101
|
Grimanelli D. Epigenetic regulation of reproductive development and the emergence of apomixis in angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:57-62. [PMID: 22037465 DOI: 10.1016/j.pbi.2011.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 05/03/2023]
Abstract
Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. While apomixis is genetically controlled, individual loci contributing to its expression have yet to be identified. Here, we review recent results indicating that RNA-dependent DNA methylation pathways acting during female reproduction are essential for proper reproductive development in plants, and may represent key regulators of the differentiation between apomictic and sexual reproduction.
Collapse
Affiliation(s)
- Daniel Grimanelli
- Institut de Recherche pour Développement, UMR 232, URL5300, Université de Montpellier II, 34394 Montpellier, France.
| |
Collapse
|
102
|
Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 2012; 482:94-7. [PMID: 22266940 DOI: 10.1038/nature10756] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023]
Abstract
In animals, maternal gene products deposited into eggs regulate embryonic development before activation of the zygotic genome. In plants, an analogous period of prolonged maternal control over embryogenesis is thought to occur based on some gene-expression studies. However, other gene-expression studies and genetic analyses show that some transcripts must derive from the early zygotic genome, implying that the prevailing model does not fully explain the nature of zygotic genome activation in plants. To determine the maternal, paternal and zygotic contributions to the early embryonic transcriptome, we sequenced the transcripts of hybrid embryos from crosses between two polymorphic inbred lines of Arabidopsis thaliana and used single-nucleotide polymorphisms diagnostic of each parental line to quantify parental contributions. Although some transcripts seemed to be either inherited from primarily one parent or transcribed from imprinted loci, the vast majority of transcripts were produced in near-equal amounts from both maternal and paternal alleles, even during the initial stages of embryogenesis. Results of reporter experiments and analyses of transcripts from genes that are not expressed in sperm and egg indicate early and widespread zygotic transcription. Thus, in contrast to early animal embryogenesis, early plant embryogenesis is mostly under zygotic control.
Collapse
|
103
|
Yu D, Jiang L, Gong H, Liu CM. EMBRYONIC FACTOR 19 encodes a pentatricopeptide repeat protein that is essential for the initiation of zygotic embryogenesis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:55-64. [PMID: 22099059 DOI: 10.1111/j.1744-7909.2011.01089.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Early embryogenesis is the most fundamental developmental process in biology. Screening of ethyl methanesulfonate (EMS)-mutagenized populations of Arabidopsis thaliana led to the identification of a zygote-lethal mutant embryonic factor 19 (fac19) in which embryo development was arrested at the elongated zygote to octant stage. The number of endosperm nuclei decreased significantly in fac19 embryos. Genetic analysis showed fac19 was caused by a single recessive mutation with typical mendelian segregation, suggesting equal maternal and paternal contributions of FAC19 towards zygotic embryogenesis. Positional cloning showed that FAC19 encodes a putative mitochondrial protein with 16 conserved pentatricopeptide repeat (PPR) motifs. The fac19 mutation caused a conversion from hydrophilic serine located in a previously unknown domain to hydrophobic leucine. Crosses between FAC19/fac19 and the T-DNA insertion mutants in the same gene failed to complement the fac19 defects, confirming the identity of the gene. This study revealed the critical importance of a PPR protein-mediated mitochondrial function in early embryogenesis.
Collapse
Affiliation(s)
- Dali Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
104
|
Braszewska-Zalewska A, Dziurlikowska A, Maluszynska J. Histone H3 methylation patterns in Brassica nigra, Brassica juncea, and Brassica carinata species. Genome 2011; 55:68-74. [PMID: 22195975 DOI: 10.1139/g11-076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Core histones are subjected to various post-translational modifications, and one of them, most intensively studied in plants, is the methylation of histone H3. In the majority of analyzed plant species, dimethylation of H3 at lysine 9 (H3K9me2) is detected in heterochromatin domains, whereas methylation of H3 at lysine 4 (H3K4me2) is detected in euchromatin domains. The distribution of H3K9me2 in the interphase nucleus seems to be correlated with genome size, chromatin organization, but also with tissue specificity. In this paper, we present the analysis of the pattern and level of histone H3 methylation for two allotetraploid and one diploid Brassica species. We have found that the pattern of H3K9me2 in interphase nuclei from root meristematic tissue is comparable within the analyzed species and includes both heterochromatin and euchromatin, but the level of modification differs not only among species but even among nuclei in the same phase of the cell cycle within one species. Moreover, the differences in the level of H3K9me2 are not directly coupled with DNA content in the nuclei and are probably tissue specific.
Collapse
|
105
|
Muralla R, Lloyd J, Meinke D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 2011; 6:e28398. [PMID: 22164284 PMCID: PMC3229588 DOI: 10.1371/journal.pone.0028398] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022] Open
Abstract
The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern of inheritance, which provide valuable insights into the maternal-to-zygotic transition in Arabidopsis and the timing of paternal gene activation during embryo development.
Collapse
Affiliation(s)
- Rosanna Muralla
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Johnny Lloyd
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - David Meinke
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
106
|
|
107
|
Enke RA, Dong Z, Bender J. Small RNAs prevent transcription-coupled loss of histone H3 lysine 9 methylation in Arabidopsis thaliana. PLoS Genet 2011; 7:e1002350. [PMID: 22046144 PMCID: PMC3203196 DOI: 10.1371/journal.pgen.1002350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/30/2011] [Indexed: 11/24/2022] Open
Abstract
In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates silencing of invasive sequences to prevent deleterious consequences including the expression of aberrant gene products and mobilization of transposons. In Arabidopsis thaliana, H3K9me maintained by SUVH histone methyltransferases (MTases) is associated with cytosine methylation (5meC) maintained by the CMT3 cytosine MTase. The SUVHs contain a 5meC binding domain and CMT3 contains an H3K9me binding domain, suggesting that the SUVH/CMT3 pathway involves an amplification loop between H3K9me and 5meC. However, at loci subject to read-through transcription, the stability of the H3K9me/5meC loop requires a mechanism to counteract transcription-coupled loss of H3K9me. Here we use the duplicated PAI genes, which stably maintain SUVH-dependent H3K9me and CMT3-dependent 5meC despite read-through transcription, to show that when PAI sRNAs are depleted by dicer ribonuclease mutations, PAI H3K9me and 5meC levels are reduced and remaining PAI 5meC is destabilized upon inbreeding. The dicer mutations confer weaker reductions in PAI 5meC levels but similar or stronger reductions in PAI H3K9me levels compared to a cmt3 mutation. This comparison indicates a connection between sRNAs and maintenance of H3K9me independent of CMT3 function. The dicer mutations reduce PAI H3K9me and 5meC levels through a distinct mechanism from the known role of dicer-dependent sRNAs in guiding the DRM2 cytosine MTase because the PAI genes maintain H3K9me and 5meC at levels similar to wild type in a drm2 mutant. Our results support a new role for sRNAs in plants to prevent transcription-coupled loss of H3K9me. Methylation of histone H3 at the lysine 9 position (H3K9me) is a fundamental chromatin modification that suppresses expression from invasive and repetitive sequences such as transposons. In plant genomes, regions modified by H3K9me are maintained with precise boundaries. However, at junctions where H3K9me target regions are subject to read-through transcription from outside promoters, the stability of H3K9me patterns is jeopardized by transcription-coupled processes that remove this modification. We show that maintenance of H3K9me patterns at such vulnerable sites requires small RNAs corresponding to the H3K9me target region. We use a sensitive reporter system to show that, in the absence of small RNAs, target regions subject to read-through transcription undergo an immediate reduction in H3K9me levels, followed by further losses in progeny plants upon inbreeding. Our results support a new function for small RNAs in maintaining accurate H3K9me patterns in the plant genome.
Collapse
Affiliation(s)
- Raymond A. Enke
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhicheng Dong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Judith Bender
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
108
|
Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, Grossniklaus U. Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biol 2011; 9:e1001155. [PMID: 21949639 PMCID: PMC3176755 DOI: 10.1371/journal.pbio.1001155] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/05/2011] [Indexed: 01/23/2023] Open
Abstract
Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant "germline" lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Samuel E. Wuest
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kitty Vijverberg
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Célia Baroux
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Daniela Kleen
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
109
|
Plant germline development: a tale of cross-talk, signaling, and cellular interactions. ACTA ACUST UNITED AC 2011; 24:91-5. [PMID: 21590362 DOI: 10.1007/s00497-011-0170-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
110
|
Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J Biotechnol 2011; 159:291-311. [PMID: 21906637 DOI: 10.1016/j.jbiotec.2011.08.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/02/2023]
Abstract
Apomixis is desirable in agriculture as a reproductive strategy for cloning plants by seeds. Because embryos derive from the parthenogenic development of apomeiotic egg cells, apomixis excludes fertilization in addition to meiotic segregation and recombination, resulting in offspring that are exact replicas of the parent. Introgression of apomixis from wild relatives to crop species and transformation of sexual genotypes into apomictically reproducing ones are long-held goals of plant breeding. In fact, it is generally accepted that the introduction of apomixis into agronomically important crops will have revolutionary implications for agriculture. This review deals with the current genetic and molecular findings that have been collected from model species to elucidate the mechanisms of apomeiosis, parthenogenesis and apomixis as a whole. Our goal is to critically determine whether biotechnology can combine key genes known to control the expression of the processes miming the main components of apomixis in plants. Two natural apomicts, as the eudicot Hypericum perforatum L. (St. John's wort) and the monocot Paspalum spp. (crowngrass), and the sexual model species Arabidopsis thaliana are ideally suited for such investigations at the genomic and biotechnological levels. Some novel views and original concepts have been faced on this review, including (i) the parallel between Y-chromosome and apomixis-bearing chromosome (e.g., comparative genomic analyses revealed common features as repression of recombination events, accumulation of transposable elements and degeneration of genes) from the most primitive (Hypericum-type) to the most advanced (Paspalum-type) in evolutionary terms, and (ii) the link between apomixis and gene-specific silencing mechanisms (i.e., likely based on chromatin remodelling factors), with merging lines of evidence regarding the role of auxin in cell fate specification of embryo sac and egg cell development in Arabidopsis. The production of engineered plants exhibiting apomictic-like phenotypes is critically reviewed and discussed.
Collapse
|
111
|
Gehring M, Missirian V, Henikoff S. Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS One 2011; 6:e23687. [PMID: 21858209 PMCID: PMC3157454 DOI: 10.1371/journal.pone.0023687] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/25/2011] [Indexed: 12/18/2022] Open
Abstract
Differential expression of maternally and paternally inherited alleles of a gene is referred to as gene imprinting, a form of epigenetic gene regulation common to flowering plants and mammals. In plants, imprinting primarily occurs in the endosperm, a seed tissue that supports the embryo during its growth and development. Previously, we demonstrated that widespread DNA demethylation at remnants of transposable elements accompanies endosperm development and that a subset of these methylation changes are associated with gene imprinting. Here we assay imprinted gene expression genome-wide by performing high-throughput sequencing of RNA derived from seeds of reciprocal intraspecific crosses. We identify more than 200 loci that exhibit parent-of-origin effects on gene expression in the endosperm, including a large number of transcription factors, hormone biosynthesis and response genes, and genes that encode regulators of epigenetic information, such as methylcytosine binding proteins, histone methyltransferases, and chromatin remodelers. The majority of these genes are partially, rather than completely, imprinted, suggesting that gene dosage regulation is an important aspect of imprinted gene expression.
Collapse
Affiliation(s)
- Mary Gehring
- Howard Hughes Medical Institute, Seattle, Washington, United States of America.
| | | | | |
Collapse
|
112
|
McKeown PC, Laouielle-Duprat S, Prins P, Wolff P, Schmid MW, Donoghue MTA, Fort A, Duszynska D, Comte A, Lao NT, Wennblom TJ, Smant G, Köhler C, Grossniklaus U, Spillane C. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds. BMC PLANT BIOLOGY 2011; 11:113. [PMID: 21838868 PMCID: PMC3174879 DOI: 10.1186/1471-2229-11-113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 08/12/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. RESULTS cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. CONCLUSIONS Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.
Collapse
Affiliation(s)
- Peter C McKeown
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Sylvia Laouielle-Duprat
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Pjotr Prins
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Philip Wolff
- Department of Biology and Zürich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zürich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Mark TA Donoghue
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Antoine Fort
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Dorota Duszynska
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Aurélie Comte
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Nga Thi Lao
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | | | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Claudia Köhler
- Department of Biology and Zürich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zürich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| |
Collapse
|
113
|
Zhang JE, Luo A, Xin HP, Zhao J, Li SS, Qu LH, Ma LG, Scholten S, Sun MX. Genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid. PLoS One 2011; 6:e23153. [PMID: 21829711 PMCID: PMC3150392 DOI: 10.1371/journal.pone.0023153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. However, in higher plants, the extent of maternal control over zygote development and early embryogenesis is not fully understood yet. Nothing is known about the activity of the parental genomes during seed formation of interspecies hybrids. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that an interspecies hybridization system between SR1 (Nicotiana tabacum) and Hamayan (N. rustica) has been successfully established. Based on the system we selected 58 genes that have polymorphic sites between SR1 and Hamayan, and analyzed the allele-specific expression of 28 genes in their hybrid zygotes (Hamayan x SR1). Finally the allele-specific expressions of 8 genes in hybrid zygotes were repeatedly confirmed. Among them, 4 genes were of paternal origin, 1 gene was of maternal origin and 3 genes were of biparental origin. These results revealed obvious biparental involvement and differentially contribution of parental-origin genes to zygote development in the interspecies hybrid. We further detected the expression pattern of the genes at 8-celled embryo stage found that the involvement of the parental-origin genes may change at different stages of embryogenesis. CONCLUSIONS/SIGNIFICANCE We reveal that genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid and functions in a developmental stage-dependent manner. This finding may open a window to seek for the possible molecular mechanism of hybrid vigor.
Collapse
Affiliation(s)
- Jun-E Zhang
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - An Luo
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Hai-Ping Xin
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Jing Zhao
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Shi-Sheng Li
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Liang-Huan Qu
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Li-Gang Ma
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| | - Stefan Scholten
- Biocenter Klein Flottbek, Developmental Biology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Meng-Xiang Sun
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
114
|
Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 2011; 145:707-19. [PMID: 21620136 DOI: 10.1016/j.cell.2011.04.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/28/2011] [Accepted: 04/15/2011] [Indexed: 11/24/2022]
Abstract
Defining the contributions and interactions of paternal and maternal genomes during embryo development is critical to understand the fundamental processes involved in hybrid vigor, hybrid sterility, and reproductive isolation. To determine the parental contributions and their regulation during Arabidopsis embryogenesis, we combined deep-sequencing-based RNA profiling and genetic analyses. At the 2-4 cell stage there is a strong, genome-wide dominance of maternal transcripts, although transcripts are contributed by both parental genomes. At the globular stage the relative paternal contribution is higher, largely due to a gradual activation of the paternal genome. We identified two antagonistic maternal pathways that control these parental contributions. Paternal alleles are initially downregulated by the chromatin siRNA pathway, linked to DNA and histone methylation, whereas transcriptional activation requires maternal activity of the histone chaperone complex CAF1. Our results define maternal epigenetic pathways controlling the parental contributions in plant embryos, which are distinct from those regulating genomic imprinting.
Collapse
|
115
|
Abstract
Little is known about chromatin remodeling events immediately after fertilization. A recent report by Autran et al. (2011) in Cell now shows that chromatin regulatory pathways that silence transposable elements are responsible for global delayed activation of gene expression in the early Arabidopsis embryo.
Collapse
Affiliation(s)
- Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA.
| |
Collapse
|
116
|
Paszkowski J, Grossniklaus U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:195-203. [PMID: 21333585 DOI: 10.1016/j.pbi.2011.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/22/2011] [Indexed: 05/05/2023]
Abstract
Transgenerational epigenetic inheritance (TEI), which is the inheritance of expression states and thus traits that are not determined by the DNA sequence, is often postulated but the molecular mechanisms involved are only rarely verified. This especially applies to the heritability of environmentally induced traits, which have gained interest over the last years. Here we will discuss selected examples of epigenetic inheritance in plants and artificially divide them according to the occurrence of inter-generational resetting. The decision which epigenetic marks are reset and which ones are not is crucial for the understanding of TEI. We will consider examples of epialleles found in natural populations and epialleles induced by genetic and/or environmental factors used in experimental setups.
Collapse
Affiliation(s)
- Jerzy Paszkowski
- Department of Plant Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
117
|
Jeong S, Bayer M, Lukowitz W. Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1687-97. [PMID: 21172809 DOI: 10.1093/jxb/erq398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Arabidopsis embryos follow a predictable sequence of cell divisions, facilitating a genetic analysis of their early development. Both asymmetric divisions and cell-to-cell communication are probably involved in generating specific gene expression domains along the main axis within the first few division cycles. The function of these domains is not always understood, but recent work suggests that they may serve as a basis for organizing polar auxin flux. Auxin acts as systemic signal throughout the life cycle and, in the embryo, has been demonstrated to direct formation of the main axis and root initiation at the globular stage. At about the same time, root versus shoot fates are imposed on the incipient meristems by the expression of antagonistic regulators at opposite poles of the embryo. Some of the key features of the embryonic patterning process have emerged over the past few years and may provide the elements of a coherent conceptual framework.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | | | | |
Collapse
|
118
|
Baroux C, Raissig MT, Grossniklaus U. Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev 2011; 21:124-33. [PMID: 21324672 DOI: 10.1016/j.gde.2011.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
Plants and animals reproduce sexually via specialized, highly differentiated gametes. Yet, gamete formation drastically differs between the two kingdoms. In flowering plants, the specification of cells destined to enter meiosis occurs late in development, gametic and accessory cells are usually derived from the same meiotic product, and two distinct female gametes involved in double fertilization differentiate. This poses fascinating questions in terms of gamete development and the associated epigenetic processes. Although studies in this area remain at their infancy, it becomes clear that large-scale epigenetic reprogramming, involving RNA-directed DNA methylation, chromatin modifications, and nucleosome remodeling, contributes to the establishment of transcriptionally repressive or permissive epigenetic landscapes. Furthermore, a role for small RNAs in the regulation of transposable elements during gametogenesis is emerging.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | |
Collapse
|
119
|
The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. ACTA ACUST UNITED AC 2011; 24:161-9. [PMID: 21225434 DOI: 10.1007/s00497-010-0160-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 12/29/2022]
Abstract
During plant embryogenesis, a simple body plan consisting of shoot and root meristem that are connected by the embryo axis is set up by the first few rounds of cell divisions after fertilization. Postembryonically, the elaborate architecture of plants is created from stem cell populations of both meristems. Here, we address how the main axis (apical-basal) of the plant embryo is established from the single-celled zygote and the role that the asymmetric division of the zygote plays in this process. We will mainly draw on examples from the model plant Arabidopsis, for which several key regulators have been identified during the last years.
Collapse
|
120
|
Abstract
The angiosperm female gametophyte is critical for plant reproduction. It contains the egg cell and central cell that become fertilized and give rise to the embryo and endosperm of the seed, respectively. Female gametophyte development begins early in ovule development with the formation of a diploid megaspore mother cell that undergoes meiosis. One resulting haploid megaspore then develops into the female gametophyte. Genetic and epigenetic processes mediate specification of megaspore mother cell identity and limit megaspore mother cell formation to a single cell per ovule. Auxin gradients influence female gametophyte polarity and a battery of transcription factors mediate female gametophyte cell specification and differentiation. The mature female gametophyte secretes peptides that guide the pollen tube to the embryo sac and contains protein complexes that prevent seed development before fertilization. Post-fertilization, the female gametophyte influences seed development through maternal-effect genes and by regulating parental contributions. Female gametophytes can form by an asexual process called gametophytic apomixis, which involves formation of a diploid female gametophyte and fertilization-independent development of the egg into the embryo. These functions collectively underscore the important role of the female gametophyte in seed and food production.
Collapse
Affiliation(s)
- Gary N. Drews
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Address correspondence to
| | - Anna M.G Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Waite Campus, South Australia 5064, Australia
| |
Collapse
|
121
|
Abstract
The flowering plant germline is produced during the haploid gametophytic stage. Defining the germline is complicated by the extreme reduction of the male and female gametophytes, also referred to as pollen and embryo sac, respectively. Both male and female gamete progenitors are segregated by an asymmetric cell division, as is the case for the germline in animals. Genetic studies and access to the transcriptome of isolated gametes have provided a regulatory framework for the mechanisms that define the male germline. What specifies female germline identity remains unknown. Recent evidence indicates that an auxin gradient provides positional information and plays a role in defining the identity of the female gamete lineage. The animal germline is also marked by production of small RNAs, and recent evidence indicates that this trait might be shared with the plant gamete lineage.
Collapse
Affiliation(s)
- Frédéric Berger
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
122
|
Zhao J, Xin H, Qu L, Ning J, Peng X, Yan T, Ma L, Li S, Sun MX. Dynamic changes of transcript profiles after fertilization are associated with de novo transcription and maternal elimination in tobacco zygote, and mark the onset of the maternal-to-zygotic transition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:131-145. [PMID: 21175896 DOI: 10.1111/j.1365-313x.2010.04403.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The maternal-to-zygotic transition (MZT) is characterized by the turnover of zygote development from maternal to zygotic control, and has been extensively studied in animals. A majority of studies have suggested that early embryogenesis is maternally controlled and that the zygotic genome remains transcriptionally inactive prior to the MZT. However, little is known about the MZT in higher plants, and its timing and impact remain uncharacterized. Here, we constructed cDNA libraries from tobacco (Nicotiana tabacum) egg cells, zygotes and two-celled embryos for gene expression profiling analysis, followed by RT-PCR confirmation. These analyses, together with experiments using zygote microculture coupled with transcription inhibition, revealed that a marked change in transcript profiles occurs approximately 50 h after fertilization, and that the MZT is initiated prior to zygotic division in tobacco. Although maternal transcripts deposited in egg cells support several early developmental processes, they appear to be insufficient for zygotic polar growth and subsequent cell divisions. Thus, we propose that de novo transcripts are probably required to trigger embryogenesis in later zygotes in tobacco.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Haiping Xin
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Lianghuan Qu
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Jue Ning
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Xiongbo Peng
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Tingting Yan
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Ligang Ma
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Shisheng Li
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| | - Meng-Xiang Sun
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, 430072, China
| |
Collapse
|
123
|
Pillot M, Autran D, Leblanc O, Grimanelli D. A role for CHROMOMETHYLASE3 in mediating transposon and euchromatin silencing during egg cell reprogramming in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1167-70. [PMID: 20505370 PMCID: PMC3115342 DOI: 10.4161/psb.5.10.11905] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 05/20/2023]
Abstract
During embryogenesis there is a major switch from dependence upon maternally-deposited products to reliance on products of the zygotic genome. In animals, this so-called maternal-to-zygotic transition occurs following a period of transcriptional quiescence. Recently, we have shown that the early embryo in Arabidopsis is also quiescent, a state inherited from the female gamete and linked to specific patterns of H3K9 dimethylation and TERMINAL FLOWER2 (TFL2) localization. We also demonstrated that CHROMOMETHYLASE 3 (CMT3) is required for H3K9 dimethylation in the egg cell and for normal embryogenesis during the first few divisions of the zygote. Subsequent analysis of CMT3 mutants points to a key role in egg cell reprogramming by controlling silencing in both transposon and euchromatic regions. A speculative model of the CMT3-induced egg cell silencing is presented here, based on these results and current data from the literature suggesting the potential involvement of small RNAs targeted to the egg cell, a process conceptually similar to the division of labor described in the male gametophyte for which we show that H3K9 modifications and TFL2 localization are reminiscent of the female gametophyte.
Collapse
Affiliation(s)
- Marion Pillot
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096 IRD-CNRS-Université de Perpignan, Montpellier, France
| | | | | | | |
Collapse
|
124
|
Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. THE PLANT CELL 2010; 22:3249-67. [PMID: 21037104 PMCID: PMC2990141 DOI: 10.1105/tpc.109.072181] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 09/23/2010] [Accepted: 10/09/2010] [Indexed: 05/18/2023]
Abstract
Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. Although apomixis is genetically regulated, its core genetic component(s) has not been determined yet. Using profiling experiments comparing sexual development in maize (Zea mays) to apomixis in maize-Tripsacum hybrids, we identified six loci that are specifically downregulated in ovules of apomictic plants. Four of them share strong homology with members of the RNA-directed DNA methylation pathway, which in Arabidopsis thaliana is involved in silencing via DNA methylation. Analyzing loss-of-function alleles for two maize DNA methyltransferase genes belonging to that subset, dmt102 and dmt103, which are downregulated in the ovules of apomictic plants and are homologous to the Arabidopsis CHROMOMETHYLASEs and DOMAINS REARRANGED METHYLTRANSFERASE families, revealed phenotypes reminiscent of apomictic development, including the production of unreduced gametes and formation of multiple embryo sacs in the ovule. Loss of DMT102 activity in ovules resulted in the establishment of a transcriptionally competent chromatin state in the archesporial tissue and in the egg cell that mimics the chromatin state found in apomicts. Interestingly, dmt102 and dmt103 expression in the ovule is found in a restricted domain in and around the germ cells, indicating that a DNA methylation pathway active during reproduction is essential for gametophyte development in maize and likely plays a critical role in the differentiation between apomictic and sexual reproduction.
Collapse
|
125
|
Jullien PE, Berger F. DNA methylation reprogramming during plant sexual reproduction? Trends Genet 2010; 26:394-9. [DOI: 10.1016/j.tig.2010.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 02/02/2023]
|
126
|
Diggle PK, Abrahamson NJ, Baker RL, Barnes MG, Koontz TL, Lay CR, Medeiros JS, Murgel JL, Shaner MGM, Simpson HL, Wu CC, Marshall DL. Dynamics of maternal and paternal effects on embryo and seed development in wild radish (Raphanus sativus). ANNALS OF BOTANY 2010; 106:309-19. [PMID: 20519237 PMCID: PMC2908165 DOI: 10.1093/aob/mcq110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Variability in embryo development can influence the rate of seed maturation and seed size, which may have an impact on offspring fitness. While it is expected that embryo development will be under maternal control, more controversial hypotheses suggest that the pollen donor and the embryo itself may influence development. These latter possibilities are, however, poorly studied. Characteristics of 10-d-old embryos and seeds of wild radish (Raphanus sativus) were examined to address: (a) the effects of maternal plant and pollen donor on development; (b) the effects of earlier reproductive events (pollen tube growth and fertilization) on embryos and seeds, and the influence of embryo size on mature seed mass; (c) the effect of water stress on embryos and seeds; (d) the effect of stress on correlations of embryo and seed characteristics with earlier and later reproductive events and stages; and (e) changes in maternal and paternal effects on embryo and seed characteristics during development. METHODS Eight maternal plants (two each from four families) and four pollen donors were crossed and developing gynoecia were collected at 10 d post-pollination. Half of the maternal plants experienced water stress. Characteristics of embryos and seeds were summarized and also compared with earlier and later developmental stages. KEY RESULTS In addition to the expected effects of the maternal plants, all embryo characters differed among pollen donors. Paternal effects varied over time, suggesting that there are windows of opportunity for pollen donors to influence embryo development. Water-stress treatment altered embryo characteristics; embryos were smaller and less developed. In addition, correlations of embryo characteristics with earlier and later stages changed dramatically with water stress. CONCLUSIONS The expected maternal effects on embryo development were observed, but there was also evidence for an early paternal role. The relative effects of these controls may change over time. Thus, there may be times in development when selection on the maternal, paternal or embryo contributions to development are more and less likely.
Collapse
Affiliation(s)
- P K Diggle
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 80309, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 2010; 137:2683-90. [PMID: 20610483 DOI: 10.1242/dev.052928] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertilization in flowering plants involves two sperm cells and two female gametes, the egg cell and the central cell, progenitors of the embryo and the endosperm, respectively. The mechanisms triggering zygotic development are unknown and whether both parental genomes are required for zygotic development is unclear. In Arabidopsis, previous studies reported that loss-of-function mutations in CYCLIN DEPENDENT KINASE A1 (CDKA;1) impedes cell cycle progression in the pollen leading to the production of a single sperm cell. Here, we report that a significant proportion of single cdka;1 pollen delivers two sperm cells, leading to a new assessment of the cdka;1 phenotype. We performed fertilization of wild-type ovules with cdka;1 mutant sperm cells and monitored in vivo the fusion of the male and female nuclei using fluorescent markers. When a single cdka;1 sperm was delivered, either female gamete could be fertilized leading to similar proportions of seeds containing either a single endosperm or a single embryo. When two cdka;1 sperm cells were released, they fused to each female gamete. Embryogenesis was initiated but the fusion between the nuclei of the sperm cell and the central cell failed. The failure of karyogamy in the central cell prevented incorporation of the paternal genome, impaired endosperm development and caused seed abortion. Our results thus support that the paternal genome plays an essential role during early seed development. However, sperm entry was sufficient to trigger central cell mitotic division, suggesting the existence of signaling events associated with sperm cell fusion with female gametes.
Collapse
Affiliation(s)
- Sze Jet Aw
- Temasek Life Science Laboratory, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
128
|
Hofmann NR. Mother knows best: maternal influence on early embryogenesis. THE PLANT CELL 2010; 22:293. [PMID: 20139164 PMCID: PMC2845416 DOI: 10.1105/tpc.110.220210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|