101
|
Kesten C, Gámez‐Arjona FM, Menna A, Scholl S, Dora S, Huerta AI, Huang H, Tintor N, Kinoshita T, Rep M, Krebs M, Schumacher K, Sánchez‐Rodríguez C. Pathogen-induced pH changes regulate the growth-defense balance in plants. EMBO J 2019; 38:e101822. [PMID: 31736111 PMCID: PMC6912046 DOI: 10.15252/embj.2019101822] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Environmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation in response to the fungus Fusarium oxysporum immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. In addition, pH seems to influence cellulose structure. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.
Collapse
Affiliation(s)
| | | | | | - Stefan Scholl
- Centre for Organismal Studies, Cell BiologyHeidelberg UniversityHeidelbergGermany
| | - Susanne Dora
- Department of BiologyETH ZurichZurichSwitzerland
| | | | | | - Nico Tintor
- Department of PhytopathologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusa, NagoyaJapan
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityChikusa, NagoyaJapan
| | - Martijn Rep
- Department of PhytopathologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Melanie Krebs
- Centre for Organismal Studies, Cell BiologyHeidelberg UniversityHeidelbergGermany
| | - Karin Schumacher
- Centre for Organismal Studies, Cell BiologyHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
102
|
Deolu-Ajayi AO, Meyer AJ, Haring MA, Julkowska MM, Testerink C. Genetic Loci Associated with Early Salt Stress Responses of Roots. iScience 2019; 21:458-473. [PMID: 31707259 PMCID: PMC6849332 DOI: 10.1016/j.isci.2019.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
Salinity is a devastating abiotic stress accounting for major crop losses yearly. Plant roots can strikingly grow away from high-salt patches. This response is termed halotropism and occurs through auxin redistribution in roots in response to a salt gradient. Here, a natural variation screen for the early and NaCl-specific halotropic response of 333 Arabidopsis accessions revealed quantitative differences in the first 24 h. These data were successfully used to identify genetic components associated with the response through Genome-Wide Association Study (GWAS). Follow-up characterization of knockout mutants in Col-0 background confirmed the role of transcription factor WRKY25, cation-proton exchanger CHX13, and a gene of unknown function DOB1 (Double Bending 1) in halotropism. In chx13 and dob1 mutants, ion accumulation and shoot biomass under salt stress were also affected. Thus, our GWAS has identified genetic components contributing to main root halotropism that provide insight into the genetic architecture underlying plant salt responses.
Collapse
Affiliation(s)
- Ayodeji O Deolu-Ajayi
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands; Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands
| | - Michel A Haring
- Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Magdalena M Julkowska
- Department of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB Wageningen, the Netherlands.
| |
Collapse
|
103
|
Expression and detergent free purification and reconstitution of the plant plasma membrane Na +/H + antiporter SOS1 overexpressed in Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183111. [PMID: 31678368 DOI: 10.1016/j.bbamem.2019.183111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
The plant plasma membrane Na+/H+ antiporter SOS1 (Salt Overlay Sensitive 1) of Arabidopsis thaliana is the major transporter extruding Na+ out of cells in exchange for an intracellular H+. The sodium extrusion process maintains a low intracellular Na+ concentration and thereby facilitates salt tolerance. A. thaliana SOS1 consists of 1146 amino acids, with the first 450 in a N-terminal membrane transport domain and the balance forming a cytosolic regulatory domain. For studies on characterization of the protein, two different constructs of SOS1 comprising of the residues 28 to 460 and 28 to 990 were cloned and overexpressed in methylotropic yeast strain of Pichia pastoris with a C-terminal histidine tag using the expression vector pPICZA. Styrene malic acid copolymers (SMA) were used as a cost-effective alternative to detergent for solubilization and isolation of this membrane protein. Immobilized Ni2+-ion affinity chromatography was used to purify the expressed protein resulting in a yield of ~0.6-2 mg of SOS1 per liter of Pichia pastoris culture. The SMA purified protein containing amino acids 28 to 990 was directly reconstituted into liposomes for determination of Na+ transport activity and was functionally active. However, similar reconstitution with amino acids 28-460 did not yield a functional protein. Other results have shown that the truncated SOS1 protein at amino acid 481 is active, which infers the presence of an element between residues 461-481 which is necessary for SOS1 activity. This region contains several conserved segments that may be important in SOS1 structure and function.
Collapse
|
104
|
Tsujii M, Kera K, Hamamoto S, Kuromori T, Shikanai T, Uozumi N. Evidence for potassium transport activity of Arabidopsis KEA1-KEA6. Sci Rep 2019; 9:10040. [PMID: 31296940 PMCID: PMC6624313 DOI: 10.1038/s41598-019-46463-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Arabidopsis thaliana contains the putative K+ efflux transporters KEA1-KEA6, similar to KefB and KefC of Escherichia coli. KEA1-KEA3 are involved in the regulation of photosynthetic electron transport and chloroplast development. KEA4-KEA6 mediate pH regulation of the endomembrane network during salinity stress. However, the ion transport activities of KEA1-KEA6 have not been directly characterized. In this study, we used an E. coli expression system to examine KEA activity. KEA1-KEA3 and KEA5 showed bi-directional K+ transport activity, whereas KEA4 and KEA6 functioned as a K+ uptake system. The thylakoid membrane-localized Na+/H+ antiporter NhaS3 from the model cyanobacterium Synechocystis is the closest homolog of KEA3. Changing the putative Na+/H+ selective site of KEA3 (Gln-Asp) to that of NhaS3 (Asp-Asp) did not alter the ion selectivity without loss of K+ transport activity. The first residue in the conserved motif was not a determinant for K+ or Na+ selectivity. Deletion of the possible nucleotide-binding KTN domain from KEA3 lowered K+ transport activity, indicating that the KTN domain was important for this function. The KEA3-G422R mutation discovered in the Arabidopsis dpgr mutant increased K+ transport activity, consistent with the mutant phenotype. These results indicate that Arabidopsis KEA1-KEA6 act as K+ transport systems, and support the interpretation that KEA3 promotes dissipation of ΔpH in the thylakoid membrane.
Collapse
Affiliation(s)
- Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Takashi Kuromori
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan.
| |
Collapse
|
105
|
Haro R, Benito B. The Role of Soil Fungi in K + Plant Nutrition. Int J Mol Sci 2019; 20:ijms20133169. [PMID: 31261721 PMCID: PMC6651076 DOI: 10.3390/ijms20133169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
K+ is an essential cation and the most abundant in plant cells. After N, its corresponding element, K, is the nutrient required in the largest amounts by plants. Despite the numerous roles of K in crop production, improvements in the uptake and efficiency of use of K have not been major focuses in conventional or transgenic breeding studies in the past. In research on the mineral nutrition of plants in general, and K in particular, this nutrient has been shown to be essential to soil-dwelling-microorganisms (fungi, bacteria, protozoa, nematodes, etc.) that form mutualistic associations and that can influence the availability of mineral nutrients for plants. Therefore, this article aims to provide an overview of the role of soil microorganisms in supplying K+ to plants, considering both the potassium-solubilizing microorganisms and the potassium-facilitating microorganisms that are in close contact with the roots of plants. These microorganisms can influence the active transporter-mediated transfer of K+. Regarding the latter group of microorganisms, special focus is placed on the role of endophytic fungus. This review also includes a discussion on productivity through sustainable agriculture.
Collapse
Affiliation(s)
- Rosario Haro
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus Montegancedo UPM. Pozuelo de Alarcón, 28223-Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus Montegancedo UPM. Pozuelo de Alarcón, 28223-Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain.
| |
Collapse
|
106
|
Physiological, Structural, and Functional Analysis of the Paralogous Cation-Proton Antiporters of NhaP Type from Vibrio cholerae. Int J Mol Sci 2019; 20:ijms20102572. [PMID: 31130620 PMCID: PMC6567090 DOI: 10.3390/ijms20102572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
The transmembrane K+/H+ antiporters of NhaP type of Vibrio cholerae (Vc-NhaP1, 2, and 3) are critical for maintenance of K+ homeostasis in the cytoplasm. The entire functional NhaP group is indispensable for the survival of V. cholerae at low pHs suggesting their possible role in the acid tolerance response (ATR) of V. cholerae. Our findings suggest that the Vc-NhaP123 group, and especially its major component, Vc-NhaP2, might be a promising target for the development of novel antimicrobials by narrowly targeting V. cholerae and other NhaP-expressing pathogens. On the basis of Vc-NhaP2 in silico structure modeling, Molecular Dynamics Simulations, and extensive mutagenesis studies, we suggest that the ion-motive module of Vc-NhaP2 is comprised of two functional regions: (i) a putative cation-binding pocket that is formed by antiparallel unfolded regions of two transmembrane segments (TMSs V/XII) crossing each other in the middle of the membrane, known as the NhaA fold; and (ii) a cluster of amino acids determining the ion selectivity.
Collapse
|
107
|
Guo J, Dong X, Han G, Wang B. Salt-Enhanced Reproductive Development of Suaeda salsa L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K + Content. FRONTIERS IN PLANT SCIENCE 2019; 10:333. [PMID: 30984214 PMCID: PMC6449877 DOI: 10.3389/fpls.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/04/2019] [Indexed: 05/06/2023]
Abstract
Halophytes are adapted to saline environments and demonstrate optimal reproductive growth under high salinity. To gain insight into the salt tolerance mechanism and effects of salinity in the halophyte Suaeda salsa, the number of flowers and seeds, seed size, anther development, ion content, and flower transcript profiles, as well as the relative expression levels of genes involved in ion transport, were analyzed in S. salsa plants treated with 0 or 200 mM NaCl. The seed size, flower number, seed number per leaf axil, and anther fertility were all significantly increased by 200 mM NaCl treatment. The Na+ and Cl- contents in the leaves, stems, and pollen of NaCl-treated plants were all markedly higher, and the K+ content in the leaves and stems was significantly lower, than those in untreated control plants. By contrast, the K+ content in pollen grains did not decrease, but rather increased, upon NaCl treatment. Genes related to Na+, K+ and, Cl- transport, such as SOS1, KEA, AKT1, NHX1, and CHX, showed increased expression in the flowers of NaCl-treated plants. These results suggest that ionic homeostasis in reproductive organs, especially in pollen grains under salt-treated conditions, involves increased expression of ion transport-related genes.
Collapse
Affiliation(s)
| | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
108
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:281. [PMID: 30949187 PMCID: PMC6435592 DOI: 10.3389/fpls.2019.00281] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O. Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J. Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
109
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
110
|
Bassil E, Zhang S, Gong H, Tajima H, Blumwald E. Cation Specificity of Vacuolar NHX-Type Cation/H + Antiporters. PLANT PHYSIOLOGY 2019; 179:616-629. [PMID: 30498025 PMCID: PMC6426403 DOI: 10.1104/pp.18.01103] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 05/02/2023]
Abstract
Cation/H+ (NHX-type) antiporters are important regulators of intracellular ion homeostasis and are critical for cell expansion and plant stress acclimation. In Arabidopsis (Arabidopsis thaliana), four distinct NHX isoforms, named AtNHX1 to AtNHX4, locate to the tonoplast. To determine the concerted roles of all tonoplast NHXs on vacuolar ion and pH homeostasis, we examined multiple knockout mutants lacking all but one of the four vacuolar isoforms and quadruple knockout plants lacking any vacuolar NHX activity. The nhx triple and quadruple knockouts displayed reduced growth phenotypes. Exposure to sodium chloride improved growth while potassium chloride was deleterious to some knockouts. Kinetic analysis of K+ and Na+ transport indicated that AtNHX1 and AtNHX2 are the main contributors to both vacuolar pH and K+ and Na+ uptake, while AtNHX3 and AtNHX4 differ in Na+/K+ selectivity. The lack of any vacuolar NHX activity resulted in no K+ uptake, highly acidic vacuoles, and reduced but not abolished vacuolar Na+ uptake. Additional K+/H+ and Na+/H+ exchange activity assays in the quadruple knockout indicated Na+ uptake that was not H+ coupled, suggesting the existence of an alternative, cation/H+-independent, Na+ conductive pathway in vacuoles. These results highlight the importance of NHX-type cation/H+ antiporters in the maintenance of cellular cation homeostasis and in growth and development.
Collapse
Affiliation(s)
- Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
- Horticultural Sciences Department and Tropical Research and Education Center, University of Florida, Homestead, Florida 33031
| | - Shiqi Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Haijun Gong
- Department of Plant Sciences, University of California, Davis, California 95616
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
111
|
Matzke AJ, Lin WD, Matzke M. Evidence That Ion-Based Signaling Initiating at the Cell Surface Can Potentially Influence Chromatin Dynamics and Chromatin-Bound Proteins in the Nucleus. FRONTIERS IN PLANT SCIENCE 2019; 10:1267. [PMID: 31681370 PMCID: PMC6811650 DOI: 10.3389/fpls.2019.01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
We have developed tools and performed pilot experiments to test the hypothesis that an intracellular ion-based signaling pathway, provoked by an extracellular stimulus acting at the cell surface, can influence interphase chromosome dynamics and chromatin-bound proteins in the nucleus. The experimental system employs chromosome-specific fluorescent tags and the genome-encoded fluorescent pH sensor SEpHluorinA227D, which has been targeted to various intracellular membranes and soluble compartments in root cells of Arabidopsis thaliana. We are using this system and three-dimensional live cell imaging to visualize whether fluorescent-tagged interphase chromosome sites undergo changes in constrained motion concurrently with reductions in membrane-associated pH elicited by extracellular ATP, which is known to trigger a cascade of events in plant cells including changes in calcium ion concentrations, pH, and membrane potential. To examine possible effects of the proposed ion-based signaling pathway directly at the chromatin level, we generated a pH-sensitive fluorescent DNA-binding protein that allows pH changes to be monitored at specific genomic sites. Results obtained using these tools support the existence of a rapid, ion-based signaling pathway that initiates at the cell surface and reaches the nucleus to induce alterations in interphase chromatin mobility and the surrounding pH of chromatin-bound proteins. Such a pathway could conceivably act under natural circumstances to allow external stimuli to swiftly influence gene expression by affecting interphase chromosome movement and the structures and/or activities of chromatin-associated proteins.
Collapse
Affiliation(s)
| | | | - Marjori Matzke
- *Correspondence: Antonius J.M. Matzke, ; Marjori Matzke,
| |
Collapse
|
112
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019. [PMID: 30949187 DOI: 10.3389/fpls.2019.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
113
|
Zhu X, Pan T, Zhang X, Fan L, Quintero FJ, Zhao H, Su X, Li X, Villalta I, Mendoza I, Shen J, Jiang L, Pardo JM, Qiu QS. K + Efflux Antiporters 4, 5, and 6 Mediate pH and K + Homeostasis in Endomembrane Compartments. PLANT PHYSIOLOGY 2018; 178:1657-1678. [PMID: 30309966 PMCID: PMC6288736 DOI: 10.1104/pp.18.01053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
KEA4, KEA5, and KEA6 are members of the Arabidopsis (Arabidopsis thaliana) K+ efflux antiporter (KEA) family that share high sequence similarity but whose function remains unknown. Here, we show their gene expression pattern, subcellular localization, and physiological function in Arabidopsis. KEA4, KEA5, and KEA6 had similar tissue expression patterns, and the three KEA proteins localized to the Golgi, the trans-Golgi network, and the prevacuolar compartment/multivesicular bodies, suggesting overlapping roles of these proteins in the endomembrane system. Phenotypic analyses of single, double, and triple mutants confirmed functional redundancy. The triple mutant kea4 kea5 kea6 had small rosettes, short seedlings, and was sensitive to low K+ availability and to the sodicity imposed by high salinity. Also, the kea4 kea5 kea6 mutant plants had a reduced luminal pH in the Golgi, trans-Golgi network, prevacuolar compartment, and vacuole, in accordance with the K/H exchange activity of KEA proteins. Genetic analysis indicated that KEA4, KEA5, and KEA6 as well as endosomal Na+/H+exchanger5 (NHX5) and NHX6 acted coordinately to facilitate endosomal pH homeostasis and salt tolerance. Neither cancelling nor overexpressing the vacuolar antiporters NHX1 and NHX2 in the kea4 kea5 kea6 mutant background altered the salt-sensitive phenotype. The NHX1 and NHX2 proteins in the kea4 kea5 kea6 mutant background could not suppress the acidity of the endomembrane system but brought the vacuolar pH close to wild-type values. Together, these data signify that KEA4, KEA5, and KEA6 are endosomal K+ transporters functioning in maintaining pH and ion homeostasis in the endomembrane network.
Collapse
Affiliation(s)
- Xiaojie Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Hong Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiaomeng Su
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| | - Irene Villalta
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Imelda Mendoza
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Jinbo Shen
- School of Life Sciences, Center for Cell and Developmental Biology, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China 730000
| |
Collapse
|
114
|
Rosquete MR, Drakakaki G. Plant TGN in the stress response: a compartmentalized overview. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:122-129. [PMID: 30316189 DOI: 10.1016/j.pbi.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
The cellular responses to abiotic and biotic stress rely on the regulation of vesicle trafficking to ensure the correct localization of proteins specialized in sensing stress stimuli and effecting the response. Several studies have implicated the plant trans-Golgi network (TGN)-mediated trafficking in different types of biotic and abiotic stress responses; however, the underlying molecular mechanisms are poorly understood. Further, the identity, specialization and stress-relevant cargo transported by the TGN subcompartments involved in stress responses await more in depth characterization. This review presents TGN trafficking players implicated in stress and discusses potential avenues to understand the role of this dynamic network under such extreme circumstances.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| |
Collapse
|
115
|
Misra BB, Reichman SM, Chen S. The guard cell ionome: Understanding the role of ions in guard cell functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:50-62. [PMID: 30458181 DOI: 10.1016/j.pbiomolbio.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The ionome is critical for plant growth, productivity, defense, and it eventually affects human food quantity and quality. Located on the leaf surface, stomatal guard cells are critical gatekeepers for water, gas, and pathogens. Insights form ionomics (metallomics) is imperative as we enter an omics-driven systems biology era where an understanding of guard cell function and physiology is advanced through efforts in genomics, transcriptomics, proteomics, and metabolomics. While the roles of major cations (K, Ca) and anions (Cl) are well known in guard cell function, the related physiology, movement and regulation of trace elements, metal ions, and heavy metals are poorly understood. The majority of the information on the role of trace elements in guard cells emanates from classical feeding experiments, field or in vitro fortification, micropropagation, and microscopy studies, while novel insights are available from limited metal ion transporter and ion channel studies. Given the rejuvenated and recent interest in the constantly changing ionome in plant mineral balance and eventually in human nutrition and health, we looked into the far from established guard cell ionome in lieu of the modern omics era of high throughput research endeavors. Newer technologies and tools i.e., high resolution mass spectrometry, advanced imaging, and phenomics are now available to delve into the guard cell ionomes. In this review, research efforts on guard cell ionomes were collated and categorized, and we highlight the underlying role of the largely unknown ionome in guard cell function towards a systems physiology understanding of plant health and productivity.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, 27157, NC, USA; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
| | - Suzie M Reichman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
116
|
Behera S, Xu Z, Luoni L, Bonza MC, Doccula FG, De Michelis MI, Morris RJ, Schwarzländer M, Costa A. Cellular Ca 2+ Signals Generate Defined pH Signatures in Plants. THE PLANT CELL 2018; 30:2704-2719. [PMID: 30377237 PMCID: PMC6305977 DOI: 10.1105/tpc.18.00655] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 05/05/2023]
Abstract
Ca2+ play a key role in cell signaling across organisms. The question of how a simple ion can mediate specific outcomes has spurred research into the role of Ca2+ signatures and their encoding and decoding machinery. Such studies have frequently focused on Ca2+ alone and our understanding of how Ca2+ signaling is integrated with other responses is poor. Using in vivo imaging with different genetically encoded fluorescent sensors in Arabidopsis (Arabidopsis thaliana) cells, we show that Ca2+ transients do not occur in isolation but are accompanied by pH changes in the cytosol. We estimate the degree of cytosolic acidification at up to 0.25 pH units in response to external ATP in seedling root tips. We validated this pH-Ca2+ link for distinct stimuli. Our data suggest that the association with pH may be a general feature of Ca2+ transients that depends on the transient characteristics and the intracellular compartment. These findings suggest a fundamental link between Ca2+ and pH dynamics in plant cells, generalizing previous observations of their association in growing pollen tubes and root hairs. Ca2+ signatures act in concert with pH signatures, possibly providing an additional layer of cellular signal transduction to tailor signal specificity.
Collapse
Affiliation(s)
- Smrutisanjita Behera
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India
| | - Zhaolong Xu
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Laura Luoni
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | | | | | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| |
Collapse
|