101
|
Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. THE PLANT CELL 2012; 24:3530-57. [PMID: 23023172 PMCID: PMC3480286 DOI: 10.1105/tpc.112.102046] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 09/07/2012] [Indexed: 05/18/2023]
Abstract
Transcriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea.
Collapse
Affiliation(s)
- Oliver Windram
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Stuart McHattie
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Claire Hill
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Richard Hickman
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Emma Cooke
- Molecular Organization and Assembly of Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dafyd J. Jenkins
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Laura Baxter
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Steven J. Kiddle
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Johanna Rhodes
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | | | - Youn-sung Kim
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oliver Stegle
- Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, 72076 Tuebingen, Germany
| | - Karsten Borgwardt
- Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, 72076 Tuebingen, Germany
- Zentrum für Bioinformatik, Eberhard Karls Universität, 72076 Tuebingen, Germany
| | - Cunjin Zhang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex Tabrett
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Roxane Legaie
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bärbel Finkenstadt
- Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David L. Wild
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Rand
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vicky Buchanan-Wollaston
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine J. Denby
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
- Address correspondence to
| |
Collapse
|
102
|
Tang W, Wang W, Chen D, Ji Q, Jing Y, Wang H, Lin R. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. THE PLANT CELL 2012; 24:1984-2000. [PMID: 22634759 PMCID: PMC3442582 DOI: 10.1105/tpc.112.097022] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/30/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Successful chlorophyll biosynthesis during initial light exposure is critical for plant survival and growth, as excess accumulation of chlorophyll precursors in darkness can cause photooxidative damage to cells. Therefore, efficient mechanisms have evolved to precisely regulate chlorophyll biosynthesis in plants. Here, we identify FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, as positive regulators of chlorophyll biosynthesis in Arabidopsis thaliana. We show that null mutations in FHY3 and FAR1 cause reduced protochlorophyllide (a precursor of chlorophyll) levels in darkness and less photobleaching in the light. We find that FHY3 directly binds to the promoter and activates expression of HEMB1, which encodes 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. We reveal that PHYTOCHROME-INTERACTING FACTOR1 physically interacts with the DNA binding domain of FHY3, thereby partly repressing FHY3/FAR1-activated HEMB1 expression. Strikingly, FHY3 expression is upregulated by white light. In addition, our genetic data indicate that overexpression, severe reduction, or lack of HEMB1 impairs plant growth and development. Together, our findings reveal a crucial role of FHY3/FAR1 in regulating chlorophyll biosynthesis, thus uncovering a new layer of regulation by which light promotes plant dark-light transition in early seedling development.
Collapse
Affiliation(s)
- Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanqing Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang Ji
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haiyang Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
103
|
Ruckle ME, Burgoon LD, Lawrence LA, Sinkler CA, Larkin RM. Plastids are major regulators of light signaling in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:366-90. [PMID: 22383539 PMCID: PMC3375971 DOI: 10.1104/pp.112.193599] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/29/2012] [Indexed: 05/20/2023]
Abstract
We previously provided evidence that plastid signaling regulates the downstream components of a light signaling network and that this signal integration coordinates chloroplast biogenesis with both the light environment and development by regulating gene expression. We tested these ideas by analyzing light- and plastid-regulated transcriptomes in Arabidopsis (Arabidopsis thaliana). We found that the enrichment of Gene Ontology terms in these transcriptomes is consistent with the integration of light and plastid signaling (1) down-regulating photosynthesis and inducing both repair and stress tolerance in dysfunctional chloroplasts and (2) helping coordinate processes such as growth, the circadian rhythm, and stress responses with the degree of chloroplast function. We then tested whether factors that contribute to this signal integration are also regulated by light and plastid signals by characterizing T-DNA insertion alleles of genes that are regulated by light and plastid signaling and that encode proteins that are annotated as contributing to signaling, transcription, or no known function. We found that a high proportion of these mutant alleles induce chloroplast biogenesis during deetiolation. We quantified the expression of four photosynthesis-related genes in seven of these enhanced deetiolation (end) mutants and found that photosynthesis-related gene expression is attenuated. This attenuation is particularly striking for Photosystem II subunit S expression. We conclude that the integration of light and plastid signaling regulates a number of END genes that help optimize chloroplast function and that at least some END genes affect photosynthesis-related gene expression.
Collapse
Affiliation(s)
| | | | | | | | - Robert M. Larkin
- Michigan State University-Department of Energy Plant Research Laboratory (M.E.R., L.A.L., C.A.S., R.M.L.), Department of Biochemistry and Molecular Biology (M.E.R., L.D.B., R.M.L.), and Gene Expression in Development and Disease Initiative (L.D.B.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
104
|
Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. PLANT PHYSIOLOGY 2012; 159:118-30. [PMID: 22452855 PMCID: PMC3375955 DOI: 10.1104/pp.112.195446] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/23/2012] [Indexed: 05/20/2023]
Abstract
The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes.
Collapse
Affiliation(s)
- Tao Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Tingting Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Yinan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Maxi Rothbart
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Jing Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Shuaixiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | | | | |
Collapse
|
105
|
Qian P, Marklew CJ, Viney J, Davison PA, Brindley AA, Söderberg C, Al-Karadaghi S, Bullough PA, Grossmann JG, Hunter CN. Structure of the cyanobacterial Magnesium Chelatase H subunit determined by single particle reconstruction and small-angle X-ray scattering. J Biol Chem 2012; 287:4946-56. [PMID: 22179610 PMCID: PMC3281664 DOI: 10.1074/jbc.m111.308239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/07/2011] [Indexed: 02/02/2023] Open
Abstract
The biosynthesis of chlorophyll, an essential cofactor for photosynthesis, requires the ATP-dependent insertion of Mg(2+) into protoporphyrin IX catalyzed by the multisubunit enzyme magnesium chelatase. This enzyme complex consists of the I subunit, an ATPase that forms a complex with the D subunit, and an H subunit that binds both the protoporphyrin substrate and the magnesium protoporphyrin product. In this study we used electron microscopy and small-angle x-ray scattering to investigate the structure of the magnesium chelatase H subunit, ChlH, from the thermophilic cyanobacterium Thermosynechococcus elongatus. Single particle reconstruction of negatively stained apo-ChlH and Chl-porphyrin proteins was used to reconstitute three-dimensional structures to a resolution of ∼30 Å. ChlH is a large, 148-kDa protein of 1326 residues, forming a cage-like assembly comprising the majority of the structure, attached to a globular N-terminal domain of ∼16 kDa by a narrow linker region. This N-terminal domain is adjacent to a 5 nm-diameter opening in the structure that allows access to a cavity. Small-angle x-ray scattering analysis of ChlH, performed on soluble, catalytically active ChlH, verifies the presence of two domains and their relative sizes. Our results provide a basis for the multiple regulatory and catalytic functions of ChlH of oxygenic photosynthetic organisms and for a chaperoning function that sequesters the enzyme-bound magnesium protoporphyrin product prior to its delivery to the next enzyme in the chlorophyll biosynthetic pathway, magnesium protoporphyrin methyltransferase.
Collapse
Affiliation(s)
- Pu Qian
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Christopher J. Marklew
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Joanne Viney
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Paul A. Davison
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Amanda A. Brindley
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Christopher Söderberg
- the Department of Molecular Biophysics, Center for Molecular Protein Science, Lund University, 22100 Lund, Sweden, and
| | - Salam Al-Karadaghi
- the Department of Molecular Biophysics, Center for Molecular Protein Science, Lund University, 22100 Lund, Sweden, and
| | - Per A. Bullough
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - J. Günter Grossmann
- the Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - C. Neil Hunter
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
106
|
Czarnecki O, Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1675-87. [PMID: 22231500 DOI: 10.1093/jxb/err437] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tetrapyrrole biosynthetic pathway provides the vital cofactors and pigments for photoautotrophic growth (chlorophyll), several essential redox reactions in electron transport chains (haem), N- and S-assimilation (sirohaem), and photomorphogenic processes (phytochromobilin). While the biochemistry of the pathway is well understood and almost all genes encoding enzymes of tetrapyrrole biosynthesis have been identified in plants, the post-translational control and organization of the pathway remains to be clarified. Post-translational mechanisms controlling metabolic activities are of particular interest since tetrapyrrole biosynthesis needs adaptation to environmental challenges. This review surveys post-translational mechanisms that have been reported to modulate metabolic activities and organization of the tetrapyrrole biosynthesis pathway.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
107
|
Zhou S, Sawicki A, Willows RD, Luo M. C-terminal residues of oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Lett 2012; 586:205-10. [PMID: 22226678 DOI: 10.1016/j.febslet.2011.12.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022]
Abstract
Oryza sativa GUN4 together with the magnesium chelatase subunits ChlI, ChlD, and ChlH have been heterologously expressed and purified to reconstitute magnesium chelatase activity in vitro. Maximum magnesium chelatase activity requires pre-activation of OsChlH with OsGUN4, Mg(2+) and protoporphyrin-IX. OsGUN4 and OsChlH preincubated without protoporphyrin-IX yields magnesium chelatase activity similar to assays without OsGUN4, suggesting formation of a dead-end complex. Either 9 or 10 C-terminal amino acids of OsGUN4 are slowly hydrolyzed to yield a truncated OsGUN4. These truncated OsGUN4 still bind protoporphyrin-IX and Mg-protoporphyrin-IX but are unable to activate OsChlH. This suggests the mechanism of GUN4 activation of magnesium chelatase is different in eukaryotes compared to cyanobacteria as the orthologous cyanobacterial GUN4 proteins lack this C-terminal extension.
Collapse
Affiliation(s)
- Shuaixiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
108
|
Yoo KS, Ok SH, Jeong BC, Jung KW, Cui MH, Hyoung S, Lee MR, Song HK, Shin JS. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. THE PLANT CELL 2011; 23:3577-94. [PMID: 22021414 PMCID: PMC3229136 DOI: 10.1105/tpc.111.089847] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/30/2011] [Accepted: 10/03/2011] [Indexed: 05/20/2023]
Abstract
Plant thioredoxins (Trxs) participate in two redox systems found in different cellular compartments: the NADP-Trx system (NTS) in the cytosol and mitochondria and the ferredoxin-Trx system (FTS) in the chloroplast, where they function as redox regulators by regulating the activity of various target enzymes. The identities of the master regulators that maintain cellular homeostasis and modulate timed development through redox regulating systems have remained completely unknown. Here, we show that proteins consisting of a single cystathionine β-synthase (CBS) domain pair stabilize cellular redox homeostasis and modulate plant development via regulation of Trx systems by sensing changes in adenosine-containing ligands. We identified two CBS domain-containing proteins in Arabidopsis thaliana, CBSX1 and CBSX2, which are localized to the chloroplast, where they activate all four Trxs in the FTS. CBSX3 was found to regulate mitochondrial Trx members in the NTS. CBSX1 directly regulates Trxs and thereby controls H(2)O(2) levels and regulates lignin polymerization in the anther endothecium. It also affects plant growth by regulating photosynthesis-related [corrected] enzymes, such as malate dehydrogenase, via homeostatic regulation of Trxs. Based on our findings, we suggest that the CBSX proteins (or a CBS pair) are ubiquitous redox regulators that regulate Trxs in the FTS and NTS to modulate development and maintain homeostasis under conditions that are threatening to the cell.
Collapse
Affiliation(s)
- Kyoung Shin Yoo
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|