL, SWITZERLAND) 2016; 5:E25. [PMID: 27258319 PMCID: PMC4931405 DOI: 10.3390/plants5020025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function.
Collapse
Affiliation(s)
- Houssein Diab
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France.
| | - Anis M Limami
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France.
| |
Collapse
|
150
|
Zhu QG, Wang MM, Gong ZY, Fang F, Sun NJ, Li X, Grierson D, Yin XR, Chen KS. Involvement of DkTGA1 Transcription Factor in Anaerobic Response Leading to Persimmon Fruit Postharvest De-Astringency. PLoS One 2016; 11:e0155916. [PMID: 27196670 PMCID: PMC4873192 DOI: 10.1371/journal.pone.0155916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/27/2022] Open
Abstract
Persimmon fruit are unique in accumulating proanthocyanidins (tannins) during development, which cause astringency in mature fruit. In ‘Mopanshi’ persimmon, astringency can be removed by treatment with 95% CO2, which increases the concentrations of ethanol and acetaldehyde by glycolysis, and precipitates the soluble tannin. A TGA transcription factor, DkTGA1, belonging to the bZIP super family, was isolated from an RNA-seq database and real-time quantitative PCR indicated that DkTGA1 was up-regulated by CO2 treatment, in concert with the removal of astringency from persimmon fruit. Dual-luciferase assay revealed that DkTGA1 had a small (less than 2-fold), but significant effect on the promoters of de-astringency-related genes DkADH1, DkPDC2 and DkPDC3, which encode enzymes catalyzing formation of acetaldehyde and ethanol. A combination of DkTGA1 and a second transcription factor, DkERF9, shown previously to be related to de-astringency, showed additive effects on the activation of the DkPDC2 promoter. Yeast one-hybrid assay showed that DkERF9, but not DkTGA1, could bind to the DkPDC2 promoter. Thus, although DkTGA1 expression is positively associated with persimmon fruit de-astringency, trans-activation analyses with DkPDC2 indicates it is likely to act by binding indirectly DkPDC2 promoter, might with helps of DkERF9.
Collapse
Affiliation(s)
- Qing-gang Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Miao-miao Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Zi-yuan Gong
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Ning-jing Sun
- Department of Horticultural Sciences, College of Agriculture, Guangxi University, Nanning, PR China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- * E-mail:
| | - Kun-song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|