101
|
Wang T, Xing J, Liu Z, Zheng M, Yao Y, Hu Z, Peng H, Xin M, Zhou D, Ni Z. Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6337-6348. [PMID: 31401648 PMCID: PMC6859718 DOI: 10.1093/jxb/erz359] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 05/04/2023]
Abstract
Phosphate availability is becoming a limiting environmental factor that inhibits plant growth and development. Here, we demonstrated that mutation of the histone acetyltransferase GCN5 impaired phosphate starvation responses (PSRs) in Arabidopsis. Transcriptome analysis revealed that 888 GCN5-regulated candidate genes were potentially involved in responding to phosphate starvation. ChIP assay indicated that four genes, including a long non-coding RNA (lncRNA) At4, are direct targets of GCN5 in PSR regulation. In addition, GCN5-mediated H3K9/14 acetylation of At4 determined dynamic At4 expression. Consistent with the function of At4 in phosphate distribution, mutation of GCN5 impaired phosphate accumulation between shoots and roots under phosphate deficiency condition, whereas constitutive expression of At4 in gcn5 mutants partially restored phosphate relocation. Further evidence proved that GCN5 regulation of At4 influenced the miRNA miR399 and its target PHO2 mRNA level. Taken together, we propose that GCN5-mediated histone acetylation plays a crucial role in PSR regulation via the At4-miR399-PHO2 pathway and provides a new epigenetic mechanism for the regulation of lncRNA in plants.
Collapse
Affiliation(s)
- Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Jiewen Xing
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhenshan Liu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mei Zheng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Yingyin Yao
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhaorong Hu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Huiru Peng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mingming Xin
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Daoxiu Zhou
- Institut of Plant Science Paris-Saclay, Université Paris sud, Orsay, France
| | - Zhongfu Ni
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
102
|
Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci 2019; 20:ijms20225573. [PMID: 31717266 PMCID: PMC6888083 DOI: 10.3390/ijms20225573] [Citation(s) in RCA: 567] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding (lnc) RNAs are non-coding RNAs longer than 200 nt. lncRNAs primarily interact with mRNA, DNA, protein, and miRNA and consequently regulate gene expression at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels in a variety of ways. They play important roles in biological processes such as chromatin remodeling, transcriptional activation, transcriptional interference, RNA processing, and mRNA translation. lncRNAs have important functions in plant growth and development; biotic and abiotic stress responses; and in regulation of cell differentiation, the cell cycle, and the occurrence of many diseases in humans and animals. In this review, we summarize the functions and mechanisms of lncRNAs in plants, humans, and animals at different regulatory levels.
Collapse
|
103
|
Gabriel AF, Costa MC, Enguita FJ, Leitão AL. Si vis pacem para bellum: A prospective in silico analysis of miRNA-based plant defenses against fungal infections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110241. [PMID: 31521215 DOI: 10.1016/j.plantsci.2019.110241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Fungal pathogens are an important threat for plant crops, being responsible for important reductions of production yields and a consequent economic impact. Among the molecular mediators of fungal infections of plant crops, non-coding RNAs (ncRNAs) have been described as relevant players either in the plant immune responses and mechanism of defense or in the colonization of plant tissues by fungi. Acting as a mechanism of defense, some plant small ncRNAs such as miRNAs and tasiRNAs can be secreted by cells and directed to target the transcriptome of pathogenic fungi, triggering an RNAi-like interference mechanism able to silence the expression of specific fungal genes. The detailed knowledge of this mechanism of defense against fungal pathogens could open new possibilities for the protection of human important crops. To infer putative functional relationships mediated by ncRNA communication, we performed a prospective analysis to determine potential plant miRNAs able to target the genome of fungal pathogens, which resulted in the description of enriched specific plant miRNA families and their putative fungal targets that could be further studied in the context of plant-fungi interactions. The expression profile of specific members of the enriched miRNAs families showed an infection-dependent behavior in laboratory models of infection. Plant miRNAs showed sequence complementarity with coding genes of their cognate fungal pathogens. Plant miRNAs could potentially target fungal genes belonging to functional families related to stress response, membrane architecture, vacuolar transport, membrane traffic, and anabolic processes. Families of specific infection-responsive miRNAs are included in the putative plant defense mechanism.
Collapse
Affiliation(s)
- André F Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica, 2829-516, Portugal.
| |
Collapse
|
104
|
Wang QJ, Yuan Y, Liao Z, Jiang Y, Wang Q, Zhang L, Gao S, Wu F, Li M, Xie W, Liu T, Xu J, Liu Y, Feng X, Lu Y. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. THE PLANT GENOME 2019; 12:1-13. [PMID: 33016582 DOI: 10.3835/plantgenome2019.06.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study. Hap5, harboring 12 favorable SNPs, could enhance strong root systems and P absorption under low-P stress. Phosphorus is an essential macronutrient required for normal plant growth and development. Determining the genetic basis of root traits will enhance our understanding of maize's (Zea mays L.) tolerance to low-P stress. Here, we identified significant phenotypic differences for 13 traits in maize seedlings subjected to P-sufficient and P-deficient conditions. Six extremely sensitive and seven low-P stress tolerant inbreds were selected from 356 inbred lines of maize. No significant differences were observed between temperate and tropical-subtropical groups with respect to trait ratios associated with the adaptation to low-P stress. The broad-sense heritability of these traits ranged from relatively moderate (0.59) to high (0.90). Through genome-wide association mapping with 541,575 informative single nucleotide polymorphisms (SNPs), 551, 1140 and 1157 significant SNPs were detected for the 13 traits in 2012, 2016 and both years combined, respectively, along with 23 shared candidate genes, seven of which overlapped with reported quantitative trait loci and genes for low-P stress. Five haplotypes located in candidate gene GRMZM2G009544 were identified; among these, Hap5, harboring 12 favorable SNP alleles, showed significantly greater values for the root traits studied than the other four haplotypes under both experimental conditions. The candidate genes and favorable haplotypes and alleles identified here provide promising resources for genetic studies and molecular breeding for improving tolerance to abiotic stress in maize.
Collapse
Affiliation(s)
- Qing-Jun Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yibing Yuan
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Zhengqiao Liao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yi Jiang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Litian Zhang
- College of Chuancha, Yibin Univ., Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Menglu Li
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Wubing Xie
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Tianhong Liu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yaxi Liu
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| |
Collapse
|
105
|
Zhang X, Dong J, Deng F, Wang W, Cheng Y, Song L, Hu M, Shen J, Xu Q, Shen F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC PLANT BIOLOGY 2019; 19:459. [PMID: 31666019 PMCID: PMC6822370 DOI: 10.1186/s12870-019-2088-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/20/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding (lnc) RNAs are a class of functional RNA molecules greater than 200 nucleotides in length, and lncRNAs play important roles in various biological regulatory processes and response to the biotic and abiotic stresses. LncRNAs associated with salt stress in cotton have been identified through RNA sequencing, but the function of lncRNAs has not been reported. We previously identified salt stress-related lncRNAs in cotton (Gossypium spp.), and discovered the salt-related lncRNA-lncRNA973. RESULTS In this study, we identified the expression level, localization, function, and preliminary mechanism of action of lncRNA973. LncRNA973, which was localized in the nucleus, was expressed at a low level under nonstress conditions but can be significantly increased by salt treatments. Here lncRNA973 was transformed into Arabidopsis and overexpressed. Along with the increased expression compared with wild type under salt stress conditions in transgenic plants, the seed germination rate, fresh weights and root lengths of the transgenic plants increased. We also knocked down the expression of lncRNA973 using virus-induced gene silencing technology. The lncRNA973 knockdown plants wilted, and the leaves became yellowed and dropped under salt-stress conditions, indicating that the tolerance to salt stress had decreased compared with wild type. LncRNA973 may be involved in the regulation of reactive oxygen species-scavenging genes, transcription factors and genes involved in salt stress-related processes in response to cotton salt stress. CONCLUSIONS LncRNA973 was localized in the nucleus and its expression was increased by salt treatment. The lncRNA973-overexpression lines had increased salt tolerance compared with the wild type, while the lncRNA973 knockdown plants had reduced salt tolerance. LncRNA973 regulated cotton responses to salt stress by modulating the expression of a series of salt stress-related genes. The data provides a basis for further studies on the mechanisms of lncRNA973-associated responses to salt stress in cotton.
Collapse
Affiliation(s)
- Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jian Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Qingjiang Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
106
|
Seeve CM, Sunkar R, Zheng Y, Liu L, Liu Z, McMullen M, Nelson S, Sharp RE, Oliver MJ. Water-deficit responsive microRNAs in the primary root growth zone of maize. BMC PLANT BIOLOGY 2019; 19:447. [PMID: 31651253 PMCID: PMC6814125 DOI: 10.1186/s12870-019-2037-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/12/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNA-mediated gene regulatory networks play a significant role in plant growth and development and environmental stress responses. RESULTS We identified 79 microRNAs (miRNAs) and multiple miRNA variants (isomiRs) belonging to 26 miRNA families in the primary root growth zone of maize seedlings grown at one of three water potentials: well-watered (- 0.02 MPa), mild water deficit stress (- 0.3 MPa), and severe water deficit stress (- 1.6 MPa). The abundances of 3 miRNAs (mild stress) and 34 miRNAs representing 17 families (severe stress) were significantly different in water-deficit stressed relative to well-watered controls (FDR < 0.05 and validated by stem loop RT-qPCR). Degradome sequencing revealed 213 miRNA-regulated transcripts and trancriptome profiling revealed that the abundance of 77 (miRNA-regulated) were regulated by water-defecit stress. miR399e,i,j-3p was strongly regulated by water-defcit stress implicating the possibility of nutrient deficiency during stress. CONCLUSIONS We have identified a number of maize miRNAs that respond to specific water deficits applied to the primary root growth zone. We have also identified transcripts that are targets for miRNA regulation in the root growth zone under water-deficit stress. The miR399e,i,j-3p that is known to regulate phosphate uptake in response to nutrient deficiencies responds to water-deficit stress, however, at the seedling stage the seed provides adequate nutrients for root growth thus miR399e,i,j-3p may play a separate role in water-deficit responses. A water-deficit regulated maize transcript, similar to known miR399 target mimics, was identified and we hypothesized that it is another regulatory player, moderating the role of miR399e,i,j-3p, in primary root growth zone water deficit responses.
Collapse
Affiliation(s)
- Candace M. Seeve
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Yun Zheng
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Zhijie Liu
- Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Michael McMullen
- Division of Plant Sciences, Columbia, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Sven Nelson
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Robert E. Sharp
- Division of Plant Sciences, Columbia, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Melvin J. Oliver
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
107
|
Liu S, Mi X, Zhang R, An Y, Zhou Q, Yang T, Xia X, Guo R, Wang X, Wei C. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). PLANTA 2019; 250:1111-1129. [PMID: 31172343 DOI: 10.1007/s00425-019-03207-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/01/2019] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION The roles of microRNA-mediated epigenetic regulation were highlighted in the bud dormancy-activity cycle, implying that certain differentially expressed miRNAs play crucial roles in apical bud burst, such as csn-miR319c/TCP2. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by targeting mRNA transcripts for cleavage or directing translational inhibition. To investigate whether miRNAs regulate bud dormancy-activation transition in tea plant, which largely affects the yield and price of tea products and adaptability of tea trees, we constructed small RNA libraries from three different periods of bud dormancy-burst transition. Through sequencing analysis, 262 conserved and 83 novel miRNAs were identified, including 118 differentially expressed miRNAs. Quantitative RT-PCR results for randomly selected miRNAs exhibited that our comprehensive analysis is highly reliable and accurate. The content of caffeine increased continuously from the endodormancy bud to flushing bud, and differentially expressed miRNAs coupling with their targets associated with bud burst were identified. Remarkably, csn-miR319c was downregulated significantly from the quiescent bud to burst bud, while its target gene CsnTCP2 (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR 2) displayed opposite expression patterns. Co-transformation experiment in tobacco demonstrated that csn-miR319c can significantly suppress the functions of CsnTCP2. This study on miRNAs and the recognition of target genes could provide new insights into the molecular mechanism of the bud dormancy-activation transition in tea plant.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Ran Zhang
- Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshang, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Qiying Zhou
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
108
|
Han G, Cheng C, Zheng Y, Wang X, Xu Y, Wang W, Zhu S, Cheng B. Identification of Long Non-Coding RNAs and the Regulatory Network Responsive to Arbuscular Mycorrhizal Fungi Colonization in Maize Roots. Int J Mol Sci 2019; 20:E4491. [PMID: 31514333 PMCID: PMC6769569 DOI: 10.3390/ijms20184491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have emerged as vital regulators of many biological processes in animals and plants. However, to our knowledge no investigations on plant lncRNAs which respond to arbuscular mycorrhizal (AM) fungi have been reported thus far. In this study, maize roots colonized with AM fungus were analyzed by strand-specific RNA-Seq to identify AM fungi-responsive lncRNAs and construct an associated regulatory network. A total of 1837 differentially expressed protein coding genes (DEGs) were identified from maize roots with Rhizophagus irregularis inoculation. Many AM fungi-responsive genes were homologs to MtPt4, STR, STR2, MtFatM, and enriched pathways such as fatty acid biosynthesis, response to phosphate starvation, and nitrogen metabolism are consistent with previous studies. In total, 5941 lncRNAs were identified, of which more than 3000 were new. Of those, 63 lncRNAs were differentially expressed. The putative target genes of differentially expressed lncRNAs (DELs) were mainly related to phosphate ion transmembrane transport, cellular response to potassium ion starvation, and lipid catabolic processes. Regulatory network analysis showed that DELs might be involved in the regulation of bidirectional nutrient exchange between plant and AM fungi as mimicry of microRNA targets. The results of this study can broaden our knowledge on the interaction between plant and AM fungi.
Collapse
Affiliation(s)
- Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Chen Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yanmei Zheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Yunjian Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
109
|
Yu Y, Zhang Y, Chen X, Chen Y. Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annu Rev Cell Dev Biol 2019; 35:407-431. [PMID: 31403819 DOI: 10.1146/annurev-cellbio-100818-125218] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.
Collapse
Affiliation(s)
- Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xuemei Chen
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
110
|
Perspectives on microRNAs and Phased Small Interfering RNAs in Maize ( Zea mays L.): Functions and Big Impact on Agronomic Traits Enhancement. PLANTS 2019; 8:plants8060170. [PMID: 31212808 PMCID: PMC6630462 DOI: 10.3390/plants8060170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Small RNA (sRNA) population in plants comprises of primarily micro RNAs (miRNAs) and small interfering RNAs (siRNAs). MiRNAs play important roles in plant growth and development. The miRNA-derived secondary siRNAs are usually known as phased siRNAs, including phasiRNAs and tasiRNAs. The miRNA and phased siRNA biogenesis mechanisms are highly conserved in plants. However, their functional conservation and diversification may differ in maize. In the past two decades, lots of miRNAs and phased siRNAs have been functionally identified for curbing important maize agronomic traits, such as those related to developmental timing, plant architecture, sex determination, reproductive development, leaf morphogenesis, root development and nutrition, kernel development and tolerance to abiotic stresses. In contrast to Arabidopsis and rice, studies on maize miRNA and phased siRNA biogenesis and functions are limited, which restricts the small RNA-based fundamental and applied studies in maize. This review updates the current status of maize miRNA and phased siRNA mechanisms and provides a survey of our knowledge on miRNA and phased siRNA functions in controlling agronomic traits. Furthermore, improvement of those traits through manipulating the expression of sRNAs or their targets is discussed.
Collapse
|
111
|
Bernardino KC, Pastina MM, Menezes CB, de Sousa SM, Maciel LS, Jr GC, Guimarães CT, Barros BA, da Costa e Silva L, Carneiro PCS, Schaffert RE, Kochian LV, Magalhaes JV. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC PLANT BIOLOGY 2019; 19:87. [PMID: 30819116 PMCID: PMC6394046 DOI: 10.1186/s12870-019-1689-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phosphorus (P) fixation on aluminum (Al) and iron (Fe) oxides in soil clays restricts P availability for crops cultivated on highly weathered tropical soils, which are common in developing countries. Hence, P deficiency becomes a major obstacle for global food security. We used multi-trait quantitative trait loci (QTL) mapping to study the genetic architecture of P efficiency and to explore the importance of root traits on sorghum grain yield on a tropical low-P soil. RESULTS P acquisition efficiency was the most important component of P efficiency, and both traits were highly correlated with grain yield under low P availability. Root surface area was positively associated with grain yield. The guinea parent, SC283, contributed 58% of all favorable alleles detected by single-trait mapping. Multi-trait mapping detected 14 grain yield and/or root morphology QTLs. Tightly linked or pleiotropic QTL underlying the surface area of fine roots (1-2 mm in diameter) and grain yield were detected at positions 1-7 megabase pairs (Mb) and 71 Mb on chromosome 3, respectively, and a root diameter/grain yield QTL was detected at 7 Mb on chromosome 7. All these QTLs were near sorghum homologs of the rice serine/threonine kinase, OsPSTOL1. The SbPSTOL1 genes on chromosome 3, Sb03g006765 at 7 Mb and Sb03g031690 at 60 Mb were more highly expressed in SC283, which donated the favorable alleles at all QTLs found nearby SbPSTOL1 genes. The Al tolerance gene, SbMATE, may also influence a grain yield QTL on chromosome 3. Another PSTOL1-like gene, Sb07g02840, appears to enhance grain yield via small increases in root diameter. Co-localization analyses suggested a role for other genes, such as a sorghum homolog of the Arabidopsis ubiquitin-conjugating E2 enzyme, phosphate 2 (PHO2), on grain yield advantage conferred by the elite parent, BR007 allele. CONCLUSIONS Genetic determinants conferring higher root surface area and slight increases in fine root diameter may favor P uptake, thereby enhancing grain yield under low-P availability in the soil. Molecular markers for SbPSTOL1 genes and for QTL increasing grain yield by non-root morphology-based mechanisms hold promise in breeding strategies aimed at developing sorghum cultivars adapted to low-P soils.
Collapse
Affiliation(s)
- Karine C. Bernardino
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
- Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Maria Marta Pastina
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Cícero B. Menezes
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Sylvia M. de Sousa
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Laiane S. Maciel
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, MG 31270-901 Brazil
| | - Geraldo Carvalho Jr
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
- Present Address: Helix Sementes, Rua Arnaldo Luiz de Oliveira, 75, Setor D, Bela Vista, Patos de Minas, MG 38703-240 Brazil
| | - Claudia T. Guimarães
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Beatriz A. Barros
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Luciano da Costa e Silva
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Pedro C. S. Carneiro
- Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Robert E. Schaffert
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jurandir V. Magalhaes
- Embrapa Milho e Sorgo, Rodovia MG 424, km 65, Caixa Postal 151, Sete Lagoas, MG 35701-970 Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|