101
|
Koda S, Onda Y, Matsui H, Takahagi K, Uehara-Yamaguchi Y, Shimizu M, Inoue K, Yoshida T, Sakurai T, Honda H, Eguchi S, Nishii R, Mochida K. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2017; 8:2055. [PMID: 29234348 PMCID: PMC5712366 DOI: 10.3389/fpls.2017.02055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/16/2017] [Indexed: 05/08/2023]
Abstract
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Collapse
Affiliation(s)
- Satoru Koda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | | | - Kotaro Takahagi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yukiko Uehara-Yamaguchi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Minami Shimizu
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | - Hiroshi Honda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Shinto Eguchi
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Ryuei Nishii
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| |
Collapse
|
102
|
Brunner AM, Varkonyi-Gasic E, Jones RC. Phase Change and Phenology in Trees. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
103
|
Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 2016; 49:162-168. [PMID: 27918538 DOI: 10.1038/ng.3733] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Plants evolved so that their flowering is triggered by seasonal changes in day length. However, day-length sensitivity in crops limits their geographical range of cultivation, and thus modification of the photoperiod response was critical for their domestication. Here we show that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G). SP5G expression is induced to high levels during long days in wild species, but not in cultivated tomato because of cis-regulatory variation. CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering and enhance the compact determinate growth habit of field tomatoes, resulting in a quick burst of flower production that translates to an early yield. Our findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America, and they provide a compelling demonstration of the power of gene editing to rapidly improve yield traits in crop breeding.
Collapse
|
104
|
Jung JH, Lee HJ, Ryu JY, Park CM. SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. MOLECULAR PLANT 2016; 9:1647-1659. [PMID: 27815142 DOI: 10.1016/j.molp.2016.10.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/12/2016] [Accepted: 10/26/2016] [Indexed: 05/07/2023]
Abstract
Environmental sensitivity varies across developmental phases in flowering plants. In the juvenile phase, microRNA156 (miR156)-mediated repression of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factors renders Arabidopsis plants incompetent to floral inductive signals, including long-day (LD) photoperiod. During the vegetative phase transition, which accompanies a reduction of miR156 and a concomitant elevation of its targets, plants acquire reproductive competence such that LD signals promote flowering. However, it remains largely unknown how developmental signals are associated with photoperiodic flowering. Here, we show that SPL3, SPL4, and SPL5 (SPL3/4/5) potentiate the FLOWERING LOCUS T (FT)-FD module in photoperiodic flowering. SPL3/4/5 function as transcriptional activators through the interaction with FD, a basic leucine zipper transcription factor which plays a critical role in photoperiodic flowering. SPL3/4/5 can directly bind to the promoters of APETALA1, LEAFY, and FRUITFULL, thus mediating their activation by the FT-FD complex. Our findings demonstrate that SPL3/4/5 act synergistically with the FT-FD module to induce flowering under LDs, providing a long-sought molecular knob that links developmental aging and photoperiodic flowering.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Jae Yong Ryu
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
105
|
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6309-6322. [PMID: 27733440 PMCID: PMC5181575 DOI: 10.1093/jxb/erw384] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regulation of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS (CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that allows plants to co-ordinate the onset of the reproductive phase according to the available water resources.
Collapse
Affiliation(s)
- Matteo Riboni
- Department of BioSciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Alice Robustelli Test
- Department of BioSciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Massimo Galbiati
- Department of BioSciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Chiara Tonelli
- Department of BioSciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lucio Conti
- Department of BioSciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
106
|
Poyatos-Pertíñez S, Quinet M, Ortíz-Atienza A, Yuste-Lisbona FJ, Pons C, Giménez E, Angosto T, Granell A, Capel J, Lozano R. A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant unfinished flower development ( ufd). FRONTIERS IN PLANT SCIENCE 2016; 7:1648. [PMID: 27872633 PMCID: PMC5098122 DOI: 10.3389/fpls.2016.01648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/19/2016] [Indexed: 05/29/2023]
Abstract
Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development (ufd). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.
Collapse
Affiliation(s)
- Sandra Poyatos-Pertíñez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Muriel Quinet
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | | | - Clara Pons
- Laboratorio de Genómica de Plantas y Biotecnología, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Antonio Granell
- Laboratorio de Genómica de Plantas y Biotecnología, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| |
Collapse
|
107
|
Devic M, Roscoe T. Seed maturation: Simplification of control networks in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:335-346. [PMID: 27717470 DOI: 10.1016/j.plantsci.2016.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/05/2016] [Accepted: 08/21/2016] [Indexed: 05/09/2023]
Abstract
Networks controlling developmental or metabolic processes in plants are often complex as a consequence of the duplication and specialisation of the regulatory genes as well as the numerous levels of transcriptional and post-transcriptional controls added during evolution. Networks serve to accommodate multicellular complexity and increase robustness to environmental changes. Mathematical simplification by regrouping genes or pathways in a limited number of hubs has facilitated the construction of models for complex traits. In a complementary approach, a biological simplification can be achieved by using genetic modification to understand the core and singular ancestral function of the network, which is likely to be more prevalent within the plant kingdom rather than specific to a species. With this viewpoint, we review examples of simplification successfully undertaken in yeast and other organisms. A strategy of progressive complementation of single, double and triple mutants of seed maturation confirmed the fundamental role of the AFL sub-family of B3 transcription factors as master regulators of seed maturation, illustrating that biological simplification of complex networks could be more widely applied in plants. Defining minimal control networks will facilitate evolutionary comparisons of regulatory processes and the identification of an essential gene set for synthetic biology.
Collapse
Affiliation(s)
- Martine Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 3500 CNRS-IRD UMR DIADE, Centre IRD de Montpellier, 911 avenue Agropolis BP64501, 34394, Montpellier, France.
| | - Thomas Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 3500 CNRS-IRD UMR DIADE, Centre IRD de Montpellier, 911 avenue Agropolis BP64501, 34394, Montpellier, France
| |
Collapse
|
108
|
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JCW, Schäfer E, Jaeger KE, Wigge PA. Phytochromes function as thermosensors in Arabidopsis. Science 2016; 354:886-889. [PMID: 27789797 DOI: 10.1126/science.aaf6005] [Citation(s) in RCA: 588] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/31/2016] [Indexed: 11/02/2022]
Abstract
Plants are responsive to temperature, and some species can distinguish differences of 1°C. In Arabidopsis, warmer temperature accelerates flowering and increases elongation growth (thermomorphogenesis). However, the mechanisms of temperature perception are largely unknown. We describe a major thermosensory role for the phytochromes (red light receptors) during the night. Phytochrome null plants display a constitutive warm-temperature response, and consistent with this, we show in this background that the warm-temperature transcriptome becomes derepressed at low temperatures. We found that phytochrome B (phyB) directly associates with the promoters of key target genes in a temperature-dependent manner. The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes to function as thermal timers that integrate temperature information over the course of the night.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Mirela Domijan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Cornelia Klose
- Institut für Biologie II, University of Freiburg, D-79104 Freiburg, Germany
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Mingjun Gao
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Asif Khan Khattak
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Mathew S Box
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Manoj Kumar
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Alastair Grant
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.,Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Eberhard Schäfer
- Institut für Biologie II, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK. .,Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
109
|
Abstract
One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
110
|
Muhammad D, Schmittling S, Williams C, Long TA. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:64-74. [PMID: 27485161 DOI: 10.1016/j.bbagrm.2016.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
Abstract
Uncovering and mathematically modeling Transcription Factor Networks (TFNs) are the first steps in engineering plants with traits that are better equipped to respond to changing environments. Although several plant TFNs are well known, the framework for systematically modeling complex characteristics such as switch-like behavior, oscillations, and homeostasis that emerge from them remain elusive. This review highlights literature that provides, in part, experimental and computational techniques for characterizing TFNs. This review also outlines methodologies that have been used to mathematically model the dynamic characteristics of TFNs. We present several examples of TFNs in plants that are involved in developmental and stress response. In several cases, advanced algorithms capture or quantify emergent properties that serve as the basis for robustness and adaptability in plant responses. Increasing the use of mathematical approaches will shed new light on these regulatory properties that control plant growth and development, leading to mathematical models that predict plant behavior. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Selene Schmittling
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Cranos Williams
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Terri A Long
- Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
111
|
Margaritopoulou T, Kryovrysanaki N, Megkoula P, Prassinos C, Samakovli D, Milioni D, Hatzopoulos P. HSP90 canonical content organizes a molecular scaffold mechanism to progress flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:174-87. [PMID: 27121421 DOI: 10.1111/tpj.13191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/28/2023]
Abstract
Highly interactive signaling processes constitute a set of parameters intertwining in a continuum mode to shape body formation and development. A sophisticated gene network is required to integrate environmental and endogenous cues in order to modulate flowering. However, the molecular mechanisms that coordinate the circuitries of flowering genes remain unclear. Here using complemented experimental approaches, we uncover the decisive and essential role of HEAT SHOCK PROTEIN 90 (HSP90) in restraining developmental noise to an acceptable limit. Localized depletion of HSP90 mRNAs in the shoot apex resulted in low penetrance of vegetative-to-reproductive phase transition and completely abolished flower formation. Extreme variation in expression of flowering genes was also observed in HSP90 mRNA-depleted transformed plants. Transient heat-shock treatments moderately increased HSP90 mRNA levels and rescued flower arrest. The offspring had a low, nevertheless noticeable failure to promote transition from vegetative into the reproductive phase and showed flower morphological heterogeneity. In floral tissues a moderate variation in HSP90 transcript levels and in the expression of flowering genes was detected. Key flowering proteins comprised clientele of the molecular chaperone demonstrating that the HSP90 is essential during vegetative-to-reproductive phase transition and flower development. Our results uncover that HSP90 consolidates a molecular scaffold able to arrange and organize flowering gene network and protein circuitry, and effectively counterbalance the extent to which developmental noise perturbs phenotypic traits.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Nikoleta Kryovrysanaki
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Panagiota Megkoula
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Constantinos Prassinos
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Despoina Samakovli
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Dimitra Milioni
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| |
Collapse
|
112
|
Bouché F, D’Aloia M, Tocquin P, Lobet G, Detry N, Périlleux C. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana. Sci Rep 2016; 6:29042. [PMID: 27352932 PMCID: PMC4926122 DOI: 10.1038/srep29042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/10/2016] [Indexed: 11/21/2022] Open
Abstract
Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot.
Collapse
Affiliation(s)
- Frédéric Bouché
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1 Sart Tilman Campus, Chemin de la Vallée no. 4, B-4000 Liège, Belgium
| | - Maria D’Aloia
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1 Sart Tilman Campus, Chemin de la Vallée no. 4, B-4000 Liège, Belgium
| | - Pierre Tocquin
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1 Sart Tilman Campus, Chemin de la Vallée no. 4, B-4000 Liège, Belgium
| | - Guillaume Lobet
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1 Sart Tilman Campus, Chemin de la Vallée no. 4, B-4000 Liège, Belgium
| | - Nathalie Detry
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1 Sart Tilman Campus, Chemin de la Vallée no. 4, B-4000 Liège, Belgium
| | - Claire Périlleux
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Quartier Vallée 1 Sart Tilman Campus, Chemin de la Vallée no. 4, B-4000 Liège, Belgium
| |
Collapse
|
113
|
Satake A, Seki M, Iima M, Teramoto T, Nishiura Y. Florigen distribution determined by a source-sink balance explains the diversity of inflorescence structures in Arabidopsis. J Theor Biol 2016; 395:227-237. [PMID: 26845309 DOI: 10.1016/j.jtbi.2016.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Abstract
The ability to continue flowering after loss of inductive environmental cues that trigger flowering is termed floral commitment. Reversible transition involving a switch from floral development back to vegetative development has been found in Arabidopsis mutants and many plant species. Although the molecular basis for floral commitment remains unclear, recent studies suggest that the persistent activity of FLOWERING LOCUS T (FT) at inflorescences is required for floral commitment in Arabidopsis thaliana. Because FT encodes a mobile signal, florigen, which is generally transported from leaves to meristems through the phloem, understanding the transportation dynamics of FT is required to explore the role of FT on floral commitment. Here we developed a transportation model of leaf- and inflorescence-derived florigen and sucrose based on pressure-flow hypothesis. Depending on the demanded level of florigen supply for floral commitment of each floral meristem, the model predicted the change in inflorescence pattern from stable commitment to flower, transient flowering, and complete reversion. FT activity in inflorescence partly suppressed floral reversion, but complete suppression was achieved only when inflorescence became a source of sucrose. This finding highlights the importance of monitoring the spatio-temporal sucrose distribution and floral stimulus to understand inflorescence development mechanism.
Collapse
Affiliation(s)
- Akiko Satake
- Departmnet of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Motohide Seki
- Departmnet of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Iima
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Takashi Teramoto
- School of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Yasumasa Nishiura
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
114
|
Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER. Dynamic network modelling to understand flowering transition and floral patterning. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2565-72. [PMID: 27025221 DOI: 10.1093/jxb/erw123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Differentiation and morphogenetic processes during plant development are particularly robust. At the cellular level, however, plants also show great plasticity in response to environmental conditions, and can even reverse apparently terminal differentiated states with remarkable ease. Can we understand and predict both robust and plastic systemic responses as a general consequence of the non-trivial interplay between intracellular regulatory networks, extrinsic environmental signalling, and tissue-level mechanical constraints? Flower development has become an ideal model system to study these general questions of developmental biology, which are especially relevant to understanding stem cell patterning in plants, animals, and human disease. Decades of detailed study of molecular developmental genetics, as well as novel experimental techniques for in vivo assays in both wild-type and mutant plants, enable the postulation and testing of experimentally grounded mathematical and computational network dynamical models. Research in our group aims to explain the emergence of robust transitions that occur at the shoot apical meristem, as well as flower development, as the result of the collective action of key molecular components in regulatory networks subjected to intra-organismal signalling and extracellular constraints. Here we present a brief overview of recent work from our group, and that of others, focusing on the use of simple dynamical models to address cell-fate specification and cell-state stochastic dynamics during flowering transition and cell-state transitions at the shoot apical meristem of Arabidopsis thaliana. We also focus on how our work fits within the general field of plant developmental modelling, which is being developed by many others.
Collapse
Affiliation(s)
- J Davila-Velderrain
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Cd Universitaria, México, DF 04510, México
| | - J C Martinez-Garcia
- Departamento de Control Autómatico, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, AP 14-740, 07300 México, DF, México
| | - E R Alvarez-Buylla
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Cd Universitaria, México, DF 04510, México Instituto de Ecología, Universidad Nacional Autónoma de México, Cd Universitaria, México, DF 04510, México
| |
Collapse
|
115
|
Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P. 50 years of Arabidopsis research: highlights and future directions. THE NEW PHYTOLOGIST 2016; 209:921-44. [PMID: 26465351 DOI: 10.1111/nph.13687] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 05/14/2023]
Abstract
922 I. 922 II. 922 III. 925 IV. 925 V. 926 VI. 927 VII. 928 VIII. 929 IX. 930 X. 931 XI. 932 XII. 933 XIII. Natural variation and genome-wide association studies 934 XIV. 934 XV. 935 XVI. 936 XVII. 937 937 References 937 SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. We present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlighting some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Colot
- Departement de Biologie École Normale Supérieure, Biologie Moleculaire des Organismes Photosynthetiques, F-75230, Paris, France
| | - Sean Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Jeff Dangl
- Department of Biology and Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Joanna D Friesner
- Department of Plant Biology, Agricultural Sustainability Institute, University of California, Davis, CA, 95616, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Erich Grotewold
- Center for Applied Plant Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Elliot Meyerowitz
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jennifer Nemhauser
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, A-1030, Vienna, Austria
| | - Craig Pikaard
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chris Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA, 94704, USA
| | - Mark Stitt
- Metabolic Networks Department, Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jamie Waese
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter McCourt
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
116
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|
117
|
Li X, Gao S, Tang Y, Li L, Zhang F, Feng B, Fang Z, Ma L, Zhao C. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics 2015; 16:976. [PMID: 26581444 PMCID: PMC4652339 DOI: 10.1186/s12864-015-2196-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among the largest and most diverse transcription factor families in plants, basic leucine zipper (bZIP) family participate in regulating various processes, including floral induction and development, stress and hormone signaling, photomorphogenesis, seed maturation and germination, and pathogen defense. Although common wheat (Triticum aestivum L.) is one of the most widely cultivated and consumed food crops in the world, there is no comprehensive analysis of bZIPs in wheat, especially those involved in anther development. Previous studies have demonstrated wheat, T. urartu, Ae. tauschii, barley and Brachypodium are evolutionarily close in Gramineae family, however, the real evolutionary relationship still remains mysterious. RESULTS In this study, 187 bZIP family genes were comprehensively identified from current wheat genome. 98, 96 and 107 members of bZIP family were also identified from the genomes of T.urartu, Ae.tauschii and barley, respectively. Orthology analyses suggested 69.4 % of TubZIPs were orthologous to 68.8 % of AetbZIPs and wheat had many more in-paralogs in the bZIP family than its relatives. It was deduced wheat had a closer phylogenetic relationship with barley and Brachypodium than T.urartu and Ae.tauschii. bZIP proteins in wheat, T.urartu and Ae.tauschii were divided into 14 subgroups based on phylogenetic analyses. Using Affymetrix microarray data, 48 differentially expressed TabZIP genes were identified to be related to anther development from comparison between the male sterility line and the restorer line. Genes with close evolutionary relationship tended to share similar gene structures. 15 of 23 selected TabZIP genes contained LTR elements in their promoter regions. Expression of 21 among these 23 TabZIP genes were obviously responsive to low temperature. These 23 TabZIP genes all exhibited distinct tissue-specific expression pattern. Among them, 11 TabZIP genes were predominantly expressed in anther and most of them showed over-dominance expression mode in the cross combination TY806 × BS366. CONCLUSIONS The genome-wide identification provided an overall insight of bZIP gene family in wheat and its relatives. The evolutionary relationship of wheat and its relatives was proposed based on orthology analyses. Microarray and expression analyses suggested the potential involvement of bZIP genes in anther development and facilitated selection of anther development related gene for further functional characterization.
Collapse
Affiliation(s)
- Xueyin Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yimiao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fengjie Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Biane Feng
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Zhaofeng Fang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Changping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
118
|
Rinne PLH, Paul LK, Vahala J, Ruonala R, Kangasjärvi J, van der Schoot C. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6745-60. [PMID: 26248666 PMCID: PMC4623686 DOI: 10.1093/jxb/erv380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance prevents outgrowth of branches. Development ceased when AXBs had formed an embryonic shoot (ES) with a predictable number of embryonic leaves at the bud maturation point (BMP). Under short days, terminal buds (TBs) formed an ES similar to that of AXBs, and both the TB and young AXBs above the BMP established dormancy. Quantitative PCR and in situ hybridizations showed that this shared ability and structural similarity was reflected at the molecular level. TBs and AXBs similarly regulated expression of meristem-specific and bud/branching-related genes, including CENTRORADIALIS-LIKE1 (CENL1), BRANCHED1 (BRC1), BRC2, and the strigolactone biosynthesis gene MORE AXILLARY BRANCHES1 (MAX1). Below the BMP, AXBs maintained high CENL1 expression at the rib meristem, suggesting that it serves to maintain poise for growth. In support of this, decapitation initiated outgrowth of CENL1-expressing AXBs, but not of dormant AXBs that had switched CENL1 off. This singles out CENL1 as a rib meristem marker for para-dormancy. BRC1 and MAX1 genes, which may counterbalance CENL1, were down-regulated in decapitation-activated AXBs. The results showed that removal of apical dominance shifted AXB gene expression toward that of apices, while developing TBs adopted the expression pattern of para-dormant AXBs. Bud development thus follows a shared developmental pattern at terminal and axillary positions, despite being triggered by short days and apical dominance, respectively.
Collapse
Affiliation(s)
- Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Laju K Paul
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Jorma Vahala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raili Ruonala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
119
|
Andrés F, Romera-Branchat M, Martínez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmüller J, Nürnberg P, Coupland G. Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE. PLANT PHYSIOLOGY 2015; 169:2187-99. [PMID: 26417007 PMCID: PMC4634070 DOI: 10.1104/pp.15.00960] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 05/05/2023]
Abstract
Flowers form on the flanks of the shoot apical meristem (SAM) in response to environmental and endogenous cues. In Arabidopsis (Arabidopsis thaliana), the photoperiodic pathway acts through FLOWERING LOCUS T (FT) to promote floral induction in response to day length. A complex between FT and the basic leucine-zipper transcription factor FD is proposed to form in the SAM, leading to activation of APETALA1 and LEAFY and thereby promoting floral meristem identity. We identified mutations that suppress FT function and recovered a new allele of the homeodomain transcription factor PENNYWISE (PNY). Genetic and molecular analyses showed that ectopic expression of BLADE-ON-PETIOLE1 (BOP1) and BOP2, which encode transcriptional coactivators, in the SAM during vegetative development, confers the late flowering of pny mutants. In wild-type plants, BOP1 and BOP2 are expressed in lateral organs close to boundaries of the SAM, whereas in pny mutants, their expression occurs in the SAM. This ectopic expression lowers FD mRNA levels, reducing responsiveness to FT and impairing activation of APETALA1 and LEAFY. We show that PNY binds to the promoters of BOP1 and BOP2, repressing their transcription. These results demonstrate a direct role for PNY in defining the spatial expression patterns of boundary genes and the significance of this process for floral induction by FT.
Collapse
Affiliation(s)
- Fernando Andrés
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Maida Romera-Branchat
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Rafael Martínez-Gallegos
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Vipul Patel
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (F.A., M.R.-B., R.M.-G., V.P., K.S., S.J., G.C.); andCologne Center for Genomics (J.A., P.N.), Institute of Human Genetics (J.A.), Center for Molecular Medicine Cologne (P.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (P.N.), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
120
|
Lavedrine C, Farcot E, Vernoux T. Modeling plant development: from signals to gene networks. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:148-153. [PMID: 26247125 DOI: 10.1016/j.pbi.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
Mathematical modeling has become a common tool in plant developmental biology. Indeed, it allows for the prediction of complex and often unintuitive dynamics of the molecular networks driving plant development. This has enabled the test of their possible involvement in robust and specific developmental processes. Modeling has also been fruitful in predicting new interactions within gene networks, such as the Arabidopsis circadian clock. A new challenge is to integrate patterning issues with tissue growth and biomechanics. The development of new tools to gain resolution in data collection as well as new frameworks to confront models and data might provide even more robust predictions.
Collapse
Affiliation(s)
- Cyril Lavedrine
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Etienne Farcot
- School of Mathematical Sciences & Centre for Plant Integrative Biology, University of Nottingham, NG7 2RD, United Kingdom.
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
121
|
Winter CM, Yamaguchi N, Wu MF, Wagner D. Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation. PHYSIOLOGIA PLANTARUM 2015; 155:55-73. [PMID: 26096587 PMCID: PMC5757833 DOI: 10.1111/ppl.12357] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/09/2015] [Indexed: 05/24/2023]
Abstract
Two key regulators of the switch to flower formation and of flower patterning in Arabidopsis are the plant-specific helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1). The interactions between these two transcriptional regulators are complex. AP1 is both a direct target of LFY and can act in parallel with LFY. Available genetic and molecular evidence suggests that LFY and AP1 together orchestrate the switch to flower formation and early events during flower morphogenesis by altering transcriptional programs. However, very little is known about target genes regulated by both transcription factors. Here, we performed a meta-analysis of public datasets to identify genes that are likely to be regulated by both LFY and AP1. Our analyses uncovered known and novel direct LFY and AP1 targets with a role in the control of onset of flower formation. It also identified additional families of proteins and regulatory pathways that may be under transcriptional control by both transcription factors. In particular, several of these genes are linked to response to hormones, to transport and to development. Finally, we show that the gibberellin catabolism enzyme ELA1, which was recently shown to be important for the timing of the switch to flower formation, is positively feedback-regulated by AP1. Our study contributes to the elucidation of the regulatory network that leads to formation of a vital plant organ system, the flower.
Collapse
Affiliation(s)
- Cara M. Winter
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
122
|
Jang S, Choi SC, Li HY, An G, Schmelzer E. Functional Characterization of Phalaenopsis aphrodite Flowering Genes PaFT1 and PaFD. PLoS One 2015; 10:e0134987. [PMID: 26317412 PMCID: PMC4552788 DOI: 10.1371/journal.pone.0134987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/15/2015] [Indexed: 11/25/2022] Open
Abstract
We show that the key flowering regulators encoded by Phalaenopsis aphrodite FLOWERING LOCUS T1 (PaFT1) and PaFD share high sequence homologies to these from long-day flowering Arabidopsis and short-day flowering rice. Interestingly, PaFT1 is specifically up-regulated during flowering inductive cooling treatment but is not subjected to control by photoperiod in P. aphrodite. Phloem or shoot apex-specific expression of PaFT1 restores the late flowering of Arabidopsis ft mutants. Moreover, PaFT1 can suppress the delayed flowering caused by SHORT VEGATATIVE PHASE (SVP) overexpression as well as an active FRIGIDA (FRI) allele, indicating the functional conservation of flowering regulatory circuit in different plant species. PaFT1 promoter:GUS in Arabidopsis showed similar staining pattern to that of Arabidopsis FT in the leaves and guard cells but different in the shoot apex. A genomic clone or heat shock-inducible expression of PaFT1 is sufficient to the partial complementation of the ft mutants. Remarkably, ectopic PaFT1 expression also triggers precocious heading in rice. To further demonstrate the functional conservation of the flowering regulators, we show that PaFD, a bZIP transcription factor involved in flowering promotion, interacts with PaFT1, and PaFD partially complemented Arabidopsis fd mutants. Transgenic rice expressing PaFD also flowered early with increased expression of rice homologues of APETALA1 (AP1). Consistently, PaFT1 knock-down Phalaenopsis plants generated by virus-induced gene silencing exhibit delayed spiking. These studies suggest functional conservation of FT and FD genes, which may have evolved and integrated into distinct regulatory circuits in monopodial orchids, Arabidopsis and rice that promote flowering under their own inductive conditions.
Collapse
Affiliation(s)
- Seonghoe Jang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County, 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- * E-mail:
| | - Sang-Chul Choi
- Crop Biotechnology Center, Kyunghee University, Yongin, 446–701, Korea
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County, 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Gynheung An
- Crop Biotechnology Center, Kyunghee University, Yongin, 446–701, Korea
| | - Elmon Schmelzer
- Max-Planck-Institute for Plant breeding research, Cologne, 50829, Germany
| |
Collapse
|
123
|
Higuchi Y, Hisamatsu T. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:1-7. [PMID: 26089146 DOI: 10.1016/j.plantsci.2015.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/04/2015] [Accepted: 04/18/2015] [Indexed: 05/21/2023]
Abstract
Chrysanthemums require repeated cycles of short-day (SD) photoperiod for successful anthesis, but their vegetative state is strictly maintained under long-day (LD) or night-break (NB) conditions. We have previously demonstrated that photoperiodic flowering of a wild diploid chrysanthemum (Chrysanthemum seticuspe f. boreale) is controlled by a pair of systemic floral regulators, florigen (CsFTL3) and anti-florigen (CsAFT), produced in the leaves. Here, we report the functional characterisation of a local floral regulator, CsTFL1, a chrysanthemum orthologue of TERMINAL FLOWER 1 gene in Arabidopsis. Constitutive expression of CsTFL1 in C. seticuspe (CsTFL1-ox) resulted in extremely late flowering under SD and prevented up-regulation of floral meristem identity genes in shoot tips and leaves. Bimolecular fluorescence complementation assay showed that both CsTFL1 and CsFTL3 interacted with CsFDL1, a bZIP transcription factor FD homologue, in the nucleus. The transient gene expression assay indicated that CsTFL1 suppresses flowering by directly antagonising the flower inductive activity of the CsFTL3-CsFDL1 complex. Our results suggest that strict maintenance of vegetative state under non-inductive photoperiod is achieved by the coordinated action of both the systemic floral inhibitor and local floral inhibitor CsTFL1, which is constitutively expressed in shoot tips.
Collapse
Affiliation(s)
- Yohei Higuchi
- NARO Institute of Floricultural Science (NIFS), National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | - Tamotsu Hisamatsu
- NARO Institute of Floricultural Science (NIFS), National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan.
| |
Collapse
|
124
|
Baumann K, Venail J, Berbel A, Domenech MJ, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D. Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4769-80. [PMID: 26019254 PMCID: PMC4507777 DOI: 10.1093/jxb/erv247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Models for the control of above-ground plant architectures show how meristems can be programmed to be either shoots or flowers. Molecular, genetic, transgenic, and mathematical studies have greatly refined these models, suggesting that the phase of the shoot reflects different genes contributing to its repression of flowering, its vegetativeness ('veg'), before activators promote flower development. Key elements of how the repressor of flowering and shoot meristem gene TFL1 acts have now been tested, by changing its spatiotemporal pattern. It is shown that TFL1 can act outside of its normal expression domain in leaf primordia or floral meristems to repress flower identity. These data show how the timing and spatial pattern of TFL1 expression affect overall plant architecture. This reveals that the underlying pattern of TFL1 interactors is complex and that they may be spatially more widespread than TFL1 itself, which is confined to shoots. However, the data show that while TFL1 and floral genes can both act and compete in the same meristem, it appears that the main shoot meristem is more sensitive to TFL1 rather than floral genes. This spatial analysis therefore reveals how a difference in response helps maintain the 'veg' state of the shoot meristem.
Collapse
Affiliation(s)
- Kim Baumann
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | | | - Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superiorde Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia 46022, Spain
| | - Maria Jose Domenech
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superiorde Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia 46022, Spain
| | - Tracy Money
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Lucio Conti
- John Innes Centre, Colney, Norwich NR4 7UH, UK Dipartimento di Bioscienze, Universita degli studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Yoshie Hanzawa
- John Innes Centre, Colney, Norwich NR4 7UH, UK Department of Crop Sciences and Institute for Genomic Biology, Affiliate in Department of Plant Biology, University of Illinois at Urbana-Champaign, 259 Edward R Madigan Lab, MC-051. 1201W Gregory Drive, Urbana, IL 61801, USA
| | - Francisco Madueno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superiorde Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia 46022, Spain
| | | |
Collapse
|
125
|
Pérez-Ruiz RV, García-Ponce B, Marsch-Martínez N, Ugartechea-Chirino Y, Villajuana-Bonequi M, de Folter S, Azpeitia E, Dávila-Velderrain J, Cruz-Sánchez D, Garay-Arroyo A, Sánchez MDLP, Estévez-Palmas JM, Álvarez-Buylla ER. XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions. MOLECULAR PLANT 2015; 8:796-813. [PMID: 25636918 DOI: 10.1016/j.molp.2015.01.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 05/21/2023]
Abstract
In Arabidopsis thaliana, multiple genes involved in shoot apical meristem (SAM) transitions have been characterized, but the mechanisms required for the dynamic attainment of vegetative, inflorescence, and floral meristem (VM, IM, FM) cell fates during SAM transitions are not well understood. Here we show that a MADS-box gene, XAANTAL2 (XAL2/AGL14), is necessary and sufficient to induce flowering, and its regulation is important in FM maintenance and determinacy. xal2 mutants are late flowering, particularly under short-day (SD) condition, while XAL2 overexpressing plants are early flowering, but their flowers have vegetative traits. Interestingly, inflorescences of the latter plants have higher expression levels of LFY, AP1, and TFL1 than wild-type plants. In addition we found that XAL2 is able to bind the TFL1 regulatory regions. On the other hand, the basipetal carpels of the 35S::XAL2 lines lose determinacy and maintain high levels of WUS expression under SD condition. To provide a mechanistic explanation for the complex roles of XAL2 in SAM transitions and the apparently paradoxical phenotypes of XAL2 and other MADS-box (SOC1, AGL24) overexpressors, we conducted dynamic gene regulatory network (GRN) and epigenetic landscape modeling. We uncovered a GRN module that underlies VM, IM, and FM gene configurations and transition patterns in wild-type plants as well as loss and gain of function lines characterized here and previously. Our approach thus provides a novel mechanistic framework for understanding the complex basis of SAM development.
Collapse
Affiliation(s)
- Rigoberto V Pérez-Ruiz
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Berenice García-Ponce
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico.
| | - Nayelli Marsch-Martínez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Yamel Ugartechea-Chirino
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Mitzi Villajuana-Bonequi
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Carretera Irapuato - León, AP 629, 36821 Irapuato, Guanajuato, Mexico
| | - Eugenio Azpeitia
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - José Dávila-Velderrain
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - David Cruz-Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - María de la Paz Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Juan M Estévez-Palmas
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/no, Junto al Jardín Botánico, and Centro de Ciencias de la Complejidad Ciudad Universitaria, Coyoacán 04510, México D.F., Mexico; University of California, 431 Koshland Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
126
|
Sussmilch FC, Berbel A, Hecht V, Vander Schoor JK, Ferrándiz C, Madueño F, Weller JL. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development. THE PLANT CELL 2015; 27:1046-60. [PMID: 25804541 PMCID: PMC4558695 DOI: 10.1105/tpc.115.136150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/10/2015] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Valérie Hecht
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
127
|
Wan H, Chang S, Hu JP, Tian YX, Tian XH. Molecular Dynamics Simulations of Ternary Complexes: Comparisons of LEAFY Protein Binding to Different DNA Motifs. J Chem Inf Model 2015; 55:784-94. [PMID: 25734970 DOI: 10.1021/ci500705j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LEAFY (LFY) is a plant-specific transcription factor, with a variety of roles in different species. LFY contains a conserved DNA-binding domain (DBD) that determines its DNA-binding specificity. Recently, the structures of the dimeric LFY-DBD bound to different DNA motifs were successively solved by X-ray crystallography. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of DNA-bound LFY protein from angiosperms and the moss Physcomitrella patens, respectively. The comparison of stabilities of the two systems is consistent with the experimental data of binding affinities. The calculation of hydrogen bonds showed that position 312 in LFY determines the difference of DNA-binding specificity. By using principal component analysis (PCA) and free energy landscape (FEL) methods, the open-close conformational change of the dimerization interface was found to be important for the system stability. At the dimerization interface, the protein-protein interaction has multiple influences on the cooperative DNA binding of LFY. The following analysis of DNA structural parameters further revealed that the protein-protein interaction contributes varying roles according to the specific DNA-binding efficiency. We propose that the protein-protein interaction serves a dual function as a connector between LFY monomers and a regulator of DNA-binding specificity. It will improve the robustness and adaptivity of the LFY-DNA ternary structure. This study provides some new insights into the understanding of the dynamics and interaction mechanism of dimeric LFY-DBD bound to DNA at the atomic level.
Collapse
Affiliation(s)
- Hua Wan
- †College of Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Shan Chang
- ‡Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jian-ping Hu
- §Faculty of Biotechnology Industry, Chengdu University, Chengdu 610106, China
| | - Yuan-xin Tian
- ∥School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xu-hong Tian
- †College of Informatics, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
128
|
Leal Valentim F, van Mourik S, Posé D, Kim MC, Schmid M, van Ham RCHJ, Busscher M, Sanchez-Perez GF, Molenaar J, Angenent GC, Immink RGH, van Dijk ADJ. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLoS One 2015; 10:e0116973. [PMID: 25719734 PMCID: PMC4342252 DOI: 10.1371/journal.pone.0116973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.
Collapse
Affiliation(s)
- Felipe Leal Valentim
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Simon van Mourik
- Biometris, Wageningen UR, Wageningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - David Posé
- Max Planck Institute for Developmental Biology, Molecular Biology, Tübingen, Germany
| | - Min C. Kim
- Max Planck Institute for Developmental Biology, Molecular Biology, Tübingen, Germany
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Molecular Biology, Tübingen, Germany
| | | | - Marco Busscher
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Gabino F. Sanchez-Perez
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Chair group Bioinformatics, Wageningen University, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Wageningen UR, Wageningen, The Netherlands
| | - Gerco C. Angenent
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Richard G. H. Immink
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Aalt D. J. van Dijk
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Biometris, Wageningen UR, Wageningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
129
|
Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways. Proc Natl Acad Sci U S A 2015; 112:3140-5. [PMID: 25713384 DOI: 10.1073/pnas.1423440112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A complex consisting of evolutionarily conserved FD, flowering locus T (FT) proteins is a regulator of floral transition. Intriguingly, FT orthologs are also implicated in developmental transitions distinct from flowering, such as photoperiodic control of bulbing in onions, potato tuberization, and growth cessation in trees. However, whether an FT-FD complex participates in these transitions and, if so, its mode of action, are unknown. We identified two closely related FD homologs, FD-like 1 (FDL1) and FD-like 2 (FDL2), in the model tree hybrid aspen. Using gain of function and RNAi-suppressed FDL1 and FDL2 transgenic plants, we show that FDL1 and FDL2 have distinct functions and a complex consisting of FT and FDL1 mediates in photoperiodic control of seasonal growth. The downstream target of the FT-FD complex in photoperiodic control of growth is Like AP1 (LAP1), a tree ortholog of the floral meristem identity gene APETALA1. Intriguingly, FDL1 also participates in the transcriptional control of adaptive response and bud maturation pathways, independent of its interaction with FT, presumably via interaction with abscisic acid insensitive 3 (ABI3) transcription factor, a component of abscisic acid (ABA) signaling. Our data reveal that in contrast to its primary role in flowering, FD has dual roles in the photoperiodic control of seasonal growth and stress tolerance in trees. Thus, the functions of FT and FD have diversified during evolution, and FD homologs have acquired roles that are independent of their interaction with FT.
Collapse
|
130
|
FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci U S A 2015; 112:E901-10. [PMID: 25675495 DOI: 10.1073/pnas.1417623112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Floral induction is a crucial developmental step in higher plants. Florigen, a mobile floral activator that is synthesized in the leaf and transported to the shoot apex, was recently identified as a protein encoded by FLOWERING LOCUS T (FT) and its orthologs; the rice florigen is Heading date 3a (Hd3a) protein. The 14-3-3 proteins mediate the interaction of Hd3a with the transcription factor OsFD1 to form a ternary structure called the florigen activation complex on the promoter of OsMADS15, a rice APETALA1 ortholog. However, crucial information, including the spatiotemporal overlap among FT-like proteins and the components of florigen activation complex and downstream genes, remains unclear. Here, we confirm that Hd3a coexists, in the same regions of the rice shoot apex, with the other components of the florigen activation complex and its transcriptional targets. Unexpectedly, however, RNA-sequencing analysis of shoot apex from wild-type and RNA-interference plants depleted of florigen activity revealed that 4,379 transposable elements (TEs; 58% of all classifiable rice TEs) were expressed collectively in the vegetative and reproductive shoot apex. Furthermore, in the reproductive shoot apex, 214 TEs were silenced by florigen. Our results suggest a link between floral induction and regulation of TEs.
Collapse
|
131
|
Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Sci Rep 2015; 5:8341. [PMID: 25661797 PMCID: PMC4321167 DOI: 10.1038/srep08341] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022] Open
Abstract
Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype.
Collapse
|
132
|
Golembeski GS, Imaizumi T. Photoperiodic Regulation of Florigen Function in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2015; 13:e0178. [PMID: 26157354 PMCID: PMC4489636 DOI: 10.1199/tab.0178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One mechanism through which flowering in response to seasonal change is brought about is by sensing the fluctuation in day-length; the photoperiod. Flowering induction occurs through the production of the florigenic protein FLOWERING LOCUS T (FT) and its movement from the phloem companion cells in the leaf vasculature into the shoot apex, where meristematic reprogramming occurs. FT activation in response to photoperiod condition is accomplished largely through the activity of the transcription factor CONSTANS (CO). Regulation of CO expression and protein stability, as well as the timing of other components via the circadian clock, is a critical mechanism by which plants are able to respond to photoperiod to initiate the floral transition. Modulation of FT expression in response to external and internal stimuli via components of the flowering network is crucial to mediate a fluid flowering response to a variety of environmental parameters. In addition, the regulated movement of FT protein from the phloem to the shoot apex, and interactions that determine floral meristem cell fate, constitute novel mechanisms through which photoperiodic information is translated into flowering time.
Collapse
Affiliation(s)
- Greg S. Golembeski
- University of Washington, Department of Biology, Seattle, WA, 98195-1800
| | - Takato Imaizumi
- University of Washington, Department of Biology, Seattle, WA, 98195-1800
- Address correspondence to
| |
Collapse
|
133
|
Blümel M, Dally N, Jung C. Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotechnol 2014; 32:121-129. [PMID: 25553537 DOI: 10.1016/j.copbio.2014.11.023] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/28/2014] [Indexed: 02/02/2023]
Abstract
The change from vegetative to reproductive growth is a key developmental switch in flowering plants. In agriculture, flowering is a prerequisite for crop production whenever seeds or fruits are harvested. An intricate network with various (epi-) genetic regulators responding to environmental and endogenous triggers controls the timely onset of flowering. Changes in the expression of a single flowering time (FTi) regulator can suffice to drastically alter FTi. FTi regulation is of utmost importance for genetic improvement of crops. We summarize recent discoveries on FTi regulators in crop species emphasizing crop-specific genes lacking homologs in Arabidopsis thaliana. We highlight pleiotropic effects on agronomically important characters, impact on adaptation to new geographical/climate conditions and future perspectives for crop improvement.
Collapse
Affiliation(s)
- Martina Blümel
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | - Nadine Dally
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany.
| |
Collapse
|
134
|
Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 2014; 46:1337-42. [PMID: 25362485 DOI: 10.1038/ng.3131] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022]
Abstract
Naturally occurring genetic variation in the universal florigen flowering pathway has produced major advancements in crop domestication. However, variants that can maximize crop yields may not exist in natural populations. Here we show that tomato productivity can be fine-tuned and optimized by exploiting combinations of selected mutations in multiple florigen pathway components. By screening for chemically induced mutations that suppress the bushy, determinate growth habit of field tomatoes, we isolated a new weak allele of the florigen gene SINGLE FLOWER TRUSS (SFT) and two mutations affecting a bZIP transcription factor component of the 'florigen activation complex' (ref. 11). By combining heterozygous mutations, we pinpointed an optimal balance of flowering signals, resulting in a new partially determinate architecture that translated to maximum yields. We propose that harnessing mutations in the florigen pathway to customize plant architecture and flower production offers a broad toolkit to boost crop productivity.
Collapse
Affiliation(s)
- Soon Ju Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Ke Jiang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Lior Tal
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Yichie
- Institute of Plant Sciences, Hebrew University of Jerusalem Faculty of Agriculture, Rehovot, Israel
| | - Oron Gar
- Institute of Plant Sciences, Hebrew University of Jerusalem Faculty of Agriculture, Rehovot, Israel
| | - Dani Zamir
- Institute of Plant Sciences, Hebrew University of Jerusalem Faculty of Agriculture, Rehovot, Israel
| | - Yuval Eshed
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
135
|
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. ANNALS OF BOTANY 2014; 114:1445-58. [PMID: 24651369 PMCID: PMC4204779 DOI: 10.1093/aob/mcu032] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/04/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to environmental cues. When plants are exposed to favourable conditions, the network activates expression of florigenic proteins that are transported to the shoot apical meristem where they drive developmental reprogramming of a population of meristematic cells. Several regulatory factors are evolutionarily conserved between rice and arabidopsis. However, other pathways have evolved independently and confer specific characteristics to flowering responses. SCOPE This review summarizes recent knowledge on the molecular mechanisms regulating daylength perception and flowering time control in arabidopsis and rice. Similarities and differences are discussed between the regulatory networks of the two species and they are compared with the regulatory networks of temperate cereals, which are evolutionarily more similar to rice but have evolved in regions where exposure to low temperatures is crucial to confer competence to flower. Finally, the role of flowering time genes in expansion of rice cultivation to Northern latitudes is discussed. CONCLUSIONS Understanding the mechanisms involved in photoperiodic flowering and comparing the regulatory networks of dicots and monocots has revealed how plants respond to environmental cues and adapt to seasonal changes. The molecular architecture of such regulation shows striking similarities across diverse species. However, integration of specific pathways on a basal scheme is essential for adaptation to different environments. Artificial manipulation of flowering time by means of natural genetic resources is essential for expanding the cultivation of cereals across different environments.
Collapse
Affiliation(s)
- Roshi Shrestha
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Jorge Gómez-Ariza
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Vittoria Brambilla
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
136
|
FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 2014; 4:2884. [PMID: 24300952 DOI: 10.1038/ncomms3884] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022] Open
Abstract
Onion (Allium cepa L.) is a biennial crop that in temperate regions is planted in the spring and, after a juvenile stage, forms a bulb in response to the lengthening photoperiod of late spring/summer. The bulb then overwinters and in the next season it flowers and sets seed. FLOWERING LOCUS T (FT) encodes a mobile signaling protein involved in regulating flowering, as well as other aspects of plant development. Here we show that in onions, different FT genes regulate flowering and bulb formation. Flowering is promoted by vernalization and correlates with the upregulation of AcFT2, whereas bulb formation is regulated by two antagonistic FT-like genes. AcFT1 promotes bulb formation, while AcFT4 prevents AcFT1 upregulation and inhibits bulbing in transgenic onions. Long-day photoperiods lead to the downregulation of AcFT4 and the upregulation of AcFT1, and this promotes bulbing. The observation that FT proteins can repress and promote different developmental transitions highlights the evolutionary versatility of FT.
Collapse
|
137
|
Romera-Branchat M, Andrés F, Coupland G. Flowering responses to seasonal cues: what's new? CURRENT OPINION IN PLANT BIOLOGY 2014; 21:120-127. [PMID: 25072635 DOI: 10.1016/j.pbi.2014.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 05/20/2023]
Abstract
Seasonal cues of day length or winter cold trigger flowering of many species. Forward and reverse genetic approaches are revealing the mechanisms by which these responses are conferred. Homologues of the Arabidopsis thaliana protein FLOWERING LOCUS T (FT) are widely used to mediate seasonal responses to day length and act as graft-transmissible promoters or repressors of flowering. Winter cold in A. thaliana promotes flowering by repressing transcription of the MADS box gene FLOWERING LOCUS C (FLC). The mechanism by which this occurs involves a complex interplay of different forms of long noncoding RNAs induced at the FLC locus during cold and changes in the chromatin of FLC. In perennial relatives of A. thaliana, flowering also requires the age-dependent downregulation of miRNA156 before winter.
Collapse
Affiliation(s)
| | - Fernando Andrés
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| |
Collapse
|
138
|
Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants. FRONTIERS IN PLANT SCIENCE 2014; 5:465. [PMID: 25278944 PMCID: PMC4165217 DOI: 10.3389/fpls.2014.00465] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/27/2014] [Indexed: 05/18/2023]
Abstract
Genetic studies in Arabidopsis established FLOWERING LOCUS T (FT) as a key flower-promoting gene in photoperiodic systems. Grafting experiments established unequivocal one-to-one relations between SINGLE FLOWER TRUSS (SFT), a tomato homolog of FT, and the hypothetical florigen, in all flowering plants. Additional studies of SFT and SELF PRUNING (SP, homolog of TFL1), two antagonistic genes regulating the architecture of the sympodial shoot system, have suggested that transition to flowering in the day-neutral and perennial tomato is synonymous with "termination." Dosage manipulation of its endogenous and mobile, graft-transmissible levels demonstrated that florigen regulates termination and transition to flowering in an SP-dependent manner and, by the same token, that high florigen levels induce growth arrest and termination in meristems across the tomato shoot system. It was thus proposed that growth balances, and consequently the patterning of the shoot systems in all plants, are mediated by endogenous, meristem-specific dynamic SFT/SP ratios and that shifts to termination by changing SFT/SP ratios are triggered by the imported florigen, the mobile form of SFT. Florigen is a universal plant growth hormone inherently checked by a complementary antagonistic systemic system. Thus, an examination of the endogenous functions of FT-like genes, or of the systemic roles of the mobile florigen in any plant species, that fails to pay careful attention to the balancing antagonistic systems, or to consider its functions in day-neutral or perennial plants, would be incomplete.
Collapse
Affiliation(s)
- Eliezer Lifschitz
- Department of Biology, Technion – Israel Institute of TechnologyHaifa, Israel
| | - Brian G. Ayre
- Department of Biological Sciences, University of North Texas, DentonTX, USA
| | - Yuval Eshed
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
139
|
Pajoro A, Biewers S, Dougali E, Leal Valentim F, Mendes MA, Porri A, Coupland G, Van de Peer Y, van Dijk ADJ, Colombo L, Davies B, Angenent GC. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4731-45. [PMID: 24913630 DOI: 10.1093/jxb/eru233] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Successful plant reproduction relies on the perfect orchestration of singular processes that culminate in the product of reproduction: the seed. The floral transition, floral organ development, and fertilization are well-studied processes and the genetic regulation of the various steps is being increasingly unveiled. Initially, based predominantly on genetic studies, the regulatory pathways were considered to be linear, but recent genome-wide analyses, using high-throughput technologies, have begun to reveal a different scenario. Complex gene regulatory networks underlie these processes, including transcription factors, microRNAs, movable factors, hormones, and chromatin-modifying proteins. Here we review recent progress in understanding the networks that control the major steps in plant reproduction, showing how new advances in experimental and computational technologies have been instrumental. As these recent discoveries were obtained using the model species Arabidopsis thaliana, we will restrict this review to regulatory networks in this important model species. However, more fragmentary information obtained from other species reveals that both the developmental processes and the underlying regulatory networks are largely conserved, making this review also of interest to those studying other plant species.
Collapse
Affiliation(s)
- Alice Pajoro
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Laboratory of Molecular Biology, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Biewers
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Evangelia Dougali
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Felipe Leal Valentim
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Aimone Porri
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Aalt D J van Dijk
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Biometris, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Brendan Davies
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gerco C Angenent
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Laboratory of Molecular Biology, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
140
|
Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, Tuskan GA, DiFazio SP. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet 2014; 46:1089-96. [DOI: 10.1038/ng.3075] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
|
141
|
van der Schoot C, Paul LK, Rinne PLH. The embryonic shoot: a lifeline through winter. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1699-712. [PMID: 24368502 DOI: 10.1093/jxb/ert413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tiny vascular axis of the embryo emerges post-embryonically as an elaborate and critical infrastructure, pervading the entire plant system. Its expansive nature is especially impressive in trees, where growth and development continue for extended periods. While the shoot apical meristem (SAM) orchestrates primary morphogenesis, the vascular system is mapped out in its wake in the provascular cylinder, situated just below the emerging leaf primordia and surrounding the rib meristem. Formation of leaf primordia and provascular tissues is incompatible with the harsh conditions of winter. Deciduous trees of boreal and temperate climates therefore enter a survival mode at the end of the season. However, to be competitive, they need to maximize their growth period while avoiding cellular frost damage. Trees achieve this by monitoring photoperiod, and by timely implementation of a survival strategy that schedules downstream events, including growth cessation, terminal bud formation, dormancy assumption, acquisition of freezing tolerance, and shedding of leaves. Of central importance are buds, which contain an embryonic shoot that allows shoot development and elongation in spring. The genetic and molecular processes that drive the cycle in synchrony with the seasons are largely elusive. Here, we review what is known about the signals and signal conduits that are involved, the processes that are initiated, and the developmental transitions that ensue in a terminal bud. We propose that addressing dormancy as a property of the SAM and the bud as a unique shoot type will facilitate our understanding of winter dormancy.
Collapse
Affiliation(s)
- Christiaan van der Schoot
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | | | | |
Collapse
|
142
|
Randoux M, Davière JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y, Perrotte J, Reynoird JP, Jammes MJ, Hibrand-Saint Oyant L, Foucher F. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. THE NEW PHYTOLOGIST 2014; 202:161-173. [PMID: 24308826 DOI: 10.1111/nph.12625] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/03/2013] [Indexed: 05/18/2023]
Abstract
FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose. We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering.
Collapse
Affiliation(s)
- Marie Randoux
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-OUEST, Université d'Angers), SFR 4207 QUASAV, 2 rue Le Nôtre, 49045, Angers, France
- Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), Université d'Angers, SFR 4207 QUASAV, PRES LUNAM, BP 60057, 49071, Beaucouzé Cedex, France
| | - Jean-Michel Davière
- Unité Propre de Recherche 2357, CNRS, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Julien Jeauffre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Tatiana Thouroude
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Sandrine Pierre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Youness Toualbia
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Justine Perrotte
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Jean-Paul Reynoird
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
- DNM Plant Breeding, Institut Polytechnique - LaSalle Beauvais, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Marie-José Jammes
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Laurence Hibrand-Saint Oyant
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Fabrice Foucher
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| |
Collapse
|
143
|
Périlleux C, Lobet G, Tocquin P. Inflorescence development in tomato: gene functions within a zigzag model. FRONTIERS IN PLANT SCIENCE 2014; 5:121. [PMID: 24744766 PMCID: PMC3978268 DOI: 10.3389/fpls.2014.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 05/21/2023]
Abstract
Tomato is a major crop plant and several mutants have been selected for breeding but also for isolating important genes that regulate flowering and sympodial growth. Besides, current research in developmental biology aims at revealing mechanisms that account for diversity in inflorescence architectures. We therefore found timely to review the current knowledge of the genetic control of flowering in tomato and to integrate the emerging network into modeling attempts. We developed a kinetic model of the tomato inflorescence development where each meristem was represented by its "vegetativeness" (V), reflecting its maturation state toward flower initiation. The model followed simple rules: maturation proceeded continuously at the same rate in every meristem (dV); floral transition and floral commitment occurred at threshold levels of V; lateral meristems were initiated with a gain of V (ΔV) relative to the V level of the meristem from which they derived. This last rule created a link between successive meristems and gave to the model its zigzag shape. We next exploited the model to explore the diversity of morphotypes that could be generated by varying dV and ΔV and matched them with existing mutant phenotypes. This approach, focused on the development of the primary inflorescence, allowed us to elaborate on the genetic regulation of the kinetic model of inflorescence development. We propose that the lateral inflorescence meristem fate in tomato is more similar to an immature flower meristem than to the inflorescence meristem of Arabidopsis. In the last part of our paper, we extend our thought to spatial regulators that should be integrated in a next step for unraveling the relationships between the different meristems that participate to sympodial growth.
Collapse
Affiliation(s)
- Claire Périlleux
- *Correspondence: Claire Périlleux, Laboratory of Plant Physiology, PhytoSYSTEMS, Department of Life Sciences, University of Liège, Boulevard du Rectorat 27, 4000 Liège, Belgium e-mail:
| | | | | |
Collapse
|
144
|
Pullen N, Morris RJ. Bayesian model comparison and parameter inference in systems biology using nested sampling. PLoS One 2014; 9:e88419. [PMID: 24523891 PMCID: PMC3921180 DOI: 10.1371/journal.pone.0088419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Inferring parameters for models of biological processes is a current challenge in systems biology, as is the related problem of comparing competing models that explain the data. In this work we apply Skilling's nested sampling to address both of these problems. Nested sampling is a Bayesian method for exploring parameter space that transforms a multi-dimensional integral to a 1D integration over likelihood space. This approach focuses on the computation of the marginal likelihood or evidence. The ratio of evidences of different models leads to the Bayes factor, which can be used for model comparison. We demonstrate how nested sampling can be used to reverse-engineer a system's behaviour whilst accounting for the uncertainty in the results. The effect of missing initial conditions of the variables as well as unknown parameters is investigated. We show how the evidence and the model ranking can change as a function of the available data. Furthermore, the addition of data from extra variables of the system can deliver more information for model comparison than increasing the data from one variable, thus providing a basis for experimental design.
Collapse
Affiliation(s)
- Nick Pullen
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
- * E-mail:
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
145
|
Ho WWH, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. THE PLANT CELL 2014; 26:552-64. [PMID: 24532592 PMCID: PMC3967025 DOI: 10.1105/tpc.113.115220] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/09/2014] [Accepted: 01/18/2014] [Indexed: 05/17/2023]
Abstract
In Arabidopsis thaliana, the genes FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) have antagonistic roles in regulating the onset of flowering: FT activates and TFL1 represses flowering. Both encode small, closely related transcription cofactors of ∼175 amino acids. Previous studies identified a potential ligand binding residue as well as a divergent external loop as critical for the differences in activity of FT and TFL1, but the mechanisms for the differential action of FT and TFL1 remain unclear. Here, we took an unbiased approach to probe the importance of residues throughout FT protein, testing the effects of hundreds of mutations in vivo. FT is surprisingly robust to a wide range of mutations, even in highly conserved residues. However, specific mutations in at least four different residues are sufficient to convert FT into a complete TFL1 mimic, even when expressed from TFL1 regulatory sequences. Modeling the effects of these mutations on the surface charge of FT protein suggests that the affected residues regulate the docking of an unknown ligand. These residues do not seem to alter the interaction with FD or 14-3-3 proteins, known FT interactors. Potential candidates for differential mediators of FT and TFL1 activities belong to the TCP (for TEOSINTE BRANCHED1, CYCLOIDEA, PCF) family of transcription factors.
Collapse
|
146
|
Paul LK, Rinne PLH, van der Schoot C. Shoot meristems of deciduous woody perennials: self-organization and morphogenetic transitions. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:86-95. [PMID: 24507499 DOI: 10.1016/j.pbi.2013.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 05/04/2023]
Abstract
Shoot apical meristems of deciduous woody perennials share gross structural features with other angiosperms, but are unique in the seasonal regulation of vegetative and floral meristems. Supporting longevity, flowering is postponed to the adult phase, and restricted to some axillary meristems. In cold climates, photoperiodic timing mechanisms and chilling are recruited to schedule end-of-season growth arrest, dormancy cycling and flowering. We review recently uncovered generic meristem properties, perennial meristem fate, and the role of CENL1, FT1 and FT2 in bud formation and flowering. We also highlight novel findings, suggesting that dormancy release is mediated by mobile lipid bodies that deliver enzymes to plasmodesmata to recover symplasmic communication and meristem function.
Collapse
Affiliation(s)
- Laju K Paul
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Päivi L H Rinne
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Christiaan van der Schoot
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway.
| |
Collapse
|
147
|
Loscos J, Igartua E, Contreras-Moreira B, Gracia MP, Casas AM. HvFT1 polymorphism and effect-survey of barley germplasm and expression analysis. FRONTIERS IN PLANT SCIENCE 2014; 5:251. [PMID: 24936204 PMCID: PMC4047512 DOI: 10.3389/fpls.2014.00251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/16/2014] [Indexed: 05/05/2023]
Abstract
Flowering time in plants is a tightly regulated process. In barley (Hordeum vulgare L.), HvFT1, ortholog of FLOWERING LOCUS T, is the main integrator of the photoperiod and vernalization signals leading to the transition from vegetative to reproductive state of the plant. This gene presents sequence polymorphisms affecting flowering time in the first intron and in the promoter. Recently, copy number variation (CNV) has been described for this gene. An allele with more than one copy was linked to higher gene expression, earlier flowering, and an overriding effect of the vernalization mechanism. This study aims at (1) surveying the distribution of HvFT1 polymorphisms across barley germplasm and (2) assessing gene expression and phenotypic effects of HvFT1 alleles. We analyzed HvFT1 CNV in 109 winter, spring, and facultative barley lines. There was more than one copy of the gene (2-5) only in spring or facultative barleys without a functional vernalization VrnH2 allele. CNV was investigated in several regions inside and around HvFT1. Two models of the gene were found: one with the same number of promoters and transcribed regions, and another with one promoter and variable number of transcribed regions. This last model was found in Nordic barleys only. Analysis of HvFT1 expression showed that association between known polymorphisms at the HvFT1 locus and the expression of the gene was highly dependent on the genetic background. Under long day conditions the earliest flowering lines carried a sensitive PpdH1 allele. Among spring cultivars with different number of copies, no clear relation was found between CNV, gene expression and flowering time. This was confirmed in a set of doubled haploid lines of a population segregating for HvFT1 CNV. Earlier flowering in the presence of several copies of HvFT1 was only seen in cultivar Tammi, which carries one promoter, suggesting a relation of gene structure with its regulation. HvCEN also affected to a large extent flowering time.
Collapse
Affiliation(s)
- Jorge Loscos
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Fundación ARAIDZaragoza, Spain
| | - M. Pilar Gracia
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Ana M. Casas, Department of Genetics and Plant Production, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana 1005, 50059 Zaragoza, Spain e-mail:
| |
Collapse
|
148
|
|
149
|
Golembeski GS, Kinmonth-Schultz HA, Song YH, Imaizumi T. Photoperiodic flowering regulation in Arabidopsis thaliana.. ADVANCES IN BOTANICAL RESEARCH 2014; 72:1-28. [PMID: 25684830 PMCID: PMC4326075 DOI: 10.1016/b978-0-12-417162-6.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction.
Collapse
Affiliation(s)
| | | | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
150
|
Brunner AM, Evans LM, Hsu CY, Sheng X. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation? FRONTIERS IN PLANT SCIENCE 2014; 5:732. [PMID: 25566302 PMCID: PMC4269124 DOI: 10.3389/fpls.2014.00732] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/02/2014] [Indexed: 05/17/2023]
Abstract
Similarities have long been recognized between vernalization, the prolonged exposure to cold temperatures that promotes the floral transition in many plants, and the chilling requirement to release bud dormancy in woody plants of temperate climates. In both cases the extended chilling period occurring during winter is used to coordinate developmental events to the appropriate seasonal time. However, whether or not these processes share common regulatory components and molecular mechanisms remain largely unknown. Both gene function and association genetics studies in Populus are beginning to answer this question. In Populus, studies have revealed that orthologs of the antagonistic flowering time genes FT and CEN/TFL1 might have central roles in both processes. We review Populus seasonal shoot development related to dormancy release and the floral transition and evidence for FT/TFL1-mediated regulation of these processes to consider the question of regulatory overlap. In addition, we discuss the potential for and challenges to integrating functional and population genomics studies to uncover the regulatory mechanisms underpinning these processes in woody plant systems.
Collapse
Affiliation(s)
- Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- *Correspondence: Amy M. Brunner, Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 20461, USA e-mail:
| | - Luke M. Evans
- Department of Biology, West Virginia UniversityMorgantown, WV, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State UniversityStarkville, MS, USA
| | - Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|