101
|
Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Curr Biol 2016; 26:987-98. [PMID: 27020747 DOI: 10.1016/j.cub.2016.01.069] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 01/19/2023]
Abstract
Intracellular arbuscular mycorrhiza symbiosis between plants and glomeromycotan fungi leads to formation of highly branched fungal arbuscules that release mineral nutrients to the plant host. Their development is regulated in plants by a mechanistically unresolved interplay between symbiosis, nutrient, and hormone (gibberellin) signaling. Using a positional cloning strategy and a retrotransposon insertion line, we identify two novel alleles of Lotus japonicus REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1) encoding a GRAS protein. We confirm that RAM1 is a central regulator of arbuscule development: arbuscule branching is arrested in L. japonicus ram1 mutants, and ectopic expression of RAM1 activates genes critical for arbuscule development in the absence of fungal symbionts. Epistasis analysis places RAM1 downstream of CCaMK, CYCLOPS, and DELLA because ectopic expression of RAM1 restores arbuscule formation in cyclops mutants and in the presence of suppressive gibberellin. The corresponding proteins form a complex that activates RAM1 expression via binding of CYCLOPS to a cis element in the RAM1 promoter. We thus reveal a transcriptional cascade in arbuscule development that employs the promoter of RAM1 as integrator of symbiotic (transmitted via CCaMK and CYCLOPS) and hormonal (gibberellin) signals.
Collapse
Affiliation(s)
- Priya Pimprikar
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Samy Carbonnel
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Michael Paries
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Katja Katzer
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Verena Klingl
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Monica J Bohmer
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Leonhard Karl
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Daniela S Floss
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, USA
| | - Martin Parniske
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Strasse 2-4, 82152 Martinsried, Germany.
| |
Collapse
|
102
|
Lelandais-Brière C, Moreau J, Hartmann C, Crespi M. Noncoding RNAs, Emerging Regulators in Root Endosymbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:170-80. [PMID: 26894282 DOI: 10.1094/mpmi-10-15-0240-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endosymbiosis interactions allow plants to grow in nutrient-deficient soil environments. The arbuscular mycorrhizal (AM) symbiosis is an ancestral interaction between land plants and fungi, whereas nitrogen-fixing symbioses are highly specific for certain plants, notably major crop legumes. The signaling pathways triggered by specific lipochitooligosaccharide molecules involved in these interactions have common components that also overlap with plant root development. These pathways include receptor-like kinases, transcription factors (TFs), and various intermediate signaling effectors, including noncoding (nc)RNAs. These latter molecules have emerged as major regulators of gene expression and small ncRNAs, composed of micro (mi)RNAs and small interfering (si)RNAs, are known to control gene expression at transcriptional (chromatin) or posttranscriptional levels. In this review, we describe exciting recent data connecting variants of conserved si/miRNAs with the regulation of TFs, such as NSP2, NFY-A1, auxin-response factors, and AP2-like proteins, known to be involved in symbiosis. The link between hormonal regulations and these si- and miRNA-TF nodes is proposed in a model in which different feedback loops or regulations controlling endosymbiosis signaling are integrated. The diversity and emerging regulatory networks of young legume miRNAs are also highlighted.
Collapse
Affiliation(s)
- Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Jérémy Moreau
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
103
|
Floss DS, Lévesque-Tremblay V, Park HJ, Harrison MJ. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula. PLANT SIGNALING & BEHAVIOR 2016; 11:e1162369. [PMID: 26984507 PMCID: PMC4883957 DOI: 10.1080/15592324.2016.1162369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 05/26/2023]
Abstract
The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.
Collapse
Affiliation(s)
- Daniela S Floss
- a Boyce Thompson Institute for Plant Research , Tower Road, Ithaca , NY , USA
| | | | - Hee-Jin Park
- a Boyce Thompson Institute for Plant Research , Tower Road, Ithaca , NY , USA
| | - Maria J Harrison
- a Boyce Thompson Institute for Plant Research , Tower Road, Ithaca , NY , USA
| |
Collapse
|
104
|
Grimplet J, Agudelo-Romero P, Teixeira RT, Martinez-Zapater JM, Fortes AM. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:353. [PMID: 27065316 PMCID: PMC4811876 DOI: 10.3389/fpls.2016.00353] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja)Logroño, Spain
| | | | - Rita T. Teixeira
- Faculdade de Ciências de Lisboa, BioISI, Universidade de LisboaLisboa, Portugal
| | - Jose M. Martinez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja)Logroño, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, BioISI, Universidade de LisboaLisboa, Portugal
- Instituto de Tecnologia de Química Biológica, Biotecnologia de Células VegetaisOeiras, Portugal
- *Correspondence: Ana M. Fortes
| |
Collapse
|
105
|
Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ. Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza1. PLANT PHYSIOLOGY 2015; 169:2774-88. [PMID: 26511916 PMCID: PMC4677905 DOI: 10.1104/pp.15.01155] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2015] [Indexed: 05/04/2023]
Abstract
During arbuscular mycorrhizal symbiosis, arbuscule development in the root cortical cell and simultaneous deposition of the plant periarbuscular membrane generate the interface for symbiotic nutrient exchange. The transcriptional changes that accompany arbuscule development are extensive and well documented. By contrast, the transcriptional regulators that control these programs are largely unknown. Here, we provide a detailed characterization of an insertion allele of Medicago truncatula Reduced Arbuscular Mycorrhiza1 (RAM1), ram1-3, which reveals that RAM1 is not necessary to enable hyphopodium formation or hyphal entry into the root but is essential to support arbuscule branching. In ram1-3, arbuscules consist only of the arbuscule trunk and in some cases, a few initial thick hyphal branches. ram1-3 is also insensitive to phosphate-mediated regulation of the symbiosis. Transcript analysis of ram1-3 and ectopic expression of RAM1 indicate that RAM1 regulates expression of EXO70I and Stunted Arbuscule, two genes whose loss of function impacts arbuscule branching. Furthermore, RAM1 regulates expression of a transcription factor Required for Arbuscule Development (RAD1). RAD1 is also required for arbuscular mycorrhizal symbiosis, and rad1 mutants show reduced colonization. RAM1 itself is induced in colonized root cortical cells, and expression of RAM1 and RAD1 is modulated by DELLAs. Thus, the data suggest that DELLAs regulate arbuscule development through modulation of RAM1 and RAD1 and that the precise transcriptional control essential to place proteins in the periarbuscular membrane is controlled, at least in part, by RAM1.
Collapse
Affiliation(s)
- Hee-Jin Park
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Daniela S Floss
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Armando Bravo
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| |
Collapse
|
106
|
Hohnjec N, Czaja-Hasse LF, Hogekamp C, Küster H. Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1. BMC Genomics 2015; 16:994. [PMID: 26597293 PMCID: PMC4657205 DOI: 10.1186/s12864-015-2224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling. RESULTS We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization. CONCLUSIONS Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Lisa F Czaja-Hasse
- Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
- Present address: Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.
| | - Claudia Hogekamp
- Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Helge Küster
- Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| |
Collapse
|
107
|
Abstract
Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.
Collapse
|
108
|
Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. FRONTIERS IN PLANT SCIENCE 2015; 6:636. [PMID: 26322072 PMCID: PMC4534827 DOI: 10.3389/fpls.2015.00636] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/31/2015] [Indexed: 05/03/2023]
Abstract
Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM) symbiosis, has both host and non-host roots. Large lateral (LLR) and fine lateral (FLR) roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR. We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Sciences and System Biology, University of TurinTurin, Italy
- Institute for Sustainable Plant Protection–National Research CouncilTurin, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection–National Research CouncilTurin, Italy
| | - Chiara Biselli
- Genomics Research Centre - Consiglio per la Ricerca e la Sperimentazione in AgricolturaFiorenzuola d'Arda, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection–National Research CouncilTurin, Italy
| | - Paolo Bagnaresi
- Genomics Research Centre - Consiglio per la Ricerca e la Sperimentazione in AgricolturaFiorenzuola d'Arda, Italy
| | - Paola Bonfante
- Department of Life Sciences and System Biology, University of TurinTurin, Italy
| |
Collapse
|
109
|
Gobbato E. Recent developments in arbuscular mycorrhizal signaling. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:1-7. [PMID: 26043435 DOI: 10.1016/j.pbi.2015.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 05/03/2023]
Abstract
Plants can establish root endosymbioses with both arbuscular mycorrhizal fungi and rhizobial bacteria to improve their nutrition. Our understanding of the molecular events underlying the establishment of these symbioses has significantly advanced in the last few years. Here I highlight major recent findings in the field of endosymbiosis signaling. Despite the identification of new signaling components and the definition, or in some cases better re-definition of the molecular functions of previously known players, major questions still remain that need to be addressed. Most notably the mechanisms defining signaling specificities within either symbiosis remain unclear.
Collapse
Affiliation(s)
- Enrico Gobbato
- Department of Plant Science, University of Cambridge, CB2 3EA Cambridge, United Kingdom.
| |
Collapse
|
110
|
Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. PLANT, CELL & ENVIRONMENT 2015; 38:1591-612. [PMID: 25630535 DOI: 10.1111/pce.12508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/12/2015] [Indexed: 05/20/2023]
Abstract
Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential.
Collapse
Affiliation(s)
- Nina Gerlach
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Jessica Schmitz
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Aleksandra Polatajko
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Urte Schlüter
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91058, Germany
| | | | - Sandra Witt
- Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kalle Uroic
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, OT Gatersleben, 06466, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
111
|
Delaux PM, Radhakrishnan G, Oldroyd G. Tracing the evolutionary path to nitrogen-fixing crops. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:95-99. [PMID: 26123396 DOI: 10.1016/j.pbi.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil and what they can glean from associative bacteria. Global cereal yields from conventional agriculture are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits. In this review we highlight recent discoveries made using such approaches and we discuss how these approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | - Guru Radhakrishnan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giles Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
112
|
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. PLANT & CELL PHYSIOLOGY 2015; 56:1490-511. [PMID: 26009592 DOI: 10.1093/pcp/pcv071] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/13/2015] [Indexed: 05/03/2023]
Abstract
Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
113
|
Rich MK, Schorderet M, Bapaume L, Falquet L, Morel P, Vandenbussche M, Reinhardt D. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza. PLANT PHYSIOLOGY 2015; 168:788-97. [PMID: 25971550 PMCID: PMC4741351 DOI: 10.1104/pp.15.00310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/12/2015] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function.
Collapse
Affiliation(s)
- Mélanie K Rich
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| | - Martine Schorderet
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| | - Laure Bapaume
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| | - Laurent Falquet
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| | - Patrice Morel
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| | - Michiel Vandenbussche
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| | - Didier Reinhardt
- Department of Biology (M.K.R., M.S., L.B., L.F., D.R.), and Swiss Institute of Bioinformatics (L.F.), University of Fribourg, CH-1700 Fribourg, Switzerland; andDepartment of Reproduction and Plant Development, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Ecole Normal Supérieure de Lyon, F-69364 Lyon Cedex 07, France (P.M., M.V.)
| |
Collapse
|
114
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|