101
|
Finet C, Jaillais Y. Auxology: when auxin meets plant evo-devo. Dev Biol 2012; 369:19-31. [PMID: 22687750 DOI: 10.1016/j.ydbio.2012.05.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022]
Abstract
Auxin is implicated throughout plant growth and development. Although the effects of this plant hormone have been recognized for more than a century, it is only in the past two decades that light has been shed on the molecular mechanisms that regulate auxin homeostasis, signaling, transport, crosstalk with other hormonal pathways as well as its roles in plant development. These discoveries established a molecular framework to study the role of auxin in land plant evolution. Here, we review recent advances in auxin biology and their implications in both micro- and macro-evolution of plant morphology. By analogy to the term 'hoxology', which refers to the critical role of HOX genes in metazoan evolution, we propose to introduce the term 'auxology' to take into account the crucial role of auxin in plant evo-devo.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
102
|
Boot KJM, Libbenga KR, Hille SC, Offringa R, van Duijn B. Polar auxin transport: an early invention. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4213-8. [PMID: 22473986 PMCID: PMC3398450 DOI: 10.1093/jxb/ers106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 05/20/2023]
Abstract
In higher plants, cell-to-cell polar auxin transport (PAT) of the phytohormone auxin, indole-3-acetic acid (IAA), generates maxima and minima that direct growth and development. Although IAA is present in all plant phyla, PAT has only been detected in land plants, the earliest being the Bryophytes. Charophyta, a group of freshwater green algae, are among the first multicellular algae with a land plant-like phenotype and are ancestors to land plants. IAA has been detected in members of Charophyta, but its developmental role and the occurrence of PAT are unknown. We show that naphthylphthalamic acid (NPA)-sensitive PAT occurs in internodal cells of Chara corallina. The relatively high velocity (at least 4-5 cm/h) of auxin transport through the giant (3-5 cm) Chara cells does not occur by simple diffusion and is not sensitive to a specific cytoplasmic streaming inhibitor. The results demonstrate that PAT evolved early in multicellular plant life. The giant Chara cells provide a unique new model system to study PAT, as Chara allows the combining of real-time measurements and mathematical modelling with molecular, developmental, cellular, and electrophysiological studies.
Collapse
Affiliation(s)
- Kees J. M. Boot
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Kees R. Libbenga
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Sander C. Hille
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
| | - Remko Offringa
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Bert van Duijn
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Fytagoras, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
103
|
Hayashi KI. The interaction and integration of auxin signaling components. PLANT & CELL PHYSIOLOGY 2012; 53:965-75. [PMID: 22433459 DOI: 10.1093/pcp/pcs035] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan.
| |
Collapse
|
104
|
Pires ND, Dolan L. Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc Lond B Biol Sci 2012; 367:508-18. [PMID: 22232763 PMCID: PMC3248709 DOI: 10.1098/rstb.2011.0252] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
105
|
Feraru E, Vosolsobě S, Feraru MI, Petrášek J, Kleine-Vehn J. Evolution and Structural Diversification of PILS Putative Auxin Carriers in Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:227. [PMID: 23091477 PMCID: PMC3470039 DOI: 10.3389/fpls.2012.00227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 05/21/2023]
Abstract
The phytohormone auxin contributes to virtually every aspect of the plant development. The spatiotemporal distribution of auxin depends on a complex interplay between auxin metabolism and intercellular auxin transport. Intracellular auxin compartmentalization provides another link between auxin transport processes and auxin metabolism. The PIN-LIKES (PILS) putative auxin carriers localize to the endoplasmic reticulum (ER) and contribute to cellular auxin homeostasis. PILS proteins regulate intracellular auxin accumulation, the rate of auxin conjugation and, subsequently, affect nuclear auxin signaling. Here, we investigate sequence diversification of the PILS family in Arabidopsis thaliana and provide insights into the evolution of these novel putative auxin carriers in plants. Our data suggest that PILS proteins are conserved throughout the plant lineage and expanded during higher plant evolution. PILS proteins diversified early during plant evolution into three clades. Besides the ancient Clade I encompassing non-land plant species, PILS proteins evolved into two clades. The diversification of Clade II and Clade III occurred already at the level of non-vascular plant evolution and, hence, both clades contain vascular and non-vascular plant species. Nevertheless, Clade III contains fewer non- and increased numbers of vascular plants, indicating higher importance of Clade III for vascular plant evolution. Notably, PILS proteins are distinct and appear evolutionarily older than the prominent PIN-FORMED auxin carriers. Moreover, we revealed particular PILS sequence divergence in Arabidopsis and assume that these alterations could contribute to distinct gene regulations and protein functions.
Collapse
Affiliation(s)
- Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Stanislav Vosolsobě
- Department of Faculty of Science, Experimental Plant Biology, Charles UniversityPrague, Czech Republic
| | - Mugurel I. Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Jan Petrášek
- Department of Faculty of Science, Experimental Plant Biology, Charles UniversityPrague, Czech Republic
- Institute of Experimental Botany of the Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Jürgen Kleine-Vehn, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria. e-mail:
| |
Collapse
|
106
|
Swarup R, Péret B. AUX/LAX family of auxin influx carriers-an overview. FRONTIERS IN PLANT SCIENCE 2012; 3:225. [PMID: 23087694 PMCID: PMC3475149 DOI: 10.3389/fpls.2012.00225] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/20/2012] [Indexed: 05/19/2023]
Abstract
Auxin regulates several aspects of plant growth and development. Auxin is unique among plant hormones for exhibiting polar transport. Indole-3-acetic acid (IAA), the major form of auxin in higher plants, is a weak acid and its intercellular movement is facilitated by auxin influx and efflux carriers. Polarity of auxin movement is provided by asymmetric localization of auxin carriers (mainly PIN efflux carriers). PIN-FORMED (PIN) and P-GLYCOPROTEIN (PGP) family of proteins are major auxin efflux carriers whereas AUXIN1/LIKE-AUX1 (AUX/LAX) are major auxin influx carriers. Genetic and biochemical evidence show that each member of the AUX/LAX family is a functional auxin influx carrier and mediate auxin related developmental programmes in different organs and tissues. Of the four AUX/LAX genes, AUX1 regulates root gravitropism, root hair development and leaf phyllotaxy whereas LAX2 regulates vascular development in cotyledons. Both AUX1 and LAX3 have been implicated in lateral root (LR) development as well as apical hook formation whereas both AUX1 and LAX1 and possibly LAX2 are required for leaf phyllotactic patterning.
Collapse
Affiliation(s)
- Ranjan Swarup
- School of Biosciences and Centre for Plant Integrative Biology, University of NottinghamLoughborough, UK
- *Correspondence: Ranjan Swarup, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. e-mail:
| | - Benjamin Péret
- Laboratory of Plant Development Biology, SBVME/Institute for Biotechnology and Environmental Biology, CEA CadaracheSt. Paul lez Durance, France
| |
Collapse
|
107
|
Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. THE PLANT CELL 2011; 23:3961-73. [PMID: 22108406 PMCID: PMC3246335 DOI: 10.1105/tpc.111.088047] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 05/18/2023]
Abstract
The effects of auxins on plant growth and development have been known for more than 100 years, yet our understanding of how plants synthesize this essential plant hormone is still fragmentary at best. Gene loss- and gain-of-function studies have conclusively implicated three gene families, CYTOCHROME P450 79B2/B3 (CYP79B2/B3), YUCCA (YUC), and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE-RELATED (TAA1/TAR), in the production of this hormone in the reference plant Arabidopsis thaliana. Each of these three gene families is believed to represent independent routes of auxin biosynthesis. Using a combination of pharmacological, genetic, and biochemical approaches, we examined the possible relationships between the auxin biosynthetic pathways defined by these three gene families. Our findings clearly indicate that TAA1/TARs and YUCs function in a common linear biosynthetic pathway that is genetically distinct from the CYP79B2/B3 route. In the redefined TAA1-YUC auxin biosynthetic pathway, TAA1/TARs are required for the production of indole-3-pyruvic acid (IPyA) from Trp, whereas YUCs are likely to function downstream. These results, together with the extensive genetic analysis of four pyruvate decarboxylases, the putative downstream components of the TAA1 pathway, strongly suggest that the enzymatic reactions involved in indole-3-acetic acid (IAA) production via IPyA are different than those previously postulated, and a new and testable model for how IAA is produced in plants is needed.
Collapse
Affiliation(s)
- Anna N. Stepanova
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Jeonga Yun
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Linda M. Robles
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Ondrej Novak
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, CZ–783 71 Olomouc, Czech Republic
| | - Wenrong He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden
| | - Jose M. Alonso
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
- Address correspondence to
| |
Collapse
|
108
|
Berckmans B, Vassileva V, Schmid SP, Maes S, Parizot B, Naramoto S, Magyar Z, Kamei CLA, Koncz C, Bögre L, Persiau G, De Jaeger G, Friml J, Simon R, Beeckman T, De Veylder L. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. THE PLANT CELL 2011; 23:3671-83. [PMID: 22003076 PMCID: PMC3229142 DOI: 10.1105/tpc.111.088377] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 05/18/2023]
Abstract
Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.
Collapse
Affiliation(s)
- Barbara Berckmans
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Valya Vassileva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Stephan P.C. Schmid
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Sara Maes
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Satoshi Naramoto
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | - Laszlo Bögre
- Royal Holloway, University of London, Centre for Systems and Synthetic Biology, TW20 0EX Egham, United Kingdom
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
109
|
Leliaert F, Verbruggen H, Zechman FW. Into the deep: New discoveries at the base of the green plant phylogeny. Bioessays 2011; 33:683-92. [PMID: 21744372 DOI: 10.1002/bies.201100035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Frederik Leliaert
- Biology Department, Phycology Research Group, Ghent University, Ghent, Belgium.
| | | | | |
Collapse
|
110
|
Heyl A, Riefler M, Romanov GA, Schmülling T. Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol 2011; 91:246-56. [PMID: 21561682 DOI: 10.1016/j.ejcb.2011.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/20/2022] Open
Abstract
The discovery of cytokinin receptors of Arabidopsis thaliana ten years ago was a milestone in plant hormone research. Since then, research has yielded insights into the biochemical properties and functions of these sensor histidine kinases. Their affinities to both trans-zeatin and isopentenyladenine are in the low nM range. Cytokinin ribosides, cis-zeatin and thidiazuron were established as compounds with genuine cytokinin activity and the first cytokinin antagonists were identified. Numerous functions of cytokinin receptors in plant development, as well as in the plant's responses to the environment, have been elucidated and are summarized. Finally, we address the question how the receptors have evolved during plant evolution.
Collapse
Affiliation(s)
- Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
111
|
|
112
|
Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, Becker B. Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 2011; 11:104. [PMID: 21501468 PMCID: PMC3088898 DOI: 10.1186/1471-2148-11-104] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa (Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the conquest of land. Clearly, the biology of the Zygnematales will receive renewed interest in the future.
Collapse
Affiliation(s)
- Sabina Wodniok
- Biozentrum Köln, Botanik, Universität zu Köln, Zülpicher Strasse 47b, 50674 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
113
|
De Smet I, Beeckman T. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 2011; 12:177-88. [PMID: 21346731 DOI: 10.1038/nrm3064] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
114
|
Bailly A, Yang H, Martinoia E, Geisler M, Murphy AS. Plant Lessons: Exploring ABCB Functionality Through Structural Modeling. FRONTIERS IN PLANT SCIENCE 2011; 2:108. [PMID: 22639627 PMCID: PMC3355715 DOI: 10.3389/fpls.2011.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/17/2011] [Indexed: 05/18/2023]
Abstract
In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality.
Collapse
Affiliation(s)
- Aurélien Bailly
- Plant Biology, Department of Biology, University of FribourgFribourg, Switzerland
- Institute of Plant Biology, Zurich–Basel Plant Science Center, University of ZurichZurich, Switzerland
| | - Haibing Yang
- Department of Horticulture and Landscape Architecture, Purdue UniversityWest Lafayette, IN, USA
| | - Enrico Martinoia
- Institute of Plant Biology, Zurich–Basel Plant Science Center, University of ZurichZurich, Switzerland
| | - Markus Geisler
- Plant Biology, Department of Biology, University of FribourgFribourg, Switzerland
- Institute of Plant Biology, Zurich–Basel Plant Science Center, University of ZurichZurich, Switzerland
- *Correspondence: Markus Geisler, Plant Biology, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. e-mail:
| | - Angus S. Murphy
- Department of Horticulture and Landscape Architecture, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|