101
|
Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J. Local auxin metabolism regulates environment-induced hypocotyl elongation. NATURE PLANTS 2016; 2:16025. [PMID: 27249562 PMCID: PMC4849989 DOI: 10.1038/nplants.2016.25] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/12/2016] [Indexed: 05/18/2023]
Abstract
A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature.
Collapse
Affiliation(s)
- Zuyu Zheng
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yongxia Guo
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtielů 11, 783 71 Olomouc, Czech Republic
| | - William Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Joseph P. Noel
- Howard Hughes Medical Institute and The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA, Czech Republic
- Correspondence and requests for materials should be addressed to J.P.N. and J.C. ;
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Correspondence and requests for materials should be addressed to J.P.N. and J.C. ;
| |
Collapse
|
102
|
Montgomery BL. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back. FRONTIERS IN PLANT SCIENCE 2016; 7:480. [PMID: 27148307 PMCID: PMC4826876 DOI: 10.3389/fpls.2016.00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Light exposure results in distinct responses in specific seedling tissues during photomorphogenesis. Light promotes growth of cotyledons and leaves, as well as development and elongation of roots, whereas light inhibits elongation of hypocotyls. For distinct plant responses such as shade avoidance, far-red light or shifts in spectral light quality similarly have disparate impacts on distinct plant tissues, resulting in elongation of stems or petioles and a reduction in growth of leaf blades for many species. The physiological bases of such tissue- and organ-specific light responses were initially studied using localized irradiation of specific tissues and organs, or irradiation of dissected plant parts. These historical approaches were used to identify spatial-specific pools of photoreceptors responsible for regulating local, i.e., tissue- or organ-specific, or distal, i.e., interorgan, plant responses. The red/far-red responsive phytochromes have been the most widely studied among photoreceptors in this regard. Whereas, the spatial localization of photoreceptors regulating many tissue- or organ-specific light responses were identified, the underlying signaling networks responsible for mediating the observed responses have not been well defined. Recent approaches used to investigate the molecular bases of spatiotemporal light responses include selective irradiation of plants harboring mutations in specific photoreceptors, tissue-specific expression of photoreceptors, primarily in photoreceptor mutant backgrounds, or tissue-specific biochemical ablation of photoreceptor accumulation. Progressive integration of such approaches for regulating the availability of localized pools of phytochromes with the use of transcriptomic or proteomic analyses for assessing the genes or proteins which these spatially discrete pools of phytochrome regulate is yielding emergent insight into the molecular bases of spatiotemporal phytochrome signaling pathways responsible for regulating spatiotemporal light responses of which we have been aware of at the physiological level for decades. Here, I discuss historical and emerging approaches to elucidating spatiotemporal signaling mediated by phytochromes during photomorphogenesis.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy — Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Beronda L. Montgomery,
| |
Collapse
|
103
|
Roig-Villanova I, Martínez-García JF. Plant Responses to Vegetation Proximity: A Whole Life Avoiding Shade. FRONTIERS IN PLANT SCIENCE 2016; 7:236. [PMID: 26973679 PMCID: PMC4770057 DOI: 10.3389/fpls.2016.00236] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/12/2016] [Indexed: 05/20/2023]
Abstract
In high density of vegetation, plants detect neighbors by perceiving changes in light quality through phytochrome photoreceptors. Close vegetation proximity might result in competition for resources, such as light. To face this challenge, plants have evolved two alternative strategies: to either tolerate or avoid shade. Shade-avoiding species generally adapt their development by inducing hypocotyl, stem, and petiole elongation, apical dominance and flowering, and decreasing leaf expansion and yield, a set of responses collectively known as the shade avoidance syndrome (SAS). The SAS responses have been mostly studied at the seedling stage, centered on the increase of hypocotyl elongation. After compiling the main findings about SAS responses in seedlings, this review is focused on the response to shade at adult stages of development, such as petioles of adult leaves, and the little information available on the SAS responses in reproductive tissues. We discuss these responses based on the knowledge about the molecular mechanisms and components with a role in regulating the SAS response of the hypocotyls of Arabidopsis thaliana. The transcriptional networks involved in this process, as well as the communication among the tissues that perceive the shade and the ones that respond to this stimulus will also be briefly commented.
Collapse
Affiliation(s)
- Irma Roig-Villanova
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas – Institut Recerca i Tecnologia Agroalimentaries – Universitat Autònoma de Barcelona – Universitat de BarcelonaBarcelona, Spain
- *Correspondence: Irma Roig-Villanova, ; Jaime F. Martínez-García,
| | - Jaime F. Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas – Institut Recerca i Tecnologia Agroalimentaries – Universitat Autònoma de Barcelona – Universitat de BarcelonaBarcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
- *Correspondence: Irma Roig-Villanova, ; Jaime F. Martínez-García,
| |
Collapse
|
104
|
de Wit M, Ljung K, Fankhauser C. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. THE NEW PHYTOLOGIST 2015; 208:198-209. [PMID: 25963518 DOI: 10.1111/nph.13449] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/03/2015] [Indexed: 05/04/2023]
Abstract
Foliar shade triggers rapid growth of specific structures that facilitate access of the plant to direct sunlight. In leaves of many plant species, this growth response is complex because, although shade triggers the elongation of petioles, it reduces the growth of the lamina. How the same external cue leads to these contrasting growth responses in different parts of the leaf is not understood. Using mutant analysis, pharmacological treatment and gene expression analyses, we investigated the role of PHYTOCHROME INTERACTING FACTOR7 (PIF7) and the growth-promoting hormone auxin in these contrasting leaf growth responses. Both petiole elongation and lamina growth reduction are dependent on PIF7. The induction of auxin production is both necessary and sufficient to induce opposite growth responses in petioles vs lamina. However, these contrasting growth responses are not caused by different auxin concentrations in the two leaf parts. Our work suggests that a transient increase in auxin levels triggers tissue-specific growth responses in different leaf parts. We provide evidence suggesting that this may be caused by the different sensitivity to auxin in the petiole vs the blade and by tissue-specific gene expression.
Collapse
Affiliation(s)
- Mieke de Wit
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
105
|
Nito K, Kajiyama T, Unten-Kobayashi J, Fujii A, Mochizuki N, Kambara H, Nagatani A. Spatial Regulation of the Gene Expression Response to Shade in Arabidopsis Seedlings. PLANT & CELL PHYSIOLOGY 2015; 56:1306-19. [PMID: 25907567 DOI: 10.1093/pcp/pcv057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 05/04/2023]
Abstract
The shade avoidance response, which allows plants to escape from nearby competitors, is triggered by a reduction in the PFR form of phytochrome in response to shade. Classic physiological experiments have demonstrated that the shade signal perceived by the leaves is transmitted to the other parts of the plant. Recently, a simple method was developed to analyze the transcriptome in a single microgram tissue sample. In the present study, we adopted this method to conduct organ-specific transcriptomic analysis of the shade avoidance response in Arabidopsis seedlings. The shoot apical samples, which contained the meristem, basal parts of leaf primordia and short fragments of vasculature, were collected from the topmost part of the hypocotyl and subjected to RNA sequencing analysis. Unexpectedly, many more genes were up-regulated in the shoot apical region than in the cotyledons. Spotlight irradiation demonstrated that the apex-responsive genes were mainly controlled by phytochrome in the cotyledons. In accordance with the involvement of many auxin-responsive genes in this category, auxin biosynthesis was genetically shown to be essential for this response. In contrast, organ-autonomous regulation was more important for the genes that were up-regulated preferentially either in the cotyledons or in both the cotyledons and the apical region. Their responses to shade depended variously on auxin and PIFs (phytochrome-interacting factors), indicating the mechanistic diversity of the organ-autonomous response. Finally, we examined the expression of the auxin synthesis genes, the YUC genes, and found that three YUC genes, which were differently spatially regulated, co-ordinately elevated the auxin level within the shoot apical region.
Collapse
Affiliation(s)
- Kazumasa Nito
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Junko Unten-Kobayashi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Akihiko Fujii
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601 Japan
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideki Kambara
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
106
|
Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:130-7. [PMID: 26037392 DOI: 10.1016/j.pbi.2015.05.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/09/2015] [Accepted: 05/18/2015] [Indexed: 05/20/2023]
Abstract
Plant growth and development must be coordinated with metabolism, notably with the efficiency of photosynthesis and the uptake of nutrients. This coordination requires local connections between hormonal response and metabolic state, as well as long-distance connections between shoot and root tissues. Recently, several molecular mechanisms have been proposed to explain the integration of sugar signalling with hormone pathways. In this work, DELLA and PIF proteins have emerged as hubs in sugar-hormone cross-regulation networks.
Collapse
Affiliation(s)
- Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Umeå, Sweden
| | | | | |
Collapse
|
107
|
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. MOLECULAR PLANT 2015; 8:540-51. [PMID: 25670340 DOI: 10.1016/j.molp.2014.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|