101
|
Wang B, Li L, Liu M, Peng D, Wei A, Hou B, Lei Y, Li X. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:722-737. [PMID: 36097863 DOI: 10.1111/tpj.15975] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed various protective mechanisms to survive drought stress. Previously, it was shown that a wheat bZIP transcription factor gene TaFD-Like2-1A (TaFDL2-1A) can confer drought tolerance in Arabidopsis. However, the biological functions related to drought stress tolerance of TaFDL2-1A in wheat (Triticum aestivum L.) remain unclear. In the present study, overexpression of TaFDL2-1A in the wheat cultivar Fielder improved drought resistance and conferred abscisic acid (ABA) hypersensitivity. Further analysis showed that overexpression of TaFDL2-1A increased the hypersensitivity of stomata to drought stress and endogenous ABA content under drought conditions. Genetic analysis and transcriptional regulation analysis indicated that TaFDL2-1A binds directly to the promoter fragments of TaRAB21s and TaNCED2s via ACGT core cis-elements, thereby activating their expression, leading to enhanced ABA responses and endogenous ABA accumulation. In addition, our results demonstrate that overexpression of TaFDL2-1A results in higher SOD and GPX activities in wheat under drought conditions by promoting the expression of TaSOD1 and TaGPx1-D, indicating enhanced reactive oxygen species (ROS) scavenging. These results imply that TaFDL2-1A positively regulates ABA biosynthesis, ABA responses, and ROS scavenging to improve drought stress tolerance in transgenic wheat. Our findings improve our understanding of the mechanisms that allow the wheat bZIP transcription factor to improve drought resistance and provide a useful reference gene for breeding programs to enhance drought resistance.
Collapse
Affiliation(s)
- Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingliu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aosong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beiyuan Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
102
|
Zhou Y, Zhai H, Xing S, Wei Z, He S, Zhang H, Gao S, Zhao N, Liu Q. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. FRONTIERS IN PLANT SCIENCE 2022; 13:965069. [PMID: 36388596 PMCID: PMC9660231 DOI: 10.3389/fpls.2022.965069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Small open reading frames (sORFs) can encode functional polypeptides or act as cis-translational regulators in stress responses in eukaryotes. Their number and potential importance have only recently become clear in plants. In this study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded the 83-amino acid polypeptide containing an EGF_CA domain. The expression of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized to the nucleus and cell membrane. Under drought stress, overexpression of IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA, BR and proline and upregulated the genes encoding superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The IbEGF protein was found to interact with IbCOP9-5α, a regulator in the phytohormone signalling pathways. These results suggest that IbEGF interacting with IbCOP9-5α enhances drought tolerance by regulating phytohormone signalling pathways, increasing proline accumulation and further activating reactive oxygen species (ROS) scavenging system in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
103
|
Ebeed HT. Genome-wide analysis of polyamine biosynthesis genes in wheat reveals gene expression specificity and involvement of STRE and MYB-elements in regulating polyamines under drought. BMC Genomics 2022; 23:734. [PMID: 36309637 PMCID: PMC9618216 DOI: 10.1186/s12864-022-08946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Polyamines (PAs) are considered promising biostimulants that have diverse key roles during growth and stress responses in plants. Nevertheless, the molecular basis of these roles by PAs has not been completely realized even now, and unfortunately, the transcriptional analyses of the biosynthesis pathway in various wheat tissues have not been investigated under normal or stress conditions. In this research, the findings of genome-wide analyses of genes implicated in the PAs biosynthesis in wheat (ADC, Arginine decarboxylase; ODC, ornithine decarboxylase; AIH, agmatine iminohydrolase; NPL1, Nitrlase like protein 1; SAMDC, S-adenosylmethionine decarboxylase; SPDS, spermidine synthase; SPMS, spermine synthase and ACL5, thermospermine synthase) are shown. RESULTS In total, thirty PAs biosynthesis genes were identified. Analysis of gene structure, subcellular compartmentation and promoters were discussed. Furthermore, experimental gene expression analyses in roots, shoot axis, leaves, and spike tissues were investigated in adult wheat plants under control and drought conditions. Results revealed structural similarity within each gene family and revealed the identity of two new motifs that were conserved in SPDS, SPMS and ACL5. Analysis of the promoter elements revealed the incidence of conserved elements (STRE, CAAT-box, TATA-box, and MYB TF) in all promoters and highly conserved CREs in >80% of promoters (G-Box, ABRE, TGACG-motif, CGTCA-motif, as1, and MYC). The results of the quantification of PAs revealed higher levels of putrescine (Put) in the leaves and higher spermidine (Spd) in the other tissues. However, no spermine (Spm) was detected in the roots. Drought stress elevated Put level in the roots and the Spm in the leaves, shoots and roots, while decreased Put in spikes and elevated the total PAs levels in all tissues. Interestingly, PA biosynthesis genes showed tissue-specificity and some homoeologs of the same gene family showed differential gene expression during wheat development. Additionally, gene expression analysis showed that ODC is the Put biosynthesis path under drought stress in roots. CONCLUSION The information gained by this research offers important insights into the transcriptional regulation of PA biosynthesis in wheat that would result in more successful and consistent plant production.
Collapse
Affiliation(s)
- Heba Talat Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| |
Collapse
|
104
|
Weng W, Lu X, Zhou M, Gao A, Yao X, Tang Y, Wu W, Ma C, Bai Q, Xiong R, Ruan J. FtbZIP12 Positively Regulates Responses to Osmotic Stress in Tartary Buckwheat. Int J Mol Sci 2022; 23:ijms232113072. [PMID: 36361858 PMCID: PMC9658761 DOI: 10.3390/ijms232113072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.
Collapse
Affiliation(s)
- Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xiang Lu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yong Tang
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Qing Bai
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Ruiqi Xiong
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
105
|
Liu H, Cui P, Zhang B, Zhu J, Liu C, Li Q. Binding of the transcription factor MYC2-like to the ABRE of the OsCYP2 promoter enhances salt tolerance in Oryza sativa. PLoS One 2022; 17:e0276075. [PMID: 36240213 PMCID: PMC9565382 DOI: 10.1371/journal.pone.0276075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Cyclophilins, a type of peptidyl-prolyl cis-trans isomerase, function as important molecular chaperones in a series of biological processes. However, the expression pattern and signal transduction pathway of cyclophilins are still unclear. Here, we showed that the promoter of OsCYP2 could function as a tissue-specific promoter by GUS staining. Moreover, we found that the promoter sequence contained not only core elements but also inducible elements. Then, the ABA-responsive element was used for cDNA library screening, and the transcription factor MYC2-like was identified by a yeast one-hybrid assay and confirmed through an electrophoretic mobility shift assay. Furthermore, the relative expression showed that MYC2-like was induced by abscisic acid. In addition, MYC2-like overexpression enhanced salt tolerance in transformants and partially restored the cyp2-RNAi line. In summary, we explored a novel transcriptional signal mediated by MYC2-like, a potential regulator of salt stress-related physiological processes in rice.
Collapse
Affiliation(s)
- Hongbo Liu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
- * E-mail:
| | - Peng Cui
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Bingxin Zhang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Jinbo Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Cui Liu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Qingyang Li
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
106
|
Kumar V, Kumar A, Tewari K, Garg NK, Changan SS, Tyagi A. Isolation and characterization of drought and ABA responsive promoter of a transcription factor encoding gene from rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1813-1831. [PMID: 36484033 PMCID: PMC9723047 DOI: 10.1007/s12298-022-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Water deficit is a significant impediment to enhancing rice yield. Genetic engineering tools have enabled agriculture researchers to develop drought-tolerant cultivars of rice. A common strategy to achieve this involves expressing drought-tolerant genes driven by constitutive promoters such as CaMV35S. However, the use of constitutive promoters is often limited by the adverse effects it has on the growth and development of the plant. Additionally, it has been observed that monocot-derived promoters are more successful in driving gene expression in monocots than in dicots. Substitution of constitutive promoters with stress-inducible promoters is the currently used strategy to overcome this limitation. In the present study, a 1514 bp AP2/ERF promoter that drives the expression of a transcription factor was cloned and characterized from drought-tolerant Indian rice genotype N22. The AP2/ERF promoter was fused to the GUS gene (uidA) and transformed in Arabidopsis and rice plants. Histochemical GUS staining of transgenic Arabidopsis plants showed AP2/ERF promoter activity in roots, stems, and leaves. Water deficit stress and ABA upregulate promoter activity in transformed Arabidopsis and rice. Quantitative PCR for uidA expression confirmed induced GUS activity in Arabidopsis and rice. This study showed that water deficit inducible Os-AP2/ERF-N22 promoter can be used to overcome the limitations of constitutive promoters. Transformants overexpressing Os-AP2/ERF-N22 showed higher relative water content, membrane stability index, total chlorophyll content, chlorophyll stability index, wax content, osmotic potential, stomatal conductance, transpiration rate, photosynthetic rate and radical scavenging activity. Drought tolerant (N22) showed higher expression of Os-AP2/ERF-N22 than the susceptible (MTU1010) cultivar. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01246-9.
Collapse
Affiliation(s)
- Vaibhav Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Basic Science Division, Indian Council of Agricultural Research-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Amresh Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India
| | - Kalpana Tewari
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Basic Science Division, Indian Council of Agricultural Research-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Nitin Kumar Garg
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Rajasthan Agricultural Research Institute (SKNAU Jobner), Durgapura, Jaipur India
| | - Sushil S. Changan
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Division of CPB and PHT, Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, India
| | - Aruna Tyagi
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
107
|
Siemiatkowska B, Chiara M, Badiger BG, Riboni M, D'Avila F, Braga D, Salem MAA, Martignago D, Colanero S, Galbiati M, Giavalisco P, Tonelli C, Juenger TE, Conti L. GIGANTEA Is a Negative Regulator of Abscisic Acid Transcriptional Responses and Sensitivity in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:1285-1297. [PMID: 35859344 DOI: 10.1093/pcp/pcac102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional reprogramming plays a key role in drought stress responses, preceding the onset of morphological and physiological acclimation. The best-characterized signal regulating gene expression in response to drought is the phytohormone abscisic acid (ABA). ABA-regulated gene expression, biosynthesis and signaling are highly organized in a diurnal cycle, so that ABA-regulated physiological traits occur at the appropriate time of day. The mechanisms that underpin such diel oscillations in ABA signals are poorly characterized. Here we uncover GIGANTEA (GI) as a key gatekeeper of ABA-regulated transcriptional and physiological responses. Time-resolved gene expression profiling by RNA sequencing under different irrigation scenarios indicates that gi mutants produce an exaggerated ABA response, despite accumulating wild-type levels of ABA. Comparisons with ABA-deficient mutants confirm the role of GI in controlling ABA-regulated genes, and the analysis of leaf temperature, a read-out for transpiration, supports a role for GI in the control of ABA-regulated physiological processes. Promoter regions of GI/ABA-regulated transcripts are directly targeted by different classes of transcription factors (TFs), especially PHYTOCHROME-INTERACTING FACTOR and -BINDING FACTOR, together with GI itself. We propose a model whereby diel changes in GI control oscillations in ABA responses. Peak GI accumulation at midday contributes to establishing a phase of reduced ABA sensitivity and related physiological responses, by gating DNA binding or function of different classes of TFs that cooperate or compete with GI at target regions.
Collapse
Affiliation(s)
- Beata Siemiatkowska
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Bhaskara G Badiger
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Matteo Riboni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Francesca D'Avila
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì, 8, Milano 20142, Italy
| | - Daniele Braga
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì, 8, Milano 20142, Italy
| | - Mohamed Abd Allah Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Sara Colanero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Massimo Galbiati
- Istituto di Biologia e Biotecnologia Agraria-IBBA, CNR, Via Edoardo Bassini, 15, Milano 20133, Italy
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, Cologne 50931, Germany
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| |
Collapse
|
108
|
Ha CV, Mostofa MG, Nguyen KH, Tran CD, Watanabe Y, Li W, Osakabe Y, Sato M, Toyooka K, Tanaka M, Seki M, Burritt DJ, Anderson CM, Zhang R, Nguyen HM, Le VP, Bui HT, Mochida K, Tran LSP. The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1732-1752. [PMID: 35883014 DOI: 10.1111/tpj.15920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.
Collapse
Affiliation(s)
- Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Mohammad Golam Mostofa
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, J2-12, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
| | - Huong Mai Nguyen
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Vy Phuong Le
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Hien Thuy Bui
- Division of Plant Science and Technology, Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Keiichi Mochida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Science, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| |
Collapse
|
109
|
Reinert S. Quantitative genetics of pleiotropy and its potential for plant sciences. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153784. [PMID: 35944292 DOI: 10.1016/j.jplph.2022.153784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stephan Reinert
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Division of Biochemistry, Biocomputing Lab, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
110
|
Zhang M, Liu L, Chen C, Zhao Y, Pang C, Chen M. Heterologous expression of a Fraxinus velutina SnRK2 gene in Arabidopsis increases salt tolerance by modifying root development and ion homeostasis. PLANT CELL REPORTS 2022; 41:1895-1906. [PMID: 35794394 DOI: 10.1007/s00299-022-02899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
FvSnRK2182 is involved in regulating the growth and stress response. SnRK2 family members are positive regulators of downstream signals in the abscisic acid (ABA) signaling pathway, playing key roles in the plant responses to abiotic stresses. Fraxinus velutina Torr. is a candidate phytoremediator of saline-alkali areas, and is a valuable research subject because of its adaptability in saline soil. We identified a SnRK2 gene in F. velutina (named FvSnRK2182), which was significantly upregulated under salt stress. A bioinformatics analysis showed that FvSnRK2182 has a Ser/Thr kinase domain typical of the SnRK2 subfamily. Compared with wild-type (WT) Arabidopsis, its heterologous expression in Arabidopsis resulted in higher auxin content during seed germination and seedling growth, leading to longer primary roots and more lateral roots. The transgenic lines were better able to tolerate treatments with NaCl (100 mM) and/or ABA (0.2 and 0.5 µM), producing a greater biomass than the WT plants. Under NaCl treatment, the shoots of the transgenic lines had lower Na+ contents and higher K+ contents than the WT plants, and the genes encoding the ion transport-related proteins SOS1, HKT1, NHX1, and AKT1 were significantly upregulated. In addition, the expression of the genes functioning downstream of SnRK2 in the ABA signaling pathway (Rboh, AREB4, ABF2, and ABF3) were significantly upregulated in transgenic lines under NaCl stress. These results showed that expressing FvSnRK2182 in Arabidopsis significantly increased their resistance to ABA and salt stress by regulating root development and maintaining ion homeostasis, which suggests that FvSnRK2182 may be involved in regulating the growth and stress response of F. velutina.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Li Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Chunxiao Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yang Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Caihong Pang
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
111
|
Azuma A, Kobayashi S. Demethylation of the 3' LTR region of retrotransposon in VvMYBA1 BEN allele enhances anthocyanin biosynthesis in berry skin and flesh in 'Brazil' grape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111341. [PMID: 35667250 DOI: 10.1016/j.plantsci.2022.111341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 05/10/2023]
Abstract
Black-skinned and red-fleshed grape 'Brazil' is a bud sport of rosy-skinned 'Benitaka'. 'Brazil' has a much higher anthocyanin content in the skin than that of 'Benitaka' and is characterized by the accumulation of anthocyanins in the flesh. Our genomic analysis of the VvMYBA loci, which regulate anthocyanin biosynthesis, suggested that the difference in skin and flesh color between 'Brazil' and 'Benitaka' cannot be explained by genomic alteration at the loci. Expression levels of VvMYBA1 and anthocyanin biosynthesis-related genes in skin and flesh were significantly higher in 'Brazil' than in 'Benitaka' throughout berry development. DNA methylation levels in the 3' long terminal repeat (LTR) of a retrotransposon in the upstream region of VvMYBA1BEN allele were clearly higher in the skin and flesh of 'Benitaka' than in those of 'Brazil' throughout berry development. These findings suggest that a dramatic decrease in DNA methylation level in the 3' LTR of the retrotransposon in the VvMYBA1BEN allele in 'Brazil' increases the expression levels of VvMYBA1 and anthocyanin accumulation in skin and flesh. Our findings also suggest that skin and flesh colors are inherited together and vary depending on the presence or absence of the VvMYBA1BEN allele.
Collapse
Affiliation(s)
- Akifumi Azuma
- Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Higashihiroshima, Hiroshima 739-2494, Japan.
| | - Shozo Kobayashi
- Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Higashihiroshima, Hiroshima 739-2494, Japan
| |
Collapse
|
112
|
Xu Z, Wang F, Ma Y, Dang H, Hu X. Transcription Factor SlAREB1 Is Involved in the Antioxidant Regulation under Saline–Alkaline Stress in Tomato. Antioxidants (Basel) 2022; 11:antiox11091673. [PMID: 36139748 PMCID: PMC9495317 DOI: 10.3390/antiox11091673] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors of the ABA-responsive element binding factor/ABA-responsive element binding proteins (ABF/AREB) subfamily have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. However, the specific function of ABF/AREB transcription factors under saline–alkaline stress is unclear. Here, we identified four ABF/AREB transcription factors in tomato and found that SlAREB1 strongly responded to both ABA and saline–alkaline stress. To further explore the function of SlAREB1 under saline–alkaline stress, SlAREB1-overexpressing lines were constructed. Compared with wild-type plants, SlAREB1-overexpressing transgenic tomato plants showed reduced malondialdehyde content, increased the relative water content, and alleviated the degradation of chlorophyll under saline–alkaline stress. Importantly, SlAREB1 directly physically interacted with SlMn-SOD, which improved the activity of antioxidant enzymes and increased the scavenging of excess reactive oxygen species. Overall, the overexpression of SlAREB1 increased the antioxidant capacity of the transgenic tomato under saline–alkaline stress.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Fan Wang
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Haoran Dang
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest AF University, Xianyang 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Xianyang 712100, China
- Shaanxi Protected Agriculture Research Centre, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
113
|
Miao S, Li F, Han Y, Yao Z, Xu Z, Chen X, Liu J, Zhang Y, Wang A. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress. BMC Genomics 2022; 23:547. [PMID: 35915415 PMCID: PMC9341080 DOI: 10.1186/s12864-022-08675-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Background OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. Results A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. Conclusion This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08675-6.
Collapse
Affiliation(s)
- Shuang Miao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fengshuo Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Han
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhongtong Yao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Zeqian Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayin Liu
- College of Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China. .,College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
114
|
Kasper K, Abreu IN, Feussner K, Zienkiewicz K, Herrfurth C, Ischebeck T, Janz D, Majcherczyk A, Schmitt K, Valerius O, Braus GH, Feussner I, Polle A. Multi-omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:282-303. [PMID: 35535561 DOI: 10.1111/tpj.15802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
Xylem sap is the major transport route for nutrients from roots to shoots. In the present study, we investigated how variations in nitrogen (N) nutrition affected the metabolome and proteome of xylem sap and the growth of the xylem endophyte Brennaria salicis, and we also report transcriptional re-wiring of leaf defenses in poplar (Populus × canescens). We supplied poplars with high, intermediate or low concentrations of ammonium or nitrate. We identified 288 unique proteins in xylem sap. Approximately 85% of the xylem sap proteins were shared among ammonium- and nitrate-supplied plants. The number of proteins increased with increasing N supply but the major functional categories (catabolic processes, cell wall-related enzymes, defense) were unaffected. Ammonium nutrition caused higher abundances of amino acids and carbohydrates, whereas nitrate caused higher malate levels in xylem sap. Pipecolic acid and N-hydroxy-pipecolic acid increased, whereas salicylic acid and jasmonoyl-isoleucine decreased, with increasing N nutrition. Untargeted metabolome analyses revealed 2179 features in xylem sap, of which 863 were differentially affected by N treatments. We identified 124 metabolites, mainly from specialized metabolism of the groups of salicinoids, phenylpropanoids, phenolics, flavonoids, and benzoates. Their abundances increased with decreasing N, except coumarins. Brennaria salicis growth was reduced in nutrient-supplemented xylem sap of low- and high- NO3- -fed plants compared to that of NH4+ -fed plants. The drastic changes in xylem sap composition caused massive changes in the transcriptional landscape of leaves and recruited defenses related to systemic acquired and induced systemic resistance. Our study uncovers unexpected complexity and variability of xylem composition with consequences for plant defenses.
Collapse
Affiliation(s)
- Karl Kasper
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Ilka N Abreu
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Andrzej Majcherczyk
- Molecular Wood Biotechnology and Technical Mycology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Kerstin Schmitt
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Oliver Valerius
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Gerhard H Braus
- Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
- Service Unit for Proteomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| |
Collapse
|
115
|
Meng X, Wang N, He H, Tan Q, Wen B, Zhang R, Fu X, Xiao W, Chen X, Li D, Li L. Prunus persica transcription factor PpNAC56 enhances heat resistance in transgenic tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:194-201. [PMID: 35525200 DOI: 10.1016/j.plaphy.2022.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Members of the NAC (NAM, ATAF1,2 and CUC2) transcription factor family are involved in numerous processes of plant growth and development and play an important role in the response to abiotic stresses such as salinity, drought and heat, but little research on this topic has been done in peach. In this study, we analyzed the expression patterns of PpNAC56 under abiotic stress and found that PpNAC56 responded to high-temperature stress. To verify the function of PpNAC56, we overexpressed this gene in tomato plants and found that, compared with WT plants, the transgenic tomato plants could accumulate more osmoregulatory substances after high-temperature treatment and thus were more heat resistance. Then, using Y2H, BIFC, and pull-down assays, we found that PpNAC56 could interact with PpMIEL1. In addition, Y1H and dual-luciferase assays verified that PpNAC56 could activate the expression of PpHSP17.4 and PpSnRK2D. The above experimental results demonstrate that PpNAC56 plays an important role in the plant response to heat stress.
Collapse
Affiliation(s)
- Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| |
Collapse
|
116
|
Zhang C, Zhou Q, Liu W, Wu X, Li Z, Xu Y, Li Y, Imaizumi T, Hou X, Liu T. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:134-148. [PMID: 35442527 DOI: 10.1111/tpj.15783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Drought stress triggers the accumulation of the phytohormone abscisic acid (ABA), which in turn activates the expression of the floral integrator gene CONSTANS (CO), accelerating flowering. However, the molecular mechanism of ABA-induced CO activation remains elusive. Here, we conducted a yeast one-hybrid assay using the CO promoter from Brassica campestris (syn. Brassica rapa) ssp. chinensis (pak choi) to screen the ABA-induced pak choi library and identified the transcription activator ABF3 (BrABF3). BrABF3, the expression of which was induced by ABA in pak choi, directly bound to the CO promoter from both pak choi and Arabidopsis. The BrABF3 promoter is specifically active in the Arabidopsis leaf vascular tissue, where CO is mainly expressed. Impaired BrABF3 expression in pak choi decreased BrCO expression levels and delayed flowering, whereas ectopic expression of BrABF3 in Arabidopsis increased CO expression and induced earlier flowering under the long-day conditions. Electrophoretic mobility shift assay analysis showed that BrABF3 was enriched at the canonical ABA-responsive element-ABRE binding factor (ABRE-ABF) binding motifs of the BrCO promoter. The direct binding of BrABF3 to the ABRE elements of CO was further confirmed by chromatin immunoprecipitation quantitative PCR. In addition, the induction of BrCO transcription by BrABF3 could be repressed by BrCDF1 in the morning. Thus, our results suggest that ABA could accelerate the floral transition by directly activating BrCO transcription through BrABF3 in pak choi.
Collapse
Affiliation(s)
- Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
117
|
Sun H, Xie Y, Yang W, Lv Q, Chen L, Li J, Meng Y, Li L, Li X. Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:182-193. [PMID: 35512580 DOI: 10.1016/j.plaphy.2022.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Drought negatively affects plant growth and development to cause major yield losses in crops. Transcription factors (TFs) play important roles in abiotic stress response signaling in plant. However, the biological functions of membrane-bound transcription factors (MTFs) in abiotic stress have rarely been studied in wheat. In this study, we identified a homologue of the maize ZmNTL1 gene in wheat, which was designated as TaNTL1. TaNTL1 is a NAC family MTF (NTM1-like, NTL proteins) encoding 481 amino acid residues with a transmembrane motif at the C-terminal. Quantitative results and expression profile analysis showed that TaNTL1 could respond to drought. We demonstrated the transcriptional activity of TaNTL1 and that it could specifically bind to NAC recognition cis-acting elements (NACBS). The full-length TaNTL1 protein localized in the plasma membrane and TaNTL1 lacking the transmembrane motif (TaNTL1-ΔTM) localized in the nucleus. TaNTL1 was proteolytically activated by PEG6000 and abscisic acid (ABA). Phenotypic and physiological analyses showed that overexpression transgenic Arabidopsis exhibited enhanced drought resistance, which was greater with TaNTL1-ΔTM than TaNTL1. Transient silencing of TaNTL1 significantly reduced the resistance to drought stress in wheat. Germination by the TaNTL1 and TaNTL1-ΔTM transgenic Arabidopsis seeds was also hypersensitive to ABA. Most of the stress-related genes in transgenic plants were upregulated under drought conditions. These results suggest that MTF TaNTL1 is a positive regulator of drought and it may function by entering the nucleus through cleavage.
Collapse
Affiliation(s)
- Huimin Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiatao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
118
|
Wu X, Xu J, Meng X, Fang X, Xia M, Zhang J, Cao S, Fan T. Linker histone variant HIS1-3 and WRKY1 oppositely regulate salt stress tolerance in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1833-1847. [PMID: 35474141 PMCID: PMC9237719 DOI: 10.1093/plphys/kiac174] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 06/12/2023]
Abstract
The salt overly sensitive (SOS) pathway plays an important role in plant salt stress; however, the transcriptional regulation of the genes in this pathway is unclear. In this study, we found that Linker histone variant HIS1-3 and WRKY1 oppositely regulate the salt stress response in Arabidopsis (Arabidopsis thaliana) through the transcriptional regulation of SOS genes. The expression of HIS1-3 was inhibited by salt stress, and the disruption of HIS1-3 resulted in enhanced salt tolerance. Conversely, the expression of WRKY1 was induced by salt stress, and the loss of WRKY1 function led to increased salt sensitivity. The expression of SOS1, SOS2, and SOS3 was repressed and induced by HIS1-3 and WRKY1, respectively, and HIS1-3 regulated the expression of SOS1 and SOS3 by occupying the WRKY1 binding sites on their promoters. Moreover, WRKY1 and HIS1-3 acted upstream of the SOS pathway. Together, our results indicate that HIS1-3 and WRKY1 oppositely modulate salt tolerance in Arabidopsis through transcriptional regulation of SOS genes.
Collapse
Affiliation(s)
| | | | | | - Xue Fang
- School of Horticulture, Anhui Agricultural University, Hefei 230009, China
| | - Minghui Xia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | | |
Collapse
|
119
|
Ren C, Kuang Y, Lin Y, Guo Y, Li H, Fan P, Li S, Liang Z. Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis. BMC PLANT BIOLOGY 2022; 22:271. [PMID: 35655129 PMCID: PMC9161562 DOI: 10.1186/s12870-022-03663-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/27/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Abscisic acid (ABA) plays a crucial role in abiotic stress responses. The pyrabactin resistance (PYR)/PYR-like (PYL)/regulatory component of ABA receptor (RCAR) proteins that have been characterized as ABA receptors function as the core components in ABA signaling pathway. However, the functions of grape PYL genes in response to different abiotic stresses, particularly cold stress, remain less studied. RESULTS In this study, we investigated the expression profiles of grape PYL genes upon cold treatment and isolated the VaPYL4 gene from Vitis amurensis, a cold-hardy grape species. Overexpression of VaPYL4 gene in grape calli and Arabidopsis resulted in enhanced cold tolerance. Moreover, plant resistance to drought and salt stress was also improved by overexpressing VaPYL4 in Arabidopsis. More importantly, we evaluated the contribution of VaPYL4 to plant growth and development after the treatment with cold, salt and drought stress simultaneously. The transgenic plants showed higher survival rates, earlier flowering phenotype, and heavier fresh weight of seedlings and siliques when compared with wild-type plants. Physiological analyses showed that transgenic plants had much lower content of malondialdehyde (MDA) and higher peroxidase (POD) activity. Stress-responsive genes such as RD29A (Responsive to desiccation 29A), COR15A (Cold responsive 15A) and KIN2 (Kinase 2) were also significantly up-regulated in VaPYL4-overexpressing Arabidopsis plants. CONCLUSIONS Our results show that overexpression of VaPYL4 could improve plant performance upon different abiotic stresses, which therefore provides a useful strategy for engineering future crops to deal with adverse environments.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yanping Lin
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yuchen Guo
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Huayang Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 People’s Republic of China
| |
Collapse
|
120
|
Yin Z, Meng X, Guo Y, Wei S, Lai Y, Wang Q. The bZIP Transcription Factor Family in Adzuki Bean ( Vigna Angularis): Genome-Wide Identification, Evolution, and Expression Under Abiotic Stress During the Bud Stage. Front Genet 2022; 13:847612. [PMID: 35547244 PMCID: PMC9081612 DOI: 10.3389/fgene.2022.847612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Adzuki bean (Vigna angularis) is an important dietary legume crop that was first cultivated and domesticated in Asia. Currently, little is known concerning the evolution and expression patterns of the basic leucine zipper (bZIP) family transcription factors in the adzuki bean. Through the PFAM search, 72 bZIP members of adzuki bean (VabZIP) were identified from the reference genome. Most of them were located on 11 chromosomes and seven on an unknown chromosome. A comprehensive analysis, including evolutionary, motifs, gene structure, cis-elements, and collinearity was performed to identify VabZIP members. The subcellular localization results showed VabZIPs might locate on the nuclear. Quantitative real-time PCR (qRT-PCR) analysis of the relative expression of VabZIPs in different tissues at the bud stage revealed that VabZIPs had a tissue-specific expression pattern, and its expression was influenced by abiotic stress. These characteristics of VabZIPs provide insights for future research aimed at developing interventions to improve abiotic stress resistance.
Collapse
Affiliation(s)
- Zhengong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Xianxin Meng
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Yifan Guo
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Shuhong Wei
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Yongcai Lai
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Qiang Wang
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| |
Collapse
|
121
|
Duan L, Mo Z, Fan Y, Li K, Yang M, Li D, Ke Y, Zhang Q, Wang F, Fan Y, Liu R. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:318. [PMID: 35448973 PMCID: PMC9027840 DOI: 10.1186/s12864-022-08547-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
Collapse
Affiliation(s)
- Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Dongcheng Li
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuzhou Ke
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Zhang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyan Wang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yu Fan
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Renxiang Liu
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
122
|
Jamsheer K M, Jindal S, Sharma M, Awasthi P, S S, Sharma M, Mannully CT, Laxmi A. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. Cell Rep 2022; 39:110631. [PMID: 35385724 DOI: 10.1016/j.celrep.2022.110631] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
TOR kinase is a central coordinator of nutrient-dependent growth in eukaryotes. Maintaining optimal TOR signaling is critical for the normal development of organisms. In this study, we describe a negative feedback loop of TOR signaling helping in the adaptability of plants in changing environmental conditions. Using an interdisciplinary approach, we show that the plant-specific zinc finger protein FLZ8 acts as a regulator of TOR signaling in Arabidopsis. In sugar sufficiency, TOR-dependent and -independent histone modifications upregulate the expression of FLZ8. FLZ8 negatively regulates TOR signaling by promoting antagonistic SnRK1α1 signaling and bridging the interaction of SnRK1α1 with RAPTOR1B, a crucial accessory protein of TOR. This negative feedback loop moderates the TOR-growth signaling axis in the favorable condition and helps in the activation of stress signaling in unfavorable conditions, establishing its importance in the adaptability of plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakhar Awasthi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sreejath S
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manvi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
123
|
Zhou H, Zhang F, Zhai F, Su Y, Zhou Y, Ge Z, Tilak P, Eirich J, Finkemeier I, Fu L, Li Z, Yang J, Shen W, Yuan X, Xie Y. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling. MOLECULAR PLANT 2022; 15:651-670. [PMID: 34793984 DOI: 10.1016/j.molp.2021.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress caused by drought and high salinity is a significant environmental threat that limits plant growth and agricultural yield. Redox regulation plays an important role in plant stress responses, but the mechanisms by which plants perceive and transduce redox signals are still underexplored. Here, we report a critical function for the thiol peroxidase GPX1 in osmotic stress response in rice, where it serves as a redox sensor and transducer. GPX1 is quickly oxidized upon exposure to osmotic stress and forms an intramolecular disulfide bond, which is required for the activation of bZIP68, a VRE-like basic leucine zipper (bZIP) transcription factor involved in the ABA-independent osmotic stress response pathway. The disulfide exchange between GPX1 and bZIP68 induces homo-tetramerization of bZIP68 and thus positively regulates osmotic stress response by regulating osmotic-responsive gene expression. Furthermore, we discovered that the nuclear translocation of GPX1 is regulated by its acetylation under osmotic stress. Taken together, our findings not only uncover the redox regulation of the GPX1-bZIP68 module during osmotic stress but also highlight the coordination of protein acetylation and redox signaling in plant osmotic stress responses.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fengchao Zhai
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Su
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Priyadarshini Tilak
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Jürgen Eirich
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Iris Finkemeier
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zongmin Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
124
|
Xu Z, Wang J, Zhen W, Sun T, Hu X. Abscisic acid alleviates harmful effect of saline-alkaline stress on tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:58-67. [PMID: 35180529 DOI: 10.1016/j.plaphy.2022.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline-alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline-alkaline stress. We investigated whether ABA accumulation improved the saline-alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline-alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline-alkaline stress. Under saline-alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline-alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline-alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline-alkaline stress, and exogenous ABA improves the saline-alkaline tolerance of tomato seedlings.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiachun Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Wentian Zhen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Tao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
125
|
Hayford RK, Serba DD, Xie S, Ayyappan V, Thimmapuram J, Saha MC, Wu CH, Kalavacharla VK. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC PLANT BIOLOGY 2022; 22:107. [PMID: 35260072 PMCID: PMC8903725 DOI: 10.1186/s12870-022-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.
Collapse
Affiliation(s)
- Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | | | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, USA.
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
126
|
Riyazuddin R, Nisha N, Singh K, Verma R, Gupta R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. PLANT CELL REPORTS 2022; 41:519-533. [PMID: 34057589 DOI: 10.1007/s00299-021-02720-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Drought stress-induced crop loss has been considerably increased in recent years because of global warming and changing rainfall pattern. Natural drought-tolerant plants entail the recruitment of a variety of metabolites and low molecular weight proteins to negate the detrimental effects of drought stress. Dehydrin (DHN) proteins are one such class of proteins that accumulate in plants during drought and associated stress conditions. These proteins are highly hydrophilic and perform multifaceted roles in the protection of plant cells during drought stress conditions. Evidence gathered over the years suggests that DHN proteins impart drought stress tolerance by enhancing the water retention capacity, elevating chlorophyll content, maintaining photosynthetic machinery, activating ROS detoxification, and promoting the accumulation of compatible solutes, among others. Overexpression studies have indicated that these proteins can be effectively targeted to mitigate the negative effects of drought stress and for the development of drought stress-tolerant crops to feed the ever-growing population in the near future. In this review, we describe the mechanism of DHNs mediated drought stress tolerance in plants and their interaction with several phytohormones to provide an in-depth understanding of DHNs function.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Sciences, Szent István University, Gödöllő, Hungary
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
127
|
Zhou L, Yarra R. Genome-wide identification and expression analysis of bZIP transcription factors in oil palm (Elaeis guineensis Jacq.) under abiotic stress. PROTOPLASMA 2022; 259:469-483. [PMID: 34212248 DOI: 10.1007/s00709-021-01666-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The bZIP transcription factors are well-known transcription regulators and play a key role in regulating various developmental, biological processes, and stress responses in plants. However, information on bZIP transcription factors is not yet available in oil palm, an important oil yielding crop. The present study identified the 97 bZIP transcription factor family members in oil palm genome via a genome-wide approach. Phylogenetic analysis clustered all EgbZIPs into 12 clusters with Arabidopsis and rice bZIPs. EgbZIP gene structure analysis showed a distinct variation in the intron-exon organization among all EgbZIPs. Conserved motif analysis demonstrated the occurrence of ten additional conserved motifs besides having a common bZIP domain. All the identified 97 EgbZIPs were unevenly distributed on 16 chromosomes and exhibited tandem duplication in oil palm genome. Our results aslo demonstrated that tissue-specific expression patterns of EgbZIPs based on the available transcriptome data of six different tissue of oil palm. Stress-responsive expression analysis showed that 11EgbZIP transcription factors were highly expressed under cold, salinity, drought stress conditions. Taken together, our findings will provide insightful information on bZIP transcription factors as one of the stress-responsive regulators in oil palm.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China.
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China
| |
Collapse
|
128
|
Zhao M, Jin J, Wang J, Gao T, Luo Y, Jing T, Hu Y, Pan Y, Lu M, Schwab W, Song C. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1489-1506. [PMID: 34931743 DOI: 10.1111/tpj.15647] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cold and drought stress are the most critical stresses encountered by crops and occur simultaneously under field conditions. However, it is unclear whether volatiles contribute to both cold and drought tolerance, and if so, by what mechanisms they act. Here, we show that airborne eugenol can be taken up by the tea (Camellia sinensis) plant and metabolized into glycosides, thus enhancing cold and drought tolerance of tea plants. A uridine diphosphate (UDP)-glucosyltransferase, UGT71A59, was discovered, whose expression is strongly induced by multiple abiotic stresses. UGT71A59 specifically catalyzes glucosylation of eugenol glucoside in vitro and in vivo. Suppression of UGT71A59 expression in tea reduced the accumulation of eugenol glucoside, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold and drought stress tolerance. Exposure to airborne eugenol triggered a marked increase in UGT71A59 expression, eugenol glucoside accumulation, and cold tolerance by modulating ROS accumulation and CBF1 expression. It also promoted drought tolerance by altering abscisic acid homeostasis and stomatal closure. CBF1 and CBF3 play positive roles in eugenol-induced cold tolerance and CBF2 may be a negative regulator of eugenol-induced cold tolerance in tea plants. These results provide evidence that eugenol functions as a signal in cold and drought tolerance regulation and shed new light on the biological functions of volatiles in the response to multiple abiotic stresses in plants.
Collapse
Affiliation(s)
- Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Yu Luo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Yutong Hu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising, 85354, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China
| |
Collapse
|
129
|
Exogenous Melatonin Improves Cold Tolerance of Strawberry (Fragaria × ananassa Duch.) through Modulation of DREB/CBF-COR Pathway and Antioxidant Defense System. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The strawberry (Fragaria × ananassa Duch.) is an important fruit crop cultivated worldwide for its unique taste and nutritional properties. One of the major risks associated with strawberry production is cold damage. Recently, melatonin has emerged as a multifunctional signaling molecule that influences plant growth and development and reduces adverse consequences of cold stress. The present study was conducted to investigate the defensive role of melatonin and its potential interrelation with abscisic acid (ABA) in strawberry plants under cold stress. The results demonstrate that melatonin application conferred improved cold tolerance on strawberry seedlings by reducing malondialdehyde and hydrogen peroxide contents under cold stress. Conversely, pretreatment of strawberry plants with 100 μM melatonin increased soluble sugar contents and different antioxidant enzyme activities (ascorbate peroxidase, catalase, and peroxidase) and non-enzymatic antioxidant (ascorbate and glutathione) activities under cold stress. Furthermore, exogenous melatonin treatment stimulated the expression of the DREB/CBF—COR pathways’ downstream genes. Interestingly, ABA treatment did not change the expression of the DREB/CBF—COR pathway. These findings imply that the DREB/CBF-COR pathway confers cold tolerance on strawberry seedlings through exogenous melatonin application. Taken together, our results reveal that melatonin (100 μM) pretreatment protects strawberry plants from the damages induced by cold stress through enhanced antioxidant defense potential and modulating the DREB/CBF—COR pathway.
Collapse
|
130
|
Wu HC, Yu SY, Wang YD, Jinn TL. Guard Cell-Specific Pectin METHYLESTERASE53 Is Required for Abscisic Acid-Mediated Stomatal Function and Heat Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:836151. [PMID: 35265095 PMCID: PMC8898962 DOI: 10.3389/fpls.2022.836151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 06/06/2023]
Abstract
Pectin is a major component of the plant cell wall, forming a network that contributes to cell wall integrity and flexibility. Pectin methylesterase (PME) catalyzes the removal of methylester groups from the homogalacturonan backbone, the most abundant pectic polymer, and contributes to intercellular adhesion during plant development and different environmental stimuli stress. In this study, we identified and characterized an Arabidopsis type-II PME, PME53, which encodes a cell wall deposited protein and may be involved in the stomatal lineage pathway and stomatal functions. We demonstrated that PME53 is expressed explicitly in guard cells as an abscisic acid (ABA)-regulated gene required for stomatal movement and thermotolerance. The expression of PME53 is significantly affected by the stomatal differentiation factors SCRM and MUTE. The null mutation in PME53 results in a significant increase in stomatal number and susceptibility to ABA-induced stomatal closure. During heat stress, the pme53 mutant highly altered the activity of PME and significantly lowered the expression level of the calmodulin AtCaM3, indicating that PME53 may be involved in Ca2+-pectate reconstitution to render plant thermotolerance. Here, we present evidence that the PME53-mediated de-methylesterification status of pectin is directed toward stomatal development, movement, and regulation of the flexibility of the guard cell wall required for the heat response.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Shih-Yu Yu
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yin-Da Wang
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Tsung-Luo Jinn
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
131
|
Tang D, Quan C, Lin Y, Wei K, Qin S, Liang Y, Wei F, Miao J. Physio-Morphological, Biochemical and Transcriptomic Analyses Provide Insights Into Drought Stress Responses in Mesona chinensis Benth. FRONTIERS IN PLANT SCIENCE 2022; 13:809723. [PMID: 35222473 PMCID: PMC8866654 DOI: 10.3389/fpls.2022.809723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Drought stress affects the normal growth and development of Mesona chinensis Benth (MCB), which is an important medicinal and edible plant in China. To investigate the physiological and molecular mechanisms of drought resistance in MCB, different concentrations of polyethylene glycol 6000 (PEG6000) (0, 5, 10, and 15%) were used to simulate drought conditions in this study. Results showed that the growth of MCB was significantly limited under drought stress conditions. Drought stress induced the increases in the contents of Chla, Chlb, Chla + b, soluble protein, soluble sugar, and soluble pectin and the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Transcriptome analysis revealed 3,494 differentially expressed genes (DEGs) (1,961 up-regulated and 1,533 down-regulated) between the control and 15% PEG6000 treatments. These DEGs were identified to be involved in the 10 metabolic pathways, including "plant hormone signal transduction," "brassinosteroid biosynthesis," "plant-pathogen interaction," "MAPK signaling pathway-plant," "starch and sucrose metabolism," "pentose and glucuronate interconversions," "phenylpropanoid biosynthesis," "galactose metabolism," "monoterpenoid biosynthesis," and "ribosome." In addition, transcription factors (TFs) analysis showed 8 out of 204 TFs, TRINITY_DN3232_c0_g1 [ABA-responsive element (ABRE)-binding transcription factor1, AREB1], TRINITY_DN4161_c0_g1 (auxin response factor, ARF), TRINITY_DN3183_c0_g2 (abscisic acid-insensitive 5-like protein, ABI5), TRINITY_DN28414_c0_g2 (ethylene-responsive transcription factor ERF1b, ERF1b), TRINITY_DN9557_c0_g1 (phytochrome-interacting factor, PIF3), TRINITY_DN11435_c1_g1, TRINITY_DN2608_c0_g1, and TRINITY_DN6742_c0_g1, were closely related to the "plant hormone signal transduction" pathway. Taken together, it was inferred that these pathways and TFs might play important roles in response to drought stress in MCB. The current study provided important information for MCB drought resistance breeding in the future.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
132
|
Tomar S, Subba A, Bala M, Singh AK, Pareek A, Singla-Pareek SL. Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23031687. [PMID: 35163610 PMCID: PMC8836131 DOI: 10.3390/ijms23031687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Crop Wild Relatives (CWRs) form a comprehensive gene pool that can answer the queries related to plant domestication, speciation, and ecological adaptation. The genus ‘Oryza’ comprises about 27 species, of which two are cultivated, while the remaining are wild. Here, we have attempted to understand the conservation and diversification of the genes encoding Cystathionine β-synthase (CBS) domain-containing proteins (CDCPs) in domesticated and CWRs of rice. Few members of CDCPs were previously identified to be stress-responsive and associated with multiple stress tolerance in rice. Through genome-wide analysis of eleven rice genomes, we identified a total of 36 genes encoding CDCPs in O. longistaminata, 38 in O. glaberrima, 39 each in O. rufipogon, O. glumaepatula, O. brachyantha, O. punctata, and O. sativa subsp. japonica, 40 each in O. barthii and O. meridionalis, 41 in O. nivara, and 42 in O. sativa subsp. indica. Gene duplication analysis as well as non-synonymous and synonymous substitutions in the duplicated gene pairs indicated that this family is shaped majorly by the negative or purifying selection pressure through the long-term evolution process. We identified the presence of two additional hetero-domains, namely TerCH and CoatomerE (specifically in O. sativa subsp. indica), which were not reported previously in plant CDCPs. The in silico expression analysis revealed some of the members to be responsive to various abiotic stresses. Furthermore, the qRT-PCR based analysis identified some members to be highly inducive specifically in salt-tolerant genotype in response to salinity. The cis-regulatory element analysis predicted the presence of numerous stress as well as a few phytohormone-responsive elements in their promoter region. The data presented in this study would be helpful in the characterization of these CDCPs from rice, particularly in relation to abiotic stress tolerance.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.T.); (A.S.)
| | - Ashish Subba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.T.); (A.S.)
| | - Meenu Bala
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834010, India; (M.B.); (A.K.S.)
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834010, India; (M.B.); (A.K.S.)
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.T.); (A.S.)
- Correspondence:
| |
Collapse
|
133
|
Qu D, Wu F, Zhao X, Zhu D, Gu L, Yang L, Zhao W, Sun Y, Yang J, Tian W, Su H, Wang L. A bZIP transcription factor VabZIP12 from blueberry induced by dark septate endocyte improving the salt tolerance of transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111135. [PMID: 35067305 DOI: 10.1016/j.plantsci.2021.111135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Dark septate endophytes (DSEs) have attracted much attention due to their positive roles in plant growth as well as resistance to various abiotic stresses. However, there are no reports on the molecular mechanisms of DSE fungi to improve salt tolerance in plants. In this study, the blueberry seedlings inoculated with T010, a beneficial DSE fungus reported previously, grew more vigorously than the non-inoculated control under salt stress. Physiological indicators showed that T010 inoculation increased antioxidant activities of blueberry roots. To explore its molecular mechanism, we focused on the bZIP TFs VabZIP12, who was highly up-regulated with T010 inoculation under salt stress. Further studies showed that VabZIP12, as a transcription activator, could combine both G-Box 1 and G-Box 2 motifs. Moreover, overexpression of VabZIP12 enhanced salt stress tolerance through increasing the activities of the enzymatic antioxidants in the transgenic Arabidopsis with up-regulation the related genes. These results indicated that the induction of VabZIP12 contribute to improving the tolerance of blueberry to salt stress by T010 inoculation.
Collapse
Affiliation(s)
- Dehui Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dongzi Zhu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, 271000, China
| | - Liang Gu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, 271000, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Weiwei Zhao
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yadong Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wei Tian
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai, 264025, China.
| |
Collapse
|
134
|
Urano K, Maruyama K, Koyama T, Gonzalez N, Inzé D, Yamaguchi-Shinozaki K, Shinozaki K. CIN-like TCP13 is essential for plant growth regulation under dehydration stress. PLANT MOLECULAR BIOLOGY 2022; 108:257-275. [PMID: 35050466 PMCID: PMC8873074 DOI: 10.1007/s11103-021-01238-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.
Collapse
Affiliation(s)
- Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
- Institute of Agrobiological Sciences, NARO 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Kyonoshin Maruyama
- Plant Biotechnology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Tomotsugu Koyama
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seikacho, Kyoto, 619-0284, Japan
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du Fruit Et Pathologie, 33882, Villenave d'Ornon Cedex, France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| |
Collapse
|
135
|
Abubakar AS, Feng X, Gao G, Yu C, Chen J, Chen K, Wang X, Mou P, Shao D, Chen P, Zhu A. Genome wide characterization of R2R3 MYB transcription factor from Apocynum venetum revealed potential stress tolerance and flavonoid biosynthesis genes. Genomics 2022; 114:110275. [PMID: 35108591 DOI: 10.1016/j.ygeno.2022.110275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no studies is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYB) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYB under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8,AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 forexample, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analysis suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
136
|
Wei J, Li X, Song P, Wang Y, Ma J. Studies on the interactions of AFPs and bZIP transcription factor ABI5. Biochem Biophys Res Commun 2022; 590:75-81. [PMID: 34973533 DOI: 10.1016/j.bbrc.2021.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
AFP1 interacts with ABI5 and negatively regulates the abscisic acid (ABA) signaling by accelerating ABI5's degradation during the seed germination phase in Arabidopsis, but the underlying mechanism remains unclear. Moreover, the molecular basis of the interaction between AFP1 homologs and ABI5 has yet to be elucidated. In this study, the patterns of their interactions with ABI5 were investigated in detail. We found that AFP2/3/4 can bind two regions of ABI5, one is ABI51aa to 135aa and another is ABI5202aa to 213aa. However, AFP1 only interacts with the second region of ABI5, i.e. ABI5202aa to 213aa. Prior research has shown that ABI51aa to 135aa is related to the transcriptional activity of ABI5. Thus, our results suggest that AFPs may also modulate ABI5, by directly binding to its transcriptional activation domain, thereby influencing its transcriptional activity. Further, interactions between AFPs and ABI5 were not affected if the Ser42th in the ABI5-SnRK2 motif were mutated respectively to Glu or Ala. Nevertheless, interactions between AFPs and ABI5 were eliminated if the Thr47th and Thr206th of ABI5 were mutated respectively to Glu or Ala. Since the two residues of Thr47th and Thr206th were located in the phosphorylation motifs of CKII, AFPs might regulate the activities of ABI5 transcription factor through a CKII-dependent pathway.
Collapse
Affiliation(s)
- Jinkui Wei
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaojuan Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Peng Song
- Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM in Gansu Province, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
137
|
A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH's and ABA Biosynthesis and Signalling Genes. Int J Mol Sci 2022; 23:ijms23031603. [PMID: 35163525 PMCID: PMC8836042 DOI: 10.3390/ijms23031603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/24/2023] Open
Abstract
Salinity is a ubiquitous stressor, depleting osmotic potential and affecting the tomato seedlings’ development and productivity. Considering this critical concern, we explored the salinity response in tomato seedlings by evaluating them under progressive salt stress duration (0, 3, 6, and 12 days). Intriguingly, besides the adverse effect of salt stress on tomato growth the findings exhibited a significant role of tomato antioxidative system, RBOH genes, ABA biosynthesis, and signaling transcription factor for establishing tolerance to salinity stress. For instance, the activities of enzymatic and non-enzymatic antioxidants continued to incline positively with the increased levels of reactive oxygen species (O2•−, H2O2), MDA, and cellular damage, suggesting the scavenging capacity of tomato seedlings against salt stress. Notably, the RBOH transcription factors activated the hydrogen peroxide-mediated signalling pathway that induced the detoxification mechanisms in tomato seedlings. Consequently, the increased gene expression of antioxidant enzymes and the corresponding ratio of non-enzymatic antioxidants AsA-GSH suggested the modulation of antioxidants to survive the salt-induced oxidative stress. In addition, the endogenous ABA level was enhanced under salinity stress, indicating higher ABA biosynthesis and signalling gene expression. Subsequently, the upregulated transcript abundance of ABA biosynthesis and signalling-related genes suggested the ABA-mediated capacity of tomato seedlings to regulate homeostasis under salt stress. The current findings have revealed fascinating responses of the tomato to survive the salt stress periods, in order to improve the abiotic stress tolerance in tomato.
Collapse
|
138
|
Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate. Proc Natl Acad Sci U S A 2022; 119:2107879119. [PMID: 35046022 PMCID: PMC8794810 DOI: 10.1073/pnas.2107879119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type-specific transcription factor (TF)-target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF-target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks.
Collapse
|
139
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
140
|
Rajkumar MS, Garg R, Jain M. Genome-wide discovery of DNA polymorphisms via resequencing of chickpea cultivars with contrasting response to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13611. [PMID: 34957568 DOI: 10.1111/ppl.13611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Drought stress limits plant growth, resulting in a significant yield loss in chickpea. The diversification in genome sequence and selective sweep of allele(s) in different genotypes of a crop plant may play an important role in the determination of agronomic traits, including drought stress response. We investigated, via whole genome resequencing, the DNA polymorphisms between two sets of chickpea genotypes with contrasting drought stress responses (3 drought-sensitive vs. 6 drought-tolerant). In total, 36,406 single nucleotide polymorphisms (SNPs) and 3407 insertions or deletions (InDels) differentiating drought-sensitive and drought-tolerant chickpea genotypes were identified. Interestingly, most (91%) of these DNA polymorphisms were located in chromosomes 1 and 4. The genes harboring DNA polymorphisms in their promoter and/or coding regions and exhibiting differential expression under control and/or drought stress conditions between/within the drought-sensitive and tolerant genotypes were found implicated in the stress response. Furthermore, we identified DNA polymorphisms within the cis-regulatory motifs in the promoter region of abiotic stress-related and QTL-associated genes, which might contribute to the differential expression of the candidate drought-responsive genes. In addition, we revealed the effect of nonsynonymous SNPs on mutational sensitivity and stability of the encoded proteins. Taken together, we identified DNA polymorphisms having relevance in drought stress response and revealed candidate genes to engineer drought tolerance in chickpea.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
141
|
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:470-492. [PMID: 36216536 PMCID: PMC9614206 DOI: 10.2183/pjab.98.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Land plants have developed sophisticated systems to cope with severe stressful environmental conditions during evolution. Plants have complex molecular systems to respond and adapt to abiotic stress, including drought, cold, and heat stress. Since 1989, we have been working to understand the complex molecular mechanisms of plant responses to severe environmental stress conditions based on functional genomics approaches with Arabidopsis thaliana as a model plant. We focused on the function of drought-inducible genes and the regulation of their stress-inducible transcription, perception and cellular signal transduction of stress signals to describe plant stress responses and adaptation at the molecular and cellular levels. We have identified key genes and factors in the regulation of complex responses and tolerance of plants in response to dehydration and temperature stresses. In this review article, we describe our 30-year experience in research and development based on functional genomics to understand sophisticated systems in plant response and adaptation to environmental stress conditions.
Collapse
Affiliation(s)
- Kazuo SHINOZAKI
- RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, Japan
| | - Kazuko YAMAGUCHI-SHINOZAKI
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
142
|
Chattha MU, Amjad T, Khan I, Nawaz M, Ali M, Chattha MB, Ali HM, Ghareeb RY, Abdelsalam NR, Azmat S, Barbanti L, Hassan MU. Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:920570. [PMID: 36237512 PMCID: PMC9551613 DOI: 10.3389/fpls.2022.920570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 05/14/2023]
Abstract
Salinity stress (SS) is a challenging abiotic stress that limits crop growth and productivity. Sustainable and cost effective methods are needed to improve crop production and decrease the deleterious impacts of SS. Zinc (Zn) nano-particles (NPs) have emerged as an important approach to regulating plant tolerance against SS. However, the mechanisms of SS tolerance mediated by Zn-NPs are not fully explained. Thus, this study was performed to explore the role of Zn-NPs (seed priming and foliar spray) in reducing the deleterious impacts of SS on wheat plants. The study comprised different SS levels: control, 6 and 12 dS m-1, and different Zn-NPs treatments: control, seed priming (40 ppm), foliar spray (20 ppm), and their combination. Salinity stress markedly reduced plant growth, biomass, and grain yield. This was associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2), sodium (Na), chloride (Cl) accumulation, reduced photosynthetic pigments, relative water contents (RWC), photosynthetic rate (Pn), transpiration rate (Tr), stomata conductance (Gs), water use efficiency (WUE), free amino acids (FAA), total soluble protein (TSP), indole acetic acid (IAA), gibberellic acid (GA), and nutrients (Ca, Mg, K, N, and P). However, the application of Zn-NPs significantly improved the yield of the wheat crop, which was associated with reduced abscisic acid (ABA), MDA, H2O2 concentration, and EL, owing to improved antioxidant activities, and an increase in RWC, Pn, Tr, WUE, and the accumulation of osmoregulating compounds (proline, soluble sugars, TSP, and FAA) and hormones (GA and IAA). Furthermore, Zn-NPs contrasted the salinity-induced uptake of toxic ions (Na and Cl) and increased the uptake of Ca, K, Mg, N, and P. Additionally, Zn-NPs application substantially increased the wheat grain Zn bio-fortification. Our results support previous findings on the role of Zn-NPs in wheat growth, yield, and grain Zn bio-fortification, demonstrating that beneficial effects are obtained under normal as well as adverse conditions, thanks to improved physiological activity and the accumulation of useful compounds. This sets the premise for general use of Zn-NPs in wheat, to which aim more experimental evidence is intensively being sought. Further studies are needed at the genomic, transcriptomic, proteomic, and metabolomic level to better acknowledge the mechanisms of general physiological enhancement observed with Zn-NPs application.
Collapse
Affiliation(s)
| | - Tahira Amjad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- *Correspondence: Muhammad Nawaz,
| | - Muqarrab Ali
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Y. Ghareeb
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Saira Azmat
- Agriculture Extension and Adaptive Research, Department of Agriculture, Government of the Punjab, Punjab, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Muhammad Umair Hassan
- Research Center Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- Muhammad Umair Hassan,
| |
Collapse
|
143
|
Lim J, Lim CW, Lee SC. Core Components of Abscisic Acid Signaling and Their Post-translational Modification. FRONTIERS IN PLANT SCIENCE 2022; 13:895698. [PMID: 35712559 PMCID: PMC9195418 DOI: 10.3389/fpls.2022.895698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that regulates plant growth, development, and abiotic/biotic stress responses. Under stress, ABA is synthesized in various plant organs, and it plays roles in diverse adaptive processes, including seed dormancy, growth inhibition, and leaf senescence, by modulating stomatal closure and gene expression. ABA receptor, clade A protein phosphatase 2C (PP2C), and SNF1-related protein kinase 2 (SnRK2) proteins have been identified as core components of ABA signaling, which is initiated via perception of ABA with receptor and subsequent activation or inactivation by phosphorylation/dephosphorylation. The findings of several recent studies have established that the post-translational modification of these components, including phosphorylation and ubiquitination/deubiquitination, play important roles in regulating their activity and stability. In this review, we discuss the functions of the core components of ABA signaling and the regulation of their activities via post-translational modification under normal and stress conditions.
Collapse
|
144
|
Liu Y, Liu S, Shi H, Ma J, Jing M, Han Y. The TSN1 Binding Protein RH31 Is a Component of Stress Granules and Participates in Regulation of Salt-Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:804356. [PMID: 35003193 PMCID: PMC8733394 DOI: 10.3389/fpls.2021.804356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 05/29/2023]
Abstract
Tudor staphylococcal nucleases (TSNs) are evolutionarily conserved RNA binding proteins, which include redundant TSN1 and TSN2 in Arabidopsis. It has been showed TSNs are the components of stress granules (SGs) and regulate plant growth under salt stress. In this study, we find a binding protein of TSN1, RH31, which is a DEAD-box RNA helicase (RH). Subcellular localization studies show that RH31 is mainly located in the nucleus, but under salinity, it translocates to the cytoplasm where it accumulates in cytoplasmic granules. After cycloheximide (CHX) treatment which can block the formation of SGs by interfering with mRNP homeostasis, these cytoplasmic granules disappeared. More importantly, RH31 co-localizes with SGs marker protein RBP47. RH31 deletion results in salt-hypersensitive phenotype, while RH31 overexpression causes more resistant to salt stress. In summary, we demonstrate that RH31, the TSN1 binding protein, is a component of plant SGs and participates in regulation of salt-stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, China
| | - Shijie Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiying Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Meng Jing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
145
|
Zou J, Lü P, Jiang L, Liu K, Zhang T, Chen J, Yao Y, Cui Y, Gao J, Zhang C. Regulation of rose petal dehydration tolerance and senescence by RhNAP transcription factor via the modulation of cytokinin catabolism. MOLECULAR HORTICULTURE 2021; 1:13. [PMID: 37789474 PMCID: PMC10515265 DOI: 10.1186/s43897-021-00016-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/02/2021] [Indexed: 10/05/2023]
Abstract
Petals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.
Collapse
Affiliation(s)
- Jing Zou
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Peitao Lü
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwei Jiang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tao Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jin Chen
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Yao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yusen Cui
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changqing Zhang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
146
|
Wang B, Li L, Peng D, Liu M, Wei A, Li X. TaFDL2-1A interacts with TabZIP8-7A protein to cope with drought stress via the abscisic acid signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111022. [PMID: 34482905 DOI: 10.1016/j.plantsci.2021.111022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Drought has negative effects on cereal production. Studies have shown that many basic leucine zipper transcription factors (bZIP TFs) help to cope with drought stress. In this study, bZIP TF wheat (Triticum aestivum L.) FD-Like2 (TaFDL2) was isolated and functionally analyzed. Three homologs of TaFDL2 were identified and their expression was induced by drought and abscisic acid (ABA) treatment. TaFDL2-1A has transactivation activity and two activation domains, and the domain D region has different effects on the transcriptional activity of the two domains. Analysis of TaFDL2-1A overexpression plants indicated their enhanced drought tolerance and greater sensitivity to ABA. TabZIP8-7A was identified as a protein that interacts with TaFDL2-1A in the nucleus, and the overexpression of TabZIP8-7A conferred greater drought resistance and ABA sensitivity in Arabidopsis. Surprisingly, TaFDL2-1A × TabZIP8-7A double overexpression lines exhibited the highest drought resistance. Genetic and transcriptional regulation analyses demonstrated that stress-response gene transcription was initiated by TaFDL2-1A or TabZIP8-7A via the ABA signaling pathway. Importantly, TaFDL2-1A and TabZIP8-7A synergistically promoted ABA-inducible gene expression in a more efficient manner to form the transcriptional activation complex. Our findings provide new insights into the molecular mechanisms that allow bZIP TFs to regulate ABA signaling in response to drought stress.
Collapse
Affiliation(s)
- Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - De Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Mingliu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Aosong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
147
|
Yu X, Mo Z, Tang X, Gao T, Mao Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC PLANT BIOLOGY 2021; 21:435. [PMID: 34560838 PMCID: PMC8464122 DOI: 10.1186/s12870-021-03213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. RESULTS We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. CONCLUSIONS These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, 572022, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
148
|
Zhou P, Li X, Liu X, Wen X, Zhang Y, Zhang D. Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated. BMC Genomics 2021; 22:681. [PMID: 34548013 PMCID: PMC8456659 DOI: 10.1186/s12864-021-07998-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Freezing temperatures are an abiotic stress that has a serious impact on plant growth and development in temperate regions and even threatens plant survival. The wild apple tree (Malus sieversii) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in wild apple trees. Results Phytohormone and physiology profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that JA, IAA, and ABA accumulated in the cold acclimation stage and decreased during freezing stress in response to freezing stress. To elucidate the molecular mechanisms of freezing stress after cold acclimation, we employed single molecular real-time (SMRT) and RNA-seq technologies to study genome-wide expression profiles in wild apple. Using the PacBio and Illumina platform, we obtained 20.79G subreads. These reads were assembled into 61,908 transcripts, and 24,716 differentially expressed transcripts were obtained. Among them, 4410 transcripts were differentially expressed during the whole process of freezing stress, and these were examined for enrichment via GO and KEGG analyses. Pathway analysis indicated that “plant hormone signal transduction”, “starch and sucrose metabolism”, “peroxisome” and “photosynthesis” might play a vital role in wild apple responses to freezing stress. Furthermore, the transcription factors DREB1/CBF, MYC2, WRKY70, WRKY71, MYB4 and MYB88 were strongly induced during the whole stress period. Conclusions Our study presents a global survey of the transcriptome profiles of wild apple trees in dynamic response to freezing stress after two days cold acclimation and provides insights into the molecular mechanisms of freezing adaptation of wild apple plants for the first time. The study also provides valuable information for further research on the antifreezing reaction mechanism and genetic improvement of M. sieversii after cold acclimation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07998-0.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
149
|
Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes (Basel) 2021; 12:genes12091409. [PMID: 34573391 PMCID: PMC8468061 DOI: 10.3390/genes12091409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Correspondence: ; Tel.: +86-15114585206
| | - Xu He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| |
Collapse
|
150
|
Sami A, Xue Z, Tazein S, Arshad A, He Zhu Z, Ping Chen Y, Hong Y, Tian Zhu X, Jin Zhou K. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered 2021; 12:5814-5829. [PMID: 34506262 PMCID: PMC8808358 DOI: 10.1080/21655979.2021.1969831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In several parts of the world, the prevalence and severity of drought are predicted to increase, creating considerable pressure on global agricultural yield. Among all abiotic stresses, drought is anticipated to produce the most substantial impact on soil biota and plants, along with complex environmental impacts on other ecological systems. Being sessile, plants tend to be the least resilient to drought-induced osmotic stress, which reduces nutrient accessibility due to soil heterogeneity and limits nutrient access to the root system. Drought tolerance is a complex quantitative trait regulated by multiple genes, and it is one of the most challenging characteristics to study and classify. Fortunately, the clustered regularly interspaced short palindromic repeat (CRISPR) technology has paved the way as a new frontier in crop improvement, thereby revolutionizing plant breeding. The application of CRISPER systems has proven groundbreaking across numerous biological fields, particularly in biomedicine and agriculture. The present review highlights the principle and optimization of CRISPR systems and their implementation for crop improvement, particularly in terms of drought tolerance, yield, and domestication. Furthermore, we address the ways in which innovative genome editing tools can help recognize and modify novel genes coffering drought tolerance. We anticipate the establishment of effective strategies of crop yield improvement in water-limited regions through collaborative efforts in the near future.
Collapse
Affiliation(s)
- Abdul Sami
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Zhao Xue
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Saheera Tazein
- Pgrl CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Arshad
- Plant Physiology Lab, Quaid I Azam University, Islamabad, Pakistan
| | - Zong He Zhu
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Ya Ping Chen
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Yue Hong
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Xiao Tian Zhu
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Ke Jin Zhou
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| |
Collapse
|