101
|
Horn M, Patankar AG, Zavala JA, Wu J, Dolecková-Maresová L, Vujtechová M, Mares M, Baldwin IT. Differential elicitation of two processing proteases controls the processing pattern of the trypsin proteinase inhibitor precursor in Nicotiana attenuata. PLANT PHYSIOLOGY 2005; 139:375-88. [PMID: 16113221 PMCID: PMC1203386 DOI: 10.1104/pp.105.064006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 05/04/2023]
Abstract
Trypsin proteinase inhibitors (TPIs) of Nicotiana attenuata are major antiherbivore defenses that increase dramatically in leaves after attack or methyl jasmonate (MeJA) elicitation. To understand the elicitation process, we characterized the proteolytic fragmentation and release of TPIs from a multidomain precursor by proteases in MeJA-elicited and unelicited plants. A set of approximately 6-kD TPI peptides was purified from leaves, and their posttranslational modifications were characterized. In MeJA-elicited plants, the diversity of TPI structures was greater than the precursor gene predicted. This elicited structural heterogeneity resulted from differential fragmentation of the linker peptide (LP) that separates the seven-domain TPI functional domains. Using an in vitro fluorescence resonance energy transfer assay and synthetic substrates derived from the LP sequence, we characterized proteases involved in both the processing of the TPI precursor and its vacuolar targeting sequence. Although both a vacuolar processing enzyme and a subtilisin-like protease were found to participate in a two-step processing of LP, only the activity of the subtilisin-like protease was significantly increased by MeJA elicitation. We propose that MeJA elicitation increases TPI precursor production and saturates the proteolytic machinery, changing the processing pattern of TPIs. To test this hypothesis, we elicited a TPI-deficient N. attenuata genotype that had been transformed with a functional NaTPI gene under control of a constitutive promoter and characterized the resulting TPIs. We found no alterations in the processing pattern predicted from the sequence: a result consistent with the saturation hypothesis.
Collapse
Affiliation(s)
- Martin Horn
- Department of Protein Biochemistry, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
The molecular identity of the key executioners involved in controlling plant programmed cell death (PCD) has been elusive. In a recent paper published in Science, Hatsugai and coworkers reported that a well-characterized protease called VPE from the plant cell vacuole can cleave caspase-specific substrates and is required for cell death activation by tobacco mosaic virus. This work provides clear evidence for the importance of the vacuole in plant PCD and a novel regulatory function for this organelle as well as for VPE proteases.
Collapse
Affiliation(s)
- Eric Lam
- Biotech Center, Rutgers University, 59 Dudley Road, Foran Hall, New Brunswick, NJ 08901, USA.
| |
Collapse
|
103
|
Salmi ML, Bushart TJ, Stout SC, Roux SJ. Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. PLANT PHYSIOLOGY 2005; 138:1734-45. [PMID: 15965014 PMCID: PMC1176442 DOI: 10.1104/pp.105.062851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Analysis of an expressed sequence tag library with more than 5,000 sequences from spores of the fern Ceratopteris richardii reveals that more than 3,900 of them represent distinct genes, and almost 70% of these have significant similarity to Arabidopsis (Arabidopsis thaliana) genes. Eight genes are common between three very different dormant plant systems, Ceratopteris spores, Arabidopsis seeds, and Arabidopsis pollen. We evaluated the pattern of mRNA abundance over the first 48 h of spore development using a microarray of cDNAs representing 3,207 distinct genes of C. richardii and determined the relative levels of RNA abundance for 3,143 of these genes using a Bayesian method of statistical analysis. More than 900 of them (29%) show a significant change between any of the five time points analyzed, and these have been annotated based on their sequence similarity with the Arabidopsis proteome. Novel data arising from these analyses identify genes likely to be critical for the germination and subsequent early development of diverse cells and tissues emerging from dormancy.
Collapse
Affiliation(s)
- Mari L Salmi
- Molecular Cell and Developmental Biology, University of Texas, Austin, Texas 78751, USA
| | | | | | | |
Collapse
|
104
|
Massonneau A, Condamine P, Wisniewski JP, Zivy M, Rogowsky PM. Maize cystatins respond to developmental cues, cold stress and drought. ACTA ACUST UNITED AC 2005; 1729:186-99. [PMID: 15979170 DOI: 10.1016/j.bbaexp.2005.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/02/2005] [Accepted: 05/07/2005] [Indexed: 11/23/2022]
Abstract
Comprehensive searches of maize EST data allowed us to identify 8 novel Corn Cystatin (CC) genes in addition to the previously known genes CCI and CCII. The deduced amino acid sequences of all 10 genes contain the typical cystatin family signature. In addition, they show an extended overall similarity with cystatins from other species that belong to several different phyto-cystatin subfamilies. To gain further insight into their respective roles in the maize plant, gene-specific expression profiles were established by semi-quantitative RT-PCR. While 7 CC genes were expressed in two or more tissues varying from gene to gene, CCI was preferentially expressed in immature tassels and CC8 and CC10 in developing kernels. As shown by in situ hybridisation of maize kernels, CC8 was specifically expressed in the basal region of the endosperm and CC10 both in the starchy endosperm and the scutellum of the embryo. The remaining, not kernel-specific genes, all had distinct expression kinetics during kernel development, generally with peaks during the early stages. In addition to developmental regulation, the effect of cold stress and water starvation were tested on cystatin expression. Two genes (CC8 and CC9) were induced by cold stress and 5 genes (CCII, CC3, CC4, CC5 and CC9) were down-regulated in response to water starvation. Taken together our data suggest distinct functions for CC genes in the maize plant.
Collapse
Affiliation(s)
- Agnès Massonneau
- RDP, UMR 5667 CNRS-INRA-ENSL-UCBL, IFR128 BioSciences Lyon-Gerland, ENS-Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
105
|
Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in Arabidopsis seeds and during germination. PLANT PHYSIOLOGY 2005; 138:790-802. [PMID: 15908592 PMCID: PMC1150397 DOI: 10.1104/pp.105.062778] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Increased cellular levels of reactive oxygen species are known to occur during seed development and germination, but the consequences in terms of protein degradation are poorly characterized. In this work, protein carbonylation, which is an irreversible oxidation process leading to a loss of function of the modified proteins, has been analyzed by a proteomic approach during the first stages of Arabidopsis (Arabidopsis thaliana) seed germination. In the dry mature seeds, the legumin-type globulins (12S cruciferins) were the major targets. However, the acidic alpha-cruciferin subunits were carbonylated to a much higher extent than the basic (beta) ones, consistent with a model in which the beta-subunits are buried within the cruciferin molecules and the alpha-subunits are more exposed to the outside. During imbibition, various carbonylated proteins accumulated. This oxidation damage was not evenly distributed among seed proteins and targeted specific proteins as glycolytic enzymes, mitochondrial ATP synthase, chloroplastic ribulose bisphosphate carboxylase large chain, aldose reductase, methionine synthase, translation factors, and several molecular chaperones. Although accumulation of carbonylated proteins is usually considered in the context of aging in a variety of model systems, this was clearly not the case for the Arabidopsis seeds since they germinated at a high rate and yielded vigorous plantlets. The results indicate that the observed specific changes in protein carbonylation patterns are probably required for counteracting and/or utilizing the production of reactive oxygen species caused by recovery of metabolic activity in the germinating seeds.
Collapse
Affiliation(s)
- Claudette Job
- Centre National de la Recherche Scientifique/Bayer CropScience Joint Laboratory, Unité Mixte de Recherche 2847, Bayer CropScience, Lyon, France
| | | | | | | | | |
Collapse
|
106
|
Sanmartín M, Jaroszewski L, Raikhel NV, Rojo E. Caspases. Regulating death since the origin of life. PLANT PHYSIOLOGY 2005; 137:841-7. [PMID: 15761210 PMCID: PMC1065385 DOI: 10.1104/pp.104.058552] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 12/23/2004] [Accepted: 12/23/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Maite Sanmartín
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
107
|
Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I. A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. THE PLANT CELL 2005; 17:876-87. [PMID: 15705955 PMCID: PMC1069705 DOI: 10.1105/tpc.104.026872] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 12/04/2004] [Indexed: 05/18/2023]
Abstract
Vacuolar processing enzyme (VPE) is a Cys proteinase responsible for the maturation of vacuolar proteins. Arabidopsis thaliana deltaVPE, which was recently found in the database, was specifically and transiently expressed in two cell layers of the seed coat (ii2 and ii3) at an early stage of seed development. At this stage, cell death accompanying cell shrinkage occurs in the ii2 layer followed by cell death in the ii3 layer. In a deltaVPE-deficient mutant, cell death of the two layers of the seed coat was delayed. Immunocytochemical analysis localized deltaVPE to electron-dense structures inside and outside the walls of seed coat cells that undergo cell death. Interestingly, deltaVPE in the precipitate fraction from young siliques exhibits caspase-1-like activity, which has been detected in various types of plant cell death. Our results suggest that, at the early stage of seed development, deltaVPE is involved in cell death of limited cell layers, the purpose of which is to form a seed coat.
Collapse
Affiliation(s)
- Satoru Nakaune
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Rojo E, Martín R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sánchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV. VPEgamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 2005; 14:1897-906. [PMID: 15530390 DOI: 10.1016/j.cub.2004.09.056] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/10/2004] [Accepted: 09/10/2004] [Indexed: 12/22/2022]
Abstract
BACKGROUND Caspases are a family of aspartate-specific cysteine proteases that play an essential role in initiating and executing programmed cell death (PCD) in metazoans. Caspase-like activities have been shown to be required for the initiation of PCD in plants, but the genes encoding those activities have not been identified. VPEgamma, a cysteine protease, is induced during senescence, a form of PCD in plants, and is localized in precursor protease vesicles and vacuoles, compartments associated with PCD processes in plants. RESULTS We show that VPEgamma binds in vivo to a general caspase inhibitor and to caspase-1-specific inhibitors, which block the activity of VPEgamma. A cysteine protease inhibitor, cystatin, accumulates to 20-fold higher levels in vpegamma mutants. Homologs of cystatin are known to suppress hypersensitive cell death in plant and animal systems. We also report that infection with an avirulent strain of Pseudomonas syringae results in an increase of caspase-1 activity, and this increase is partially suppressed in vpegamma mutants. Plants overexpressing VPEgamma exhibit a greater amount of ion leakage during infection with P. syringae, suggesting that VPEgamma may regulate cell death progression during plant-pathogen interaction. VPEgamma expression is induced after infection with P. syringae, Botrytis cinerea, and turnip mosaic virus, and knockout of VPEgamma results in increased susceptibility to these pathogens. CONCLUSIONS We conclude that VPEgamma is a caspase-like enzyme that has been recruited in plants to regulate vacuole-mediated cell dismantling during cell death, a process that has significant influence in the outcome of a diverse set of plant-pathogen interactions.
Collapse
Affiliation(s)
- Enrique Rojo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. THE PLANT CELL 2004; 16:3285-303. [PMID: 15539469 PMCID: PMC535874 DOI: 10.1105/tpc.104.027078] [Citation(s) in RCA: 447] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vacuoles play central roles in plant growth, development, and stress responses. To better understand vacuole function and biogenesis we have characterized the vegetative vacuolar proteome from Arabidopsis thaliana. Vacuoles were isolated from protoplasts derived from rosette leaf tissue. Total purified vacuolar proteins were then subjected either to multidimensional liquid chromatography/tandem mass spectrometry or to one-dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry (nano-LC MS/MS). To ensure maximum coverage of the proteome, a tonoplast-enriched fraction was also analyzed separately by one-dimensional SDS-PAGE followed by nano-LC MS/MS. Cumulatively, 402 proteins were identified. The sensitivity of our analyses is indicated by the high coverage of membrane proteins. Eleven of the twelve known vacuolar-ATPase subunits were identified. Here, we present evidence of four tonoplast-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), representing each of the four groups of SNARE proteins necessary for membrane fusion. In addition, potential cargo of the N- and C-terminal propeptide sorting pathways, association of the vacuole with the cytoskeleton, and the vacuolar localization of 89 proteins of unknown function are identified. A detailed analysis of these proteins and their roles in vacuole function and biogenesis is presented.
Collapse
Affiliation(s)
- Clay Carter
- Center for Plant Cell Biology, Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
110
|
Schaller A. A cut above the rest: the regulatory function of plant proteases. PLANTA 2004; 220:183-97. [PMID: 15517349 DOI: 10.1007/s00425-004-1407-2] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/15/2004] [Indexed: 05/05/2023]
Abstract
Proteolytic enzymes are intricately involved in many aspects of plant physiology and development. On the one hand, they are necessary for protein turnover. Degradation of damaged, misfolded and potentially harmful proteins provides free amino acids required for the synthesis of new proteins. Furthermore, the selective breakdown of regulatory proteins by the ubiquitin/proteasome pathway controls key aspects of plant growth, development, and defense. Proteases are, on the other hand, also responsible for the post-translational modification of proteins by limited proteolysis at highly specific sites. Limited proteolysis results in the maturation of enzymes, is necessary for protein assembly and subcellular targeting, and controls the activity of enzymes, regulatory proteins and peptides. Proteases are thus involved in all aspects of the plant life cycle ranging from the mobilization of storage proteins during seed germination to the initiation of cell death and senescence programs. This article reviews recent findings for the major catalytic classes, i.e. the serine, cysteine, aspartic, and metalloproteases, emphasizing the regulatory function of representative enzymes.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology (260), University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
111
|
van der Hoorn RAL, Jones JDG. The plant proteolytic machinery and its role in defence. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:400-7. [PMID: 15231262 DOI: 10.1016/j.pbi.2004.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The diverse roles of plant proteases in defence responses that are triggered by pathogens or pests are becoming clearer. Some proteases, such as papain in latex, execute the attack on the invading organism. Other proteases seem to be part of a signalling cascade, as indicated by protease inhibitor studies. Such a role has also been suggested for the recently discovered metacaspases and CDR1. Some proteases, such as RCR3, even act in perceiving the invader. These exciting recent reports are probably just the first examples of what lies beneath. More roles for plant proteases in defence, as well as the regulation and substrates of these enzymes, are waiting to be discovered.
Collapse
|