101
|
Teillet A, Dybal K, Kerry BR, Miller AJ, Curtis RHC, Hedden P. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS One 2013; 8:e61259. [PMID: 23593446 PMCID: PMC3625231 DOI: 10.1371/journal.pone.0061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 03/11/2013] [Indexed: 12/02/2022] Open
Abstract
Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression.
Collapse
Affiliation(s)
- Alice Teillet
- Rothamsted Research, Harpenden, Herts, United Kingdom.
| | | | | | | | | | | |
Collapse
|
102
|
Xue B, Hamamouch N, Li C, Huang G, Hussey RS, Baum TJ, Davis EL. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. PHYTOPATHOLOGY 2013; 103:175-81. [PMID: 23294405 DOI: 10.1094/phyto-07-12-0173-r] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parasitism genes encode effector proteins that are secreted through the stylet of root-knot nematodes to dramatically modify selected plant cells into giant-cells for feeding. The Mi8D05 parasitism gene previously identified was confirmed to encode a novel protein of 382 amino acids that had only one database homolog identified on contig 2374 within the Meloidogyne hapla genome. Mi8D05 expression peaked in M. incognita parasitic second-stage juveniles within host roots and its encoded protein was limited to the subventral esophageal gland cells that produce proteins secreted from the stylet. Constitutive expression of Mi8D05 in transformed Arabidopsis thaliana plants induced accelerated shoot growth and early flowering but had no visible effects on root growth. Independent lines of transgenic Arabidopsis that expressed a double-stranded RNA complementary to Mi8D05 in host-derived RNA interference (RNAi) tests had up to 90% reduction in infection by M. incognita compared with wild-type control plants, suggesting that Mi8D05 plays a critical role in parasitism by the root-knot nematode. Yeast two-hybrid experiments confirmed the specific interaction of the Mi8D05 protein with plant aquaporin tonoplast intrinsic protein 2 (TIP2) and provided evidence that the Mi8D05 effector may help regulate solute and water transport within giant-cells to promote the parasitic interaction.
Collapse
Affiliation(s)
- Bingye Xue
- North Carolina State University, Department of Plant Pathology, Raleigh 27607, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Quentin M, Abad P, Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. FRONTIERS IN PLANT SCIENCE 2013; 4:53. [PMID: 23493679 PMCID: PMC3595553 DOI: 10.3389/fpls.2013.00053] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 05/17/2023]
Abstract
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Collapse
Affiliation(s)
- Michaëel Quentin
- *Correspondence: Michaël Quentin, Institut Sophia Agrobiotech, UMR INRA 1355 – Université Nice-Sophia Antipolis – CNRS 7254, 400 routes des Chappes, F-06903 Sophia Antipolis, France. e-mail:
| | | | | |
Collapse
|
104
|
de Almeida Engler J, Gheysen G. Nematode-induced endoreduplication in plant host cells: why and how? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:17-24. [PMID: 23194340 DOI: 10.1094/mpmi-05-12-0128-cr] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-parasitic root-knot and cyst nematodes have acquired the ability to induce remarkable changes in host cells during the formation of feeding sites. Root-knot nematodes induce several multinucleate giant cells inside a gall whereas cyst nematodes provoke the formation of a multinucleate syncytium. Both strategies impinge on the deregulation of the cell cycle, involving a major role for endoreduplication. This review will first describe the current knowledge on the control of normal and aberrant cell cycles. Thereafter, we will focus on the role of both cell-cycle routes in the transformation process of root cells into large and highly differentiated feeding sites as induced by the phytoparasitic root-knot and cyst nematodes.
Collapse
|
105
|
Hewezi T, Baum TJ. Manipulation of plant cells by cyst and root-knot nematode effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:9-16. [PMID: 22809272 DOI: 10.1094/mpmi-05-12-0106-fi] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A key feature of sedentary plant-parasitic nematodes is the release of effector proteins from their esophageal gland cells through their stylets into host roots. These proteinaceous stylet secretions have been shown to be crucial for successful parasitism by mediating the transition of normal root cells into specialized feeding sites and by negating plant defenses. Recent technical advances of purifying mRNA from esophageal gland cells of plant-parasitic nematodes coupled with emerging sequencing technologies is steadily expanding our knowledge of nematode effector repertoires. Host targets and biological activities of a number of nematode effectors are continuously being reported and, by now, a first picture of the complexity of sedentary nematode parasitism at the molecular level is starting to take shape. In this review, we highlight effector mechanisms that recently have been uncovered by studying the host-pathogen interaction. These mechanisms range from mediating susceptibility of host plants to the actual triggering of defense responses. In particular, we portray and discuss the mechanisms by which nematode effectors modify plant cell walls, negate host defense responses, alter auxin and polyamine signaling, mimic plant molecules, regulate stress signaling, and activate hypersensitive responses. Continuous molecular characterization of newly discovered nematode effectors will be needed to determine how these effectors orchestrate host signaling pathways and biological processes leading to successful parasitism.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant pathology and Microbiology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
106
|
Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG, Hussey RS, Vodkin LO, Davis EL. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3683-95. [PMID: 22442414 PMCID: PMC3388836 DOI: 10.1093/jxb/ers058] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 05/18/2023]
Abstract
Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode, Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02 protein interacted with a specific (AT4G16260) host plant β-1,3-endoglucanase in both yeast and plant cells, possibly to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the nematode and peak expression of At4g16260 in plant roots coincided at around 3-5 d after root infection by the nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were reduced in nematode susceptibility, suggesting a potential role of host β-1,3-endoglucanase in the defence response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective results suggest that, as with other pathogens, active suppression of host defence is a critical component for successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.
Collapse
Affiliation(s)
- Noureddine Hamamouch
- Longwood University, Department of Biological & Environmental Sciences, Farmville, VA 23909, USA
| | - Chunying Li
- North Carolina State University, Department of Plant Pathology, Raleigh, NC 27607, USA
| | - Tarek Hewezi
- Iowa State University, Department of Plant Pathology, Ames, IA 50011, USA
| | - Thomas J. Baum
- Iowa State University, Department of Plant Pathology, Ames, IA 50011, USA
| | - Melissa G. Mitchum
- University of Missouri, Division of Plant Sciences, Columbia, MO 65211, USA
| | - Richard S. Hussey
- University of Georgia, Department of Plant Pathology, Athens, GA 30602, USA
| | - Lila O. Vodkin
- University of Illinois, Crop Sciences, Urbana-Champaign, IL 61801, USA
| | - Eric L. Davis
- North Carolina State University, Department of Plant Pathology, Raleigh, NC 27607, USA
- To whom correspondence should be addressed: E-mail.
| |
Collapse
|
107
|
Mitchum MG, Wang X, Wang J, Davis EL. Role of nematode peptides and other small molecules in plant parasitism. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:175-95. [PMID: 22578179 DOI: 10.1146/annurev-phyto-081211-173008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular, genetic, and biochemical studies are demonstrating an increasingly important role of peptide signaling in nematode parasitism of plants. To date, the majority of nematode-secreted peptides identified share similarity with plant CLAVATA3/ESR (CLE) peptides, but bioinformatics analyses of nematode genomes have revealed sequences homologous to other classes of plant peptide hormones that may be utilized by these pests. Extracellular host receptors for secreted nematode peptides are beginning to be identified and their roles in parasitism elucidated. Here, we outline recent advances from studies of biologically active nematode-secreted peptides that function as molecular mimics of endogenous plant peptides to promote parasitism. Several strategies are being used to exploit this information to provide new targets for engineering nematode resistance.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
108
|
Swarup R, Péret B. AUX/LAX family of auxin influx carriers-an overview. FRONTIERS IN PLANT SCIENCE 2012; 3:225. [PMID: 23087694 PMCID: PMC3475149 DOI: 10.3389/fpls.2012.00225] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/20/2012] [Indexed: 05/19/2023]
Abstract
Auxin regulates several aspects of plant growth and development. Auxin is unique among plant hormones for exhibiting polar transport. Indole-3-acetic acid (IAA), the major form of auxin in higher plants, is a weak acid and its intercellular movement is facilitated by auxin influx and efflux carriers. Polarity of auxin movement is provided by asymmetric localization of auxin carriers (mainly PIN efflux carriers). PIN-FORMED (PIN) and P-GLYCOPROTEIN (PGP) family of proteins are major auxin efflux carriers whereas AUXIN1/LIKE-AUX1 (AUX/LAX) are major auxin influx carriers. Genetic and biochemical evidence show that each member of the AUX/LAX family is a functional auxin influx carrier and mediate auxin related developmental programmes in different organs and tissues. Of the four AUX/LAX genes, AUX1 regulates root gravitropism, root hair development and leaf phyllotaxy whereas LAX2 regulates vascular development in cotyledons. Both AUX1 and LAX3 have been implicated in lateral root (LR) development as well as apical hook formation whereas both AUX1 and LAX1 and possibly LAX2 are required for leaf phyllotactic patterning.
Collapse
Affiliation(s)
- Ranjan Swarup
- School of Biosciences and Centre for Plant Integrative Biology, University of NottinghamLoughborough, UK
- *Correspondence: Ranjan Swarup, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. e-mail:
| | - Benjamin Péret
- Laboratory of Plant Development Biology, SBVME/Institute for Biotechnology and Environmental Biology, CEA CadaracheSt. Paul lez Durance, France
| |
Collapse
|
109
|
Mazarei M, Liu W, Al-Ahmad H, Arelli PR, Pantalone VR, Stewart CN. Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1193-206. [PMID: 21800143 DOI: 10.1007/s00122-011-1659-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 05/07/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Information about the molecular basis of soybean-SCN interactions is needed to assist future development of effective management tools against this pathogen. Toward this end, soybean transcript abundance was measured using the Affymetrix Soybean Genome Array in a susceptible and a resistant reaction of soybean to SCN infection. Two genetically related soybean sister lines TN02-226 and TN02-275, which are resistant and susceptible, respectively, to the SCN race 2 infection were utilized in these experiments. Pairwise comparisons followed by false discovery rate analysis indicated that the expression levels of 162 transcripts changed significantly in the resistant line, of which 84 increased while 78 decreased. However, in the susceptible line, 1,694 transcripts changed significantly, of which 674 increased while 1,020 decreased. Comparative analyses of these transcripts indicated that a total of 51 transcripts were in common between resistance and susceptible responses. In this set, 42 transcripts increased in the resistant line, but decreased in the susceptible line. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of microarray analysis. Of the transcripts to which a function could be assigned, genes were associated with metabolism, cell wall modification, signal transduction, transcription, and defense. Microarray analyses examining two genetically related soybean lines against the same SCN population provided additional insights into the specific changes in gene expression of a susceptible and a resistant reaction beneficial for identification of genes involved in defense.
Collapse
Affiliation(s)
- Mitra Mazarei
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA.
| | | | | | | | | | | |
Collapse
|
110
|
Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene 2011; 492:19-31. [PMID: 22062000 DOI: 10.1016/j.gene.2011.10.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Plant pathogens have evolved a variety of different strategies that allow them to successfully infect their hosts. Plant-parasitic nematodes secrete numerous proteins into their hosts. These proteins, called effectors, have various functions in the plant cell. The most studied effectors to date are the plant cell wall degrading enzymes, which have an interesting evolutionary history since they are believed to have been acquired from bacteria or fungi by horizontal gene transfer. Extensive genome, transcriptome and proteome studies have shown that plant-parasitic nematodes secrete many additional effectors. The function of many of these is less clear although during the last decade, several research groups have determined the function of some of these effectors. Even though many effectors remain to be investigated, it has already become clear that they can have very diverse functions. Some are involved in suppression of plant defences, while others can specifically interact with plant signalling or hormone pathways to promote the formation of nematode feeding sites. In this review, the most recent progress in the understanding of the function of plant-parasitic nematode effectors is discussed.
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
111
|
Gheysen G, Mitchum MG. How nematodes manipulate plant development pathways for infection. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:415-21. [PMID: 21458361 DOI: 10.1016/j.pbi.2011.03.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 05/19/2023]
Abstract
Sedentary plant-parasitic nematodes establish long term relationships with their hosts. Root vascular cells are transformed into large multinucleate feeding cells from which the nematodes feed for more than one month. Recent transcriptome analyses suggest that feeding cells are different from other plant cell types. Their development, however, remains poorly understood, despite new evidence that appears to confirm previously proposed models, such as the important role of auxin. From the analysis of nematode effector proteins that interact with plant proteins, it has become clear that nematodes manipulate many aspects of plant development, including auxin transport and plant cell differentiation pathways. These studies are also revealing roles for effectors in the inhibition of plant stress and defense responses to establish feeding cells. In the coming years breakthroughs can be expected in our understanding of plant-nematode interactions from the functional analysis of nematode effector genes as well as the involved plant genes.
Collapse
Affiliation(s)
- Godelieve Gheysen
- Ghent University, Department of Molecular Biotechnology, Coupure links 653, 9000 Ghent, Belgium.
| | | |
Collapse
|
112
|
Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, Aitken EAB, Schenk PM, Manners JM, Kazan K. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:733-48. [PMID: 21281113 DOI: 10.1094/mpmi-08-10-0194] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.
Collapse
Affiliation(s)
- Brendan N Kidd
- Commonwealth Scientific and Industrial Research Organization Plant Industy, Queensland Bioscience Precint, St Lucia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Tucker ML, Murphy CA, Yang R. Gene expression profiling and shared promoter motif for cell wall-modifying proteins expressed in soybean cyst nematode-infected roots. PLANT PHYSIOLOGY 2011; 156:319-29. [PMID: 21430185 PMCID: PMC3091069 DOI: 10.1104/pp.110.170357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/21/2011] [Indexed: 05/29/2023]
Abstract
We hypothesized that soybean cyst nematode (SCN; Heterodera glycines) co-opts part or all of one or more innate developmental process in soybean (Glycine max) to establish its feeding structure, syncytium, in soybean roots. The syncytium is formed within the vascular bundle by partial degradation of cell walls and membranes between adjacent parenchyma cells. A mature syncytium incorporates as many as 200 cells into one large multinucleated cell. Gene expression patterns for several cell wall-modifying proteins were compared in multiple tissues undergoing major shifts in cell wall integrity. These included SCN-colonized roots, root tips where vascular differentiation occurs, flooded roots (aerenchyma), adventitious rooting in hypocotyls, and leaf abscission zones. A search in the 5' upstream promoters of these genes identified a motif (SCNbox1: WGCATGTG) common to several genes that were up-regulated in several different tissues. The polygalacturonase 11 promoters (GmPG11a/b) include the SCNbox1 motif. The expression pattern for GmPG11a was examined further in transgenic soybean containing a PG11a promoter fused to a β-glucuronidase (GUS) reporter gene. GUS expression was highest in cells undergoing radial expansion in the stele and/or cell wall dissolution. GUS staining was not observed in cortical cells where a lateral root tip or a growing nematode emerged through the root cortex.
Collapse
Affiliation(s)
- Mark L Tucker
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA.
| | | | | |
Collapse
|
114
|
Haegeman A, Joseph S, Gheysen G. Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology. Mol Biochem Parasitol 2011; 178:7-14. [PMID: 21513748 DOI: 10.1016/j.molbiopara.2011.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
To study interactions between plants and plant-parasitic nematodes, several omics studies have nowadays become extremely useful. Since most data available so far is derived from sedentary nematodes, we decided to improve the knowledge on migratory nematodes by studying the transcriptome of the nematode Pratylenchus coffeae through generating expressed sequence tags (ESTs) on a 454 sequencing platform. In this manuscript we present the generation, assembly and annotation of over 325,000 reads from P. coffeae. After assembling these reads, 56,325 contigs and singletons with an average length of 353bp were selected for further analyses. Homology searches revealed that 25% of these sequences had significant matches to the Swiss-prot/trEMBL database and 29% had significant matches in nematode ESTs. Over 10,000 sequences were successfully annotated, corresponding to over 6000 unique Gene Ontology identifiers and 5000 KEGG orthologues. Different approaches led to the identification of different sequences putatively involved in the parasitism process. Several plant cell wall modifying enzymes were identified, including an arabinogalactan galactosidase, so far identified in cyst nematodes only. Additionally, some new putative cell wall modifying enzymes are present belonging to GHF5 and GHF16, although further functional studies are needed to determine the true role of these proteins. Furthermore, a homologue to a chorismate mutase was found, suggesting that this parasitism gene has a wider occurrence in plant-parasitic nematodes than previously assumed. Finally, the dataset was searched for orthologues against the Meloidogyne genomes and genes involved in the RNAi pathway. In conclusion, the generated transcriptome data of P. coffeae will be very useful in the future for several projects: (1) evolutionary studies of specific gene families, such as the plant cell wall modifying enzymes, (2) the identification and functional analysis of candidate effector genes, (3) the development of new control strategies, e.g. by finding new targets for RNAi and (4) the annotation of the upcoming genome sequence.
Collapse
Affiliation(s)
- Annelies Haegeman
- Ghent University, Department of Molecular Biotechnology, Ghent, Belgium
| | | | | |
Collapse
|