101
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
102
|
He F, Pan Y. Purification and characterization of chalcone isomerase from fresh-cut Chinese water-chestnut. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
103
|
Vendemiatti E, Zsögön A, Silva GFFE, de Jesus FA, Cutri L, Figueiredo CRF, Tanaka FAO, Nogueira FTS, Peres LEP. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:35-47. [PMID: 28483052 DOI: 10.1016/j.plantsci.2017.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departament of Plant Biology, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Geraldo Felipe Ferreira E Silva
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Frederico Almeida de Jesus
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lucas Cutri
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Cassia Regina Fernandes Figueiredo
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Francisco André Ossamu Tanaka
- Departament of Phytopathology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP),Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Fábio Tebaldi Silveira Nogueira
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
104
|
Champagne A, Boutry M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus
L.) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
105
|
Escobar-Bravo R, Klinkhamer PG, Leiss KA. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:622-634. [PMID: 28158865 PMCID: PMC5444573 DOI: 10.1093/pcp/pcx014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.
Collapse
|
106
|
Ataide LMS, Pappas ML, Schimmel BCJ, Lopez-Orenes A, Alba JM, Duarte MVA, Pallini A, Schuurink RC, Kant MR. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:300-310. [PMID: 27717467 DOI: 10.1016/j.plantsci.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 05/20/2023]
Abstract
Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.
Collapse
Affiliation(s)
- Livia M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria L Pappas
- Department of Agricultural Development, Laboratory of Agricultural Entomology and Zoology, Democritus University of Thrace, Pantazidou 193, 68 200, Orestiada, Greece
| | - Bernardus C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Antonio Lopez-Orenes
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marcus V A Duarte
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
107
|
Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, Telewski FW, Brandizzi F, Howe GA. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5313-5324. [PMID: 27481446 PMCID: PMC5049383 DOI: 10.1093/jxb/erw292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290 The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Starla Zemelis-Durfee
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jameel M Al-Haddad
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Frank W Telewski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
108
|
Stratmann JW, Bequette CJ. Hairless but no longer clueless: understanding glandular trichome development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5285-5287. [PMID: 27703083 PMCID: PMC5049401 DOI: 10.1093/jxb/erw339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
109
|
Campos ML, Yoshida Y, Major IT, de Oliveira Ferreira D, Weraduwage SM, Froehlich JE, Johnson BF, Kramer DM, Jander G, Sharkey TD, Howe GA. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun 2016; 7:12570. [PMID: 27573094 PMCID: PMC5155487 DOI: 10.1038/ncomms12570] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022] Open
Abstract
Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.
Collapse
Affiliation(s)
- Marcelo L. Campos
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
| | - Yuki Yoshida
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
| | - Ian T. Major
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
| | | | - Sarathi M. Weraduwage
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - John E. Froehlich
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brendan F. Johnson
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
| | - David M. Kramer
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Thomas D. Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Gregg A. Howe
- Department of Energy-Plant Research Laboratory, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
110
|
Barrantes W, López-Casado G, García-Martínez S, Alonso A, Rubio F, Ruiz JJ, Fernández-Muñoz R, Granell A, Monforte AJ. Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. FRONTIERS IN PLANT SCIENCE 2016; 7:1172. [PMID: 27582742 PMCID: PMC4987366 DOI: 10.3389/fpls.2016.01172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/21/2016] [Indexed: 05/22/2023]
Abstract
We have studied a genomic library of introgression lines from the Solanum pimpinellifolium accession TO-937 into the genetic background of the "Moneymaker" cultivar in order to evaluate the accession's breeding potential. Overall, no deleterious phenotypes were observed, and the plants and fruits were phenotypically very similar to those of "Moneymaker," which confirms the feasibility of translating the current results into elite breeding programs. We identified chromosomal regions associated with traits that were both vegetative (plant vigor, trichome density) and fruit-related (morphology, organoleptic quality, color). A trichome-density locus was mapped on chromosome 10 that had not previously been associated with insect resistance, which indicates that the increment of trichomes by itself does not confer resistance. A large number of quantitative trait loci (QTLs) have been identified for fruit weight. Interestingly, fruit weight QTLs on chromosomes 1 and 10 showed a magnitude effect similar to that of QTLs previously defined as important in domestication and diversification. Low variability was observed for fruit-shape-related traits. We were, however, able to identify a QTL for shoulder height, although the effects were quite low, thus demonstrating the suitability of the current population for QTL detection. Regarding organoleptic traits, consistent QTLs were detected for soluble solid content (SSC). Interestingly, QTLs on chromosomes 2 and 9 increased SSC but did not affect fruit weight, making them quite promising for introduction in modern cultivars. Three ILs with introgressions on chromosomes 1, 2, and 10 increased the internal fruit color, making them candidates for increasing the color of modern cultivars. Comparing the QTL detection between this IL population and a recombinant inbred line population from the same cross, we found that QTL stability across generations depended on the trait, as it was very high for fruit weight but low for organoleptic traits. This difference in QTL stability may be due to a predominant additive gene action for QTLs involved in fruit weight, whereas epistatic and genetic background interactions are most likely important for the other traits.
Collapse
Affiliation(s)
- Walter Barrantes
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Polytechnic University of ValenciaValencia, Spain
- Estación Experimental Agrícola Fabio Baudrit Moreno, Universidad de Costa RicaAlajuela, Costa Rica
| | - Gloria López-Casado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, University of MalagaAlgarrobo-Costa, Spain
| | - Santiago García-Martínez
- Departamento de Biología Aplicada, Escuela Politécnica Superior de Orihuela, Universidad Miguel HernándezOrihuela, Spain
| | - Aranzazu Alonso
- Departamento de Biología Aplicada, Escuela Politécnica Superior de Orihuela, Universidad Miguel HernándezOrihuela, Spain
| | - Fernando Rubio
- Departamento de Biología Aplicada, Escuela Politécnica Superior de Orihuela, Universidad Miguel HernándezOrihuela, Spain
| | - Juan J. Ruiz
- Departamento de Biología Aplicada, Escuela Politécnica Superior de Orihuela, Universidad Miguel HernándezOrihuela, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, University of MalagaAlgarrobo-Costa, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Polytechnic University of ValenciaValencia, Spain
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Polytechnic University of ValenciaValencia, Spain
| |
Collapse
|
111
|
Martí R, Roselló S, Cebolla-Cornejo J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers (Basel) 2016; 8:E58. [PMID: 27331820 PMCID: PMC4931623 DOI: 10.3390/cancers8060058] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
A diet rich in vegetables has been associated with a reduced risk of many diseases related to aging and modern lifestyle. Over the past several decades, many researches have pointed out the direct relation between the intake of bioactive compounds present in tomato and a reduced risk of suffering different types of cancer. These bioactive constituents comprise phytochemicals such as carotenoids and polyphenols. The direct intake of these chemoprotective molecules seems to show higher efficiencies when they are ingested in its natural biological matrix than when they are ingested isolated or in dietary supplements. Consequently, there is a growing trend for improvement of the contents of these bioactive compounds in foods. The control of growing environment and processing conditions can ensure the maximum potential accumulation or moderate the loss of bioactive compounds, but the best results are obtained developing new varieties via plant breeding. The modification of single steps of metabolic pathways or their regulation via conventional breeding or genetic engineering has offered excellent results in crops such as tomato. In this review, we analyse the potential of tomato as source of the bioactive constituents with cancer-preventive properties and the result of modern breeding programs as a strategy to increase the levels of these compounds in the diet.
Collapse
Affiliation(s)
- Raúl Martí
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Salvador Roselló
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Jaime Cebolla-Cornejo
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Cno., De Vera s/n, 46022 València, Spain.
| |
Collapse
|
112
|
Berger A, Preinfalk A, Robien W, Brecker L, Valant-Vetschera K, Schinnerl J. New reports on flavonoids, benzoic- and chlorogenic acids as rare features in the Psychotria alliance (Rubiaceae). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
113
|
Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures. PLoS One 2016; 11:e0151067. [PMID: 26943362 PMCID: PMC4778906 DOI: 10.1371/journal.pone.0151067] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.
Collapse
Affiliation(s)
- Zhengkun Qiu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiaoxuan Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jianchang Gao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yanmei Guo
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zejun Huang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yongchen Du
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
114
|
Nakashima T, Wada H, Morita S, Erra-Balsells R, Hiraoka K, Nonami H. Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry. Anal Chem 2016; 88:3049-57. [PMID: 26845634 DOI: 10.1021/acs.analchem.5b03366] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this report, we developed the pressure probe electrospray ionization-mass spectrometry with internal electrode capillary (IEC-PPESI-MS) which enables high spatial-resolution cell sampling, precise postsampling manipulation, and high detection sensitivity. Using this technique, a comparative in situ single-cell metabolite profiling of stalk and glandular cells, the two adjacent cell types comprising a trichome unit in tomato plants (Solanum lycopersicum L.), were performed to clarify the extent of metabolic differentiation between two cell types as well as among different types of trichomes. Owing to high sensitivity of the system, less than a picoliter cell sap from a single stalk cell sufficiently yielded a number of peaks of amino acids, organic acids, carbohydrates, and flavonoids. The minimal cell sap removal from a stalk cell without severe disturbance of trichome structure enabled sequential analysis of adjacent glandular cell on the same trichome, which showed the presence of striking differences in metabolite compositions between two adjacent cell types. Comparison among different types of trichome also revealed significant variations in metabolite profiles, particularly in flavonoids and acyl sugars compositions. Some metabolites were found only in specific cell types or particular trichome types. Although extensive metabolomics analysis of glandular cells of tomato trichomes has been previously documented, this is the first report describing cell-to-cell variations in metabolite compositions of stalk and glandular cells as well as in different trichome types. Further application of this technique may provide new insights into distinct metabolism in plant cells displaying variations in shape, size, function and physicochemical properties.
Collapse
Affiliation(s)
- Taiken Nakashima
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University , Matsuyama, 790-8566, Japan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO) , Chikugo, 833-0041, Japan
| | - Satoshi Morita
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO) , Chikugo, 833-0041, Japan
| | - Rosa Erra-Balsells
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires, 1428, Argentina
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi , Kofu, 400-8511, Japan
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University , Matsuyama, 790-8566, Japan
| |
Collapse
|
115
|
In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proc Natl Acad Sci U S A 2015; 113:E239-48. [PMID: 26715757 DOI: 10.1073/pnas.1517930113] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant glandular secreting trichomes are epidermal protuberances that produce structurally diverse specialized metabolites, including medically important compounds. Trichomes of many plants in the nightshade family (Solanaceae) produce O-acylsugars, and in cultivated and wild tomatoes these are mixtures of aliphatic esters of sucrose and glucose of varying structures and quantities documented to contribute to insect defense. We characterized the first two enzymes of acylsucrose biosynthesis in the cultivated tomato Solanum lycopersicum. These are type I/IV trichome-expressed BAHD acyltransferases encoded by Solyc12g006330--or S. lycopersicum acylsucrose acyltransferase 1 (Sl-ASAT1)--and Solyc04g012020 (Sl-ASAT2). These enzymes were used--in concert with two previously identified BAHD acyltransferases--to reconstruct the entire cultivated tomato acylsucrose biosynthetic pathway in vitro using sucrose and acyl-CoA substrates. Comparative genomics and biochemical analysis of ASAT enzymes were combined with in vitro mutagenesis to identify amino acids that influence CoA ester substrate specificity and contribute to differences in types of acylsucroses that accumulate in cultivated and wild tomato species. This work demonstrates the feasibility of the metabolic engineering of these insecticidal metabolites in plants and microbes.
Collapse
|
116
|
Bergau N, Bennewitz S, Syrowatka F, Hause G, Tissier A. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC PLANT BIOLOGY 2015; 15:289. [PMID: 26654876 PMCID: PMC4676884 DOI: 10.1186/s12870-015-0678-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/07/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Type VI glandular trichomes represent the most abundant trichome type on leaves and stems of tomato plants and significantly contribute to herbivore resistance, particularly in the wild species. Despite this, their development has been poorly studied so far. The goal of this study is to fill this gap. Using a variety of cell imaging techniques, a detailed record of the anatomy and developmental stages of type VI trichomes in the cultivated tomato (Solanum lycopersicum) and in a related wild species (S. habrochaites) is provided. RESULTS In both species, the development of these structures follows a highly reproducible cell division pattern. The two species differ in the shape of the trichome head which is round in S. habrochaites and like a four-leaf clover in S. lycopersicum, correlating with the presence of a large intercellular cavity in S. habrochaites where the produced metabolites accumulate. In both species, the junction between the intermediate cell and the four glandular cells constitute a breaking point facilitating the decapitation of the trichome and thereby the quick release of the metabolites. A strongly auto-fluorescent compound transiently accumulates in the early stages of development suggesting a potential role in the differentiation process. Finally, immuno-labelling with antibodies recognizing specific cell wall components indicate a key role of pectin and arabinogalactan components in the differentiation of type VI trichomes. CONCLUSIONS Our observations explain the adaptive morphologies of type VI trichomes for metabolite storage and release and provide a framework for further studies of these important metabolic cellular factories. This is required to better exploit their potential, in particular for the breeding of pest resistance in tomato.
Collapse
Affiliation(s)
- Nick Bergau
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Stefan Bennewitz
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Frank Syrowatka
- Interdisciplinary Center for Material Sciences, Martin-Luther University Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120, Halle, Saale, Germany.
| | - Gerd Hause
- Biocenter of the Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle, Saale, Germany.
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| |
Collapse
|
117
|
Park YS, Bae DW, Ryu CM. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize. PLoS One 2015; 10:e0143879. [PMID: 26630288 PMCID: PMC4667997 DOI: 10.1371/journal.pone.0143879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.
Collapse
Affiliation(s)
- Yong-Soon Park
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 305–806, South Korea
- Agricultural Microbiology Division, National Academy of Agricultural Science, RDA, Wanju, 565–851, South Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju, 660–701, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 305–806, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, 305–350, South Korea
- * E-mail:
| |
Collapse
|
118
|
Kosonen M, Lännenpää M, Ratilainen M, Kontunen-Soppela S, Julkunen-Tiitto R. Decreased anthocyanidin reductase expression strongly decreases silver birch (Betula pendula) growth and alters accumulation of phenolics. PHYSIOLOGIA PLANTARUM 2015; 155:384-399. [PMID: 25611902 DOI: 10.1111/ppl.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 12/17/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Phenolics, formed via a complex phenylpropanoid pathway, are important defensive agents in plants and are strongly affected by nitrogen (N) fertilization. Proanthocyanidins (PAs) are one possible endpoint of the phenylpropanoid pathway, and anthocyanidin reductase (ANR) represents a key enzyme in PA biosynthesis. In this study, the expression of silver birch (Betula pendula) anthocyanidin reductase BpANR was inhibited using the RNA interference (RNAi) method, in three consequent BpANR RNAi (ANRi birches) lines. The growth, the metabolites of the phenylpropanoid pathway, and the number of resin glands of the ANRi birches were studied when grown at two N levels. ANRi birches showed decreased growth and reduction in PA content, while the accumulation of total phenolics in both stems and leaves increased. Moreover, ANRi birches produced more resin glands than did wild-type (WT) birches. The response of ANRi birches to N depletion varied compared with that of WT birches, and in particular, the concentrations of some phenolics in stems increased in WT birches and decreased in ANRi birches. Because the inhibition of PAs biosynthesis via ANR seriously affected birch growth and resulted in accumulation of the precursors, the native level of PAs in plant tissues is assumed to be the prerequisite for normal plant growth. This draws attention to the real plant developmental importance of PAs in plant tissues.
Collapse
Affiliation(s)
- Minna Kosonen
- Department of Biology, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Mika Lännenpää
- BioCarelia Research Laboratory, Juurikka, 82580, Finland
| | - Milla Ratilainen
- Department of Biology, University of Eastern Finland, Joensuu, FI-80101, Finland
| | | | | |
Collapse
|
119
|
Howe GA, Herde M. Interaction of plant defense compounds with the insect gut: new insights from genomic and molecular analyses. CURRENT OPINION IN INSECT SCIENCE 2015; 9:62-68. [PMID: 32846710 DOI: 10.1016/j.cois.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 06/11/2023]
Abstract
The co-evolutionary conflict between insect herbivores and their host plants is profoundly influenced by biochemical reactions associated with passage of toxin-laden plant material through the herbivore digestive canal. Insect herbivores provide excellent models in which to understand the mechanistic interplay between nutrition and detoxification, how plant defense compounds hijack these processes, and how insects adapt to host defense chemistry. Expanding genome sequence information and genetic approaches to manipulate gene function in both interacting partners are providing new insights into the genetic underpinnings of host preference and plasticity in gut physiology. Fundamental knowledge gained from these studies has practical application in understanding how insects evolve resistance to pesticides, and may also inform efforts to better understand how plant chemicals impact human health.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Marco Herde
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
120
|
Lijuan C, Huiming G, Yi L, Hongmei C. Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. PLANT CELL REPORTS 2015; 34:885-94. [PMID: 25632925 DOI: 10.1007/s00299-015-1751-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE EaCHS1 functions in the tolerance of plantlets to salinity stress by maintaining ROS homeostasis. Chalcone synthase (CHS) is an essential enzyme in the biosynthesis of flavonoids. Expression of CHS is governed by a wide range of environmental stimuli, including UV light, pathogen attack, and circadian clocks. However, little research exists on the relationship between CHS and salinity stress. In this work, we constructed separate overexpression and RNA interference vectors of EaCHS1, and transferred them into tobacco. Overexpression of EaCHS1 increased the production of downstream flavonoids and the expressions of related genes in the phenylpropanoid pathway. It also improved resistance to salinity stress during seed germination and root development. In contrast, heterologous silencing of endogenous CHS in tobacco by a conserved EaCHS1 fragment had opposite effect. Together, our results indicated that changing the expression level of EaCHS1 in plants alters the accumulation of flavonoids and regulates plantlet tolerance to salinity stress by maintaining ROS homeostasis.
Collapse
Affiliation(s)
- Chen Lijuan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | |
Collapse
|
121
|
Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 2015. [DOI: 10.1007/s13199-015-0319-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
122
|
Lai B, Hu B, Qin YH, Zhao JT, Wang HC, Hu GB. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics 2015; 16:225. [PMID: 25887579 PMCID: PMC4376514 DOI: 10.1186/s12864-015-1433-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/06/2015] [Indexed: 01/06/2023] Open
Abstract
Background The fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp. The pericarp of litchi has been the focus of studies associated with fruit size, coloration, cracking and shelf life. However, research at the molecular level has been limited by the lack of genomic and transcriptomic information. In this study, an analysis of the transcriptome of litchi pericarp was performed to obtain information regarding the molecular mechanisms underlying the physiological changes in the pericarp, including those leading to fruit surface coloration. Results Coincident with the rapid break down of chlorophyll, but substantial increase of anthocyanins in litchi pericarp as fruit developed, two major physiological changes, degreening and pigmentation were visually apparent. In this study, a cDNA library of litchi pericarp with three different coloration stages was constructed. A total of 4.7 Gb of raw RNA-Seq data was generated and this was then de novo assembled into 51,089 unigenes with a mean length of 737 bp. Approximately 70% of the unigenes (34,705) could be annotated based on public protein databases and, of these, 3,649 genes were significantly differentially expressed between any two coloration stages, while 156 genes were differentially expressed among all three stages. Genes encoding enzymes involved in chlorophyll degradation and flavonoid biosynthesis were identified in the transcriptome dataset. The transcript expression patterns of the Stay Green (SGR) protein suggested a key role in chlorophyll degradation in the litchi pericarp, and this conclusion was supported by the result of an assay over-expressing LcSGR protein in tobacco leaves. We also found that the expression levels of most genes especially late anthocyanin biosynthesis genes were co-ordinated up-regulated coincident with the accumulation of anthocyanins, and that candidate MYB transcription factors that likely regulate flavonoid biosynthesis were identified. Conclusions This study provides a large collection of transcripts and expression profiles associated with litchi fruit maturation processes, including coloration. Since most of the unigenes were annotated, they provide a platform for litchi functional genomic research within this species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1433-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Yong-Hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Hui-Cong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
123
|
Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C, Yoshida K, Krofta K, Satake H, Terauchi R, Ono E. The Draft Genome of Hop (Humulus lupulus), an Essence for Brewing. PLANT & CELL PHYSIOLOGY 2015; 56:428-41. [PMID: 25416290 DOI: 10.1093/pcp/pcu169] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The female flower of hop (Humulus lupulus var. lupulus) is an essential ingredient that gives characteristic aroma, bitterness and durability/stability to beer. However, the molecular genetic basis for identifying DNA markers in hop for breeding and to study its domestication has been poorly established. Here, we provide draft genomes for two hop cultivars [cv. Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wild hop [H. lupulus var. cordifolius; also known as Karahanasou (KR)]. Sequencing and de novo assembly of genomic DNA from heterozygous SW plants generated scaffolds with a total size of 2.05 Gb, corresponding to approximately 80% of the estimated genome size of hop (2.57 Gb). The scaffolds contained 41,228 putative protein-encoding genes. The genome sequences for SZ and KR were constructed by aligning their short sequence reads to the SW reference genome and then replacing the nucleotides at single nucleotide polymorphism (SNP) sites. De novo RNA sequencing (RNA-Seq) analysis of SW revealed the developmental regulation of genes involved in specialized metabolic processes that impact taste and flavor in beer. Application of a novel bioinformatics tool, phylogenetic comparative RNA-Seq (PCP-Seq), which is based on read depth of genomic DNAs and RNAs, enabled the identification of genes related to the biosynthesis of aromas and flavors that are enriched in SW compared to KR. Our results not only suggest the significance of historical human selection process for enhancing aroma and bitterness biosyntheses in hop cultivars, but also serve as crucial information for breeding varieties with high quality and yield.
Collapse
Affiliation(s)
- Satoshi Natsume
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Jun Murata
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Hiromi Toyonaga
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Josef Patzak
- Hop Research Institute Co., Ltd., 438-01 Zatec, Kadanska 2525, Czech Republic
| | - Motoshige Takagi
- Technology Development Department, Suntory System Technology (SST) Ltd., 2-1-5, Dojima, Kita-ku, Osaka, 530-8204 Japan
| | - Hiroki Yaegashi
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Chikako Mitsuoka
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Kentaro Yoshida
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Karel Krofta
- Hop Research Institute Co., Ltd., 438-01 Zatec, Kadanska 2525, Czech Republic
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| |
Collapse
|
124
|
Dastmalchi M, Dhaubhadel S. Soybean chalcone isomerase: evolution of the fold, and the differential expression and localization of the gene family. PLANTA 2015; 241:507-23. [PMID: 25385351 DOI: 10.1007/s00425-014-2200-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION Soybean chalcone isomerase (CHI) family contains twelve members with unique evolutionary background, expression patterns and is compartmentalized to specific subcellular locations. The phenylpropanoid pathway produces a diverse array of plant natural products. A key branch-point enzyme, chalcone isomerase, catalyzes the reaction producing flavanones, the backbone for many downstream metabolites such as flavonoids and isoflavonoids. We have identified twelve soybean GmCHIs that fall into four subfamilies. The study of this family in soybean in the context of various CHIs and CHI-like proteins, across divisions in the plant kingdom and beyond, shows an evolutionary journey from fatty acid-binding proteins (FAPs) to sterically restricted folds that gave rise to the chalcone-to-flavanone isomerase. There are four GmCHIs with this functionality, three of which belong to a legume-specific clade known as 'type II' CHIs. Tissue-specific expression of eight core members of the soybean CHI family showed differential temporal and spatial expression, pointing to the potential function of GmCHI1A in seed isoflavonoid production. Promoter analysis of the GmCHIs described the minutiae of sub-organ expression patterns. Subcellular localization of the family was conducted to investigate the possibility of pathway-specific compartmentalization. Subfamilies 1, 2 and 4 localized to the nucleus and cytoplasm, with nuclear localization of CHIs raising questions about alternate function. GmCHI3 isoforms localized to the chloroplast, which, in conjunction with their position on the phylogenetic tree and expression patterns, closely associates them with the FAPs. This study provides the first comprehensive look at soybean CHIs, a family of unique evolutionary background and biochemical function, with the catalytically active members producing the backbone substrate in an important plant metabolic pathway.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
125
|
Proteomic analysis of responsive stem proteins of resistant and susceptible cashew plants after Lasiodiplodia theobromae infection. J Proteomics 2015; 113:90-109. [DOI: 10.1016/j.jprot.2014.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/21/2022]
|
126
|
Kumar H, Devaraji V, Joshi R, Jadhao M, Ahirkar P, Prasath R, Bhavana P, Ghosh SK. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Adv 2015. [DOI: 10.1039/c5ra08778c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The usefulness of heterocyclic chalcone derivative as a therapeutic target in controlling hypertension and its site specific binding interaction with model transport protein to get a clear picture about its delivery mechanism.
Collapse
Affiliation(s)
- Himank Kumar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Vinod Devaraji
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- Madras Medical College
- Chennai
- India
| | - Ritika Joshi
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Manojkumar Jadhao
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Piyush Ahirkar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - R. Prasath
- Department of Chemistry
- BITS-Pilani
- Zuarinagar
- India
| | - P. Bhavana
- Department of Chemistry
- BITS-Pilani
- Zuarinagar
- India
| | - Sujit Kumar Ghosh
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| |
Collapse
|
127
|
Tholl D. Biosynthesis and biological functions of terpenoids in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:63-106. [PMID: 25583224 DOI: 10.1007/10_2014_295] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, 409 Latham Hall, 24061, Blacksburg, VA, USA,
| |
Collapse
|
128
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
129
|
Maloney GS, DiNapoli KT, Muday GK. The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development. PLANT PHYSIOLOGY 2014; 166:614-31. [PMID: 25006027 PMCID: PMC4213093 DOI: 10.1104/pp.114.240507] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/03/2014] [Indexed: 05/20/2023]
Abstract
This study utilized tomato (Solanum lycopersicum) mutants with altered flavonoid biosynthesis to understand the impact of these metabolites on root development. The mutant anthocyanin reduced (are) has a mutation in the gene encoding FLAVONOID 3-HYDROXYLASE (F3H), the first step in flavonol synthesis, and accumulates higher concentrations of the F3H substrate, naringenin, and lower levels of the downstream products kaempferol, quercetin, myricetin, and anthocyanins, than the wild type. Complementation of are with the p35S:F3H transgene reduced naringenin and increased flavonols to wild-type levels. The initiation of lateral roots is reduced in are, and p35S:F3H complementation restores wild-type root formation. The flavonoid mutant anthocyanin without has a defect in the gene encoding DIHYDROFLAVONOL REDUCTASE, resulting in elevated flavonols and the absence of anthocyanins and displays increased lateral root formation. These results are consistent with a positive role of flavonols in lateral root formation. The are mutant has increased indole-3-acetic acid transport and greater sensitivity to the inhibitory effect of the auxin transport inhibitor naphthylphthalamic acid on lateral root formation. Expression of the auxin-induced reporter (DR5-β-glucuronidase) is reduced in initiating lateral roots and increased in primary root tips of are. Levels of reactive oxygen species are elevated in are root epidermal tissues and root hairs, and are forms more root hairs, consistent with a role of flavonols as antioxidants that modulate root hair formation. Together, these experiments identify positive roles of flavonols in the formation of lateral roots and negative roles in the formation of root hairs through the modulation of auxin transport and reactive oxygen species, respectively.
Collapse
Affiliation(s)
- Gregory S Maloney
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Kathleen T DiNapoli
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Gloria K Muday
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| |
Collapse
|
130
|
Tai HH, Worrall K, Pelletier Y, De Koeyer D, Calhoun LA. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9043-55. [PMID: 25144460 DOI: 10.1021/jf502508y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Potato Research Centre, P.O. Box 20280, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 4Z7
| | | | | | | | | |
Collapse
|
131
|
Kim J, Matsuba Y, Ning J, Schilmiller AL, Hammar D, Jones AD, Pichersky E, Last RL. Analysis of natural and induced variation in tomato glandular trichome flavonoids identifies a gene not present in the reference genome. THE PLANT CELL 2014; 26:3272-85. [PMID: 25128240 PMCID: PMC4176439 DOI: 10.1105/tpc.114.129460] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/25/2014] [Accepted: 07/31/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are ubiquitous plant aromatic specialized metabolites found in a variety of cell types and organs. Methylated flavonoids are detected in secreting glandular trichomes of various Solanum species, including the cultivated tomato (Solanum lycopersicum). Inspection of the sequenced S. lycopersicum Heinz 1706 reference genome revealed a close homolog of Solanum habrochaites MOMT1 3'/5' myricetin O-methyltransferase gene, but this gene (Solyc06g083450) is missing the first exon, raising the question of whether cultivated tomato has a distinct 3' or 3'/5' O-methyltransferase. A combination of mining genome and cDNA sequences from wild tomato species and S. lycopersicum cultivar M82 led to the identification of Sl-MOMT4 as a 3' O-methyltransferase. In parallel, three independent ethyl methanesulfonate mutants in the S. lycopersicum cultivar M82 background were identified as having reduced amounts of di- and trimethylated myricetins and increased monomethylated myricetin. Consistent with the hypothesis that Sl-MOMT4 is a 3' O-methyltransferase gene, all three myricetin methylation defective mutants were found to have defects in MOMT4 sequence, transcript accumulation, or 3'-O-methyltransferase enzyme activity. Surprisingly, no MOMT4 sequence is found in the Heinz 1706 reference genome sequence, and this cultivar accumulates 3-methyl myricetin and is deficient in 3'-methyl myricetins, demonstrating variation in this gene among cultivated tomato varieties.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yuki Matsuba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jing Ning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Anthony L Schilmiller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Dagan Hammar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Robert L Last
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
132
|
Herde M, Howe GA. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:58-67. [PMID: 24727019 DOI: 10.1016/j.ibmb.2014.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 05/09/2023]
Abstract
Species diversity in terrestrial ecosystems is influenced by plant defense compounds that alter the behavior, physiology, and host preference of insect herbivores. Although it is established that insects evolved the ability to detoxify specific allelochemicals, the mechanisms by which polyphagous insects cope with toxic compounds in diverse host plants are not well understood. Here, we used defended and non-defended plant genotypes to study how variation in chemical defense affects midgut responses of the lepidopteran herbivore Trichoplusia ni, which is a pest of a wide variety of native and cultivated plants. The genome-wide midgut transcriptional response of T. ni larvae to glucosinolate-based defenses in the crucifer Arabidopsis thaliana was characterized by strong induction of genes encoding Phase I and II detoxification enzymes. In contrast, the response of T. ni to proteinase inhibitors and other jasmonate-regulated defenses in tomato (Solanum lycopersicum) was dominated by changes in the expression of digestive enzymes and, strikingly, concomitant repression of transcripts encoding detoxification enzymes. Unbiased proteomic analyses of T. ni feces demonstrated that tomato defenses remodel the complement of T.ni digestive enzymes, which was associated with increased amounts of serine proteases and decreased lipase protein abundance upon encountering tomato defense chemistry. These collective results indicate that T. ni adjusts its gut physiology to the presence of host plant-specific chemical defenses, and further suggest that plants may exploit this digestive flexibility as a defensive strategy to suppress the production of enzymes that detoxify allelochemicals.
Collapse
Affiliation(s)
- Marco Herde
- Department of Energy-Plant Research Laboratory, East Lansing, MI 48824, USA.
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
133
|
Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity. J Chem Ecol 2014; 40:657-75. [PMID: 24973116 DOI: 10.1007/s10886-014-0468-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.
Collapse
Affiliation(s)
- Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|