101
|
Kim JY, Jang IC, Seo HS. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:1182. [PMID: 27536318 PMCID: PMC4971112 DOI: 10.3389/fpls.2016.01182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 05/22/2023]
Abstract
Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.
Collapse
Affiliation(s)
- Joo Y. Kim
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, SingaporeSingapore
| | - Hak S. Seo
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
- *Correspondence: Hak S. Seo,
| |
Collapse
|
102
|
He Y, Li Y, Cui L, Xie L, Zheng C, Zhou G, Zhou J, Xie X. Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1963. [PMID: 28083003 PMCID: PMC5183628 DOI: 10.3389/fpls.2016.01963] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/12/2016] [Indexed: 05/18/2023]
Abstract
Cross talk between light signaling and cold signaling has been elucidated in the model plant Arabidopsis and tomato, but little is known about their relationship in rice. Here, we report that phytochrome B (phyB) mutants exhibit improved cold tolerance compared with wild type (WT) rice (Oryza sativa L. cv. Nipponbare). The phyB mutants had a lower electrolyte leakage index and malondialdehyde concentration than the WT, suggesting that they had greater cell membrane integrity and less lipid peroxidation. Real-time PCR analysis revealed that the expression levels of dehydration-responsive element binding protein 1 (OsDREB1) family genes, which functions in the cold stress response in rice, were increased in the phyB mutant under normal and cold stress conditions. PIFs are central players in phytochrome-mediated light signaling networks. To explore the relationship between rice PIFs and OsDREB1 gene expression, we produced overexpression lines of rice PIF genes. OsDREB1 family genes were up-regulated in OsPIL16-overexpression lines, which had improved cold tolerance relative to the WT. Chromatin immunoprecipitation (ChIP)-qPCR assay revealed that OsPIL16 can bind to the N-box region of OsDREB1B promoter. Expression pattern analyses revealed that OsPIL16 transcripts were induced by cold stress and was significantly higher in the phyB mutant than in the WT. Moreover, yeast two-hybrid assay showed that OsPIL16 can bind to rice PHYB. Based on these results, we propose that phyB deficiency positively regulates OsDREB1 expression through OsPIL16 to enhance cell membrane integrity and to reduce the malondialdehyde concentration, resulting in the improved cold tolerance of the phyB mutants.
Collapse
Affiliation(s)
- Yanan He
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Yaping Li
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Lixin Cui
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Lixia Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Chongke Zheng
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Guanhua Zhou
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Jinjun Zhou
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
- *Correspondence: Xianzhi Xie,
| |
Collapse
|
103
|
Xu D, Lin F, Jiang Y, Ling J, Hettiarachchi C, Tellgren-Roth C, Holm M, Wei N, Deng XW. Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association. PLoS Genet 2015; 11:e1005747. [PMID: 26714275 PMCID: PMC4694719 DOI: 10.1371/journal.pgen.1005747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023] Open
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a key regulator of light mediated developmental processes and it works as an E3 ubiquitin ligase controlling the abundance of multiple transcription factors. In the work presented here, we identified a novel repressor of COP1, the COP1 SUPPRESSOR 2 (CSU2), via a forward genetic screen. Mutations in CSU2 completely suppress cop1-6 constitutive photomorphogenic phenotype in darkness. CSU2 interacts and co-localizes with COP1 in nuclear speckles via the coiled-coil domain association. CSU2 negatively regulates COP1 E3 ubiquitin ligase activity, and repress COP1 mediated HY5 degradation in cell-free extracts.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yan Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Junjie Ling
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | | | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Uppsala, Sweden
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Ning Wei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (NW); (XWD)
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- * E-mail: (NW); (XWD)
| |
Collapse
|
104
|
Xu X, Paik I, Zhu L, Huq E. Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. TRENDS IN PLANT SCIENCE 2015; 20:641-650. [PMID: 26440433 DOI: 10.1016/j.tplants.2015.06.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Light signals regulate a plethora of plant responses throughout their life cycle, especially the red and far-red regions of the light spectrum perceived by the phytochrome family of photoreceptors. However, the mechanisms by which phytochromes regulate gene expression and downstream responses remain elusive. Several recent studies have unraveled the details on how phytochromes regulate photomorphogenesis. These include the identification of E3 ligases that degrade PHYTOCHROME INTERACTING FACTOR (PIF) proteins, key negative regulators, in response to light, a better view of how phytochromes inhibit another key negative regulator, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), and an understanding of why plants evolved multiple negative regulators to repress photomorphogenesis in darkness. These advances will surely fuel future research on many unanswered questions that have intrigued plant photobiologists for decades.
Collapse
Affiliation(s)
- Xiaosa Xu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
105
|
Yang Y, Fu D, Zhu C, He Y, Zhang H, Liu T, Li X, Wu C. The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in Rice. THE PLANT CELL 2015; 27:2455-68. [PMID: 26296966 PMCID: PMC4815093 DOI: 10.1105/tpc.15.00320] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/02/2015] [Accepted: 07/31/2015] [Indexed: 05/17/2023]
Abstract
The photoperiodic response is one of the most important factors determining heading date in rice (Oryza sativa). Although rhythmic expression patterns of flowering time genes have been reported to fine-tune the photoperiodic response, posttranslational regulation of key flowering regulators has seldom been elucidated in rice. Heading date 1 (Hd1) encodes a zinc finger transcription factor that plays a crucial role in the photoperiodic response, which determines rice regional adaptability. However, little is known about the molecular mechanisms of Hd1 accumulation during the photoperiod response. Here, we identify a C3HC4 RING domain-containing E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), which physically interacts with Hd1. HAF1 mediates ubiquitination and targets Hd1 for degradation via the 26S proteasome-dependent pathway. The haf1 mutant exhibits a later flowering heading date under both short-day and long-day conditions. In addition, the haf1 hd1 double mutant headed as late as hd1 plants under short-day conditions but exhibited a heading date similar to haf1 under long-day conditions, thus indicating that HAF1 may determine heading date mainly through Hd1 under short-day conditions. Moreover, high levels of Hd1 accumulate in haf1. Our results suggest that HAF1 is essential to precise modulation of the timing of Hd1 accumulation during the photoperiod response in rice.
Collapse
Affiliation(s)
- Ying Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yizhou He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huijun Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
106
|
Fierro AC, Leroux O, De Coninck B, Cammue BPA, Marchal K, Prinsen E, Van Der Straeten D, Vandenbussche F. Ultraviolet-B radiation stimulates downward leaf curling in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:9-17. [PMID: 25542780 DOI: 10.1016/j.plaphy.2014.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/10/2014] [Indexed: 05/15/2023]
Abstract
Plants are very well adapted to growth in ultraviolet-B (UV-B) containing light. In Arabidopsis thaliana, many of these adaptations are mediated by the UV-B receptor UV resistance locus 8 (UVR8). Using small amounts of supplementary UV-B light, we observed changes in the shape of rosette leaf blades. Wild type plants show more pronounced epinasty of the blade edges, while this is not the case in uvr8 mutant plants. The UVR8 effect thus mimics the effect of phytochrome (phy) B in red light. In addition, a meta-analysis of transcriptome data indicates that the UVR8 and phyB signaling pathways have over 70% of gene regulation in common. Moreover, in low levels of supplementary UV-B light, mutant analysis revealed that phyB signaling is necessary for epinasty of the blade edges. Analysis of auxin levels and the auxin signal reporter DR5::GUS suggest that the epinasty relies on altered auxin distribution, keeping auxin at the leaf blade edges in the presence of UV-B. Together, our results suggest a co-action of phyB and UVR8 signaling, with auxin as a downstream factor.
Collapse
Affiliation(s)
- Ana Carolina Fierro
- Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Olivier Leroux
- Department of Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Kathleen Marchal
- Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium; Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, KL Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, KL Ledeganckstraat 35, B-9000 Ghent, Belgium.
| |
Collapse
|
107
|
Qiu Y, Li M, Pasoreck EK, Long L, Shi Y, Galvão RM, Chou CL, Wang H, Sun AY, Zhang YC, Jiang A, Chen M. HEMERA Couples the Proteolysis and Transcriptional Activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis Photomorphogenesis. THE PLANT CELL 2015; 27:1409-27. [PMID: 25944101 PMCID: PMC4456642 DOI: 10.1105/tpc.114.136093] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 04/10/2015] [Indexed: 05/20/2023]
Abstract
Phytochromes (phys) are red and far-red photoreceptors that control plant development and growth by promoting the proteolysis of a family of antagonistically acting basic helix-loop-helix transcription factors, the PHYTOCHROME-INTERACTING FACTORs (PIFs). We have previously shown that the degradation of PIF1 and PIF3 requires HEMERA (HMR). However, the biochemical function of HMR and the mechanism by which it mediates PIF degradation remain unclear. Here, we provide genetic evidence that HMR acts upstream of PIFs in regulating hypocotyl growth. Surprisingly, genome-wide analysis of HMR- and PIF-dependent genes reveals that HMR is also required for the transactivation of a subset of PIF direct-target genes. We show that HMR interacts with all PIFs. The HMR-PIF interaction is mediated mainly by HMR's N-terminal half and PIFs' conserved active-phytochrome B binding motif. In addition, HMR possesses an acidic nine-amino-acid transcriptional activation domain (9aaTAD) and a loss-of-function mutation in this 9aaTAD impairs the expression of PIF target genes and the destruction of PIF1 and PIF3. Together, these in vivo results support a regulatory mechanism for PIFs in which HMR is a transcriptional coactivator binding directly to PIFs and the 9aaTAD of HMR couples the degradation of PIF1 and PIF3 with the transactivation of PIF target genes.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Meina Li
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Elise K Pasoreck
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Lingyun Long
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Yiting Shi
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Rafaelo M Galvão
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Conrad L Chou
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - He Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Amanda Y Sun
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Yiyin C Zhang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Anna Jiang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Meng Chen
- Department of Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
108
|
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. MOLECULAR PLANT 2015; 8:540-51. [PMID: 25670340 DOI: 10.1016/j.molp.2014.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
109
|
Abstract
The protein content of plant cells is constantly being updated. This process is driven by the opposing actions of protein degradation, which defines the half-life of each polypeptide, and protein synthesis. Our understanding of the processes that regulate protein synthesis and degradation in plants has advanced significantly over the past decade. Post-transcriptional modifications that influence features of the mRNA populations, such as poly(A) tail length and secondary structure, contribute to the regulation of protein synthesis. Post-translational modifications such as phosphorylation, ubiquitination and non-enzymatic processes such as nitrosylation and carbonylation, govern the rate of degradation. Regulators such as the plant TOR kinase, and effectors such as the E3 ligases, allow plants to balance protein synthesis and degradation under developmental and environmental change. Establishing an integrated understanding of the processes that underpin changes in protein abundance under various physiological and developmental scenarios will accelerate our ability to model and rationally engineer plants.
Collapse
Affiliation(s)
- Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| |
Collapse
|
110
|
Lu XD, Zhou CM, Xu PB, Luo Q, Lian HL, Yang HQ. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. MOLECULAR PLANT 2015; 8:467-78. [PMID: 25744387 DOI: 10.1016/j.molp.2014.11.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Arabidopsis phytochromes (phyA-phyE) are photoreceptors dedicated to sensing red/far-red light. Phytochromes promote photomorphogenic developments upon light irradiation via a signaling pathway that involves rapid degradation of PIFs (PHYTOCHROME INTERACTING FACTORS) and suppression of COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) nuclear accumulation, through physical interactions with PIFs and COP1, respectively. Both phyA and phyB, the two best characterized phytochromes, regulate plant photomorphogenesis predominantly under far-red light and red light, respectively. It has been demonstrated that SPA1 (SUPPRESSOR OF PHYTOCHROME A 1) associates with COP1 to promote COP1 activity and suppress photomorphogenesis. Here, we report that the mechanism underlying phyB-promoted photomorphogenesis in red light involves direct physical and functional interactions between red-light-activated phyB and SPA1. We found that SPA1 acts genetically downstream of PHYB to repress photomorphogenesis in red light. Protein interaction studies in both yeast and Arabidopsis demonstrated that the photoactivated phyB represses the association of SPA1 with COP1, which is mediated, at least in part, through red-light-dependent interaction of phyB with SPA1. Moreover, we show that phyA physically interacts with SPA1 in a Pfr-form-dependent manner, and that SPA1 acts downstream of PHYA to regulate photomorphogenesis in far-red light. This study provides a genetic and biochemical model of how photoactivated phyB represses the activity of COP1-SPA1 complex through direct interaction with SPA1 to promote photomorphogenesis in red light.
Collapse
Affiliation(s)
- Xue-Dan Lu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, China
| | - Peng-Bo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Qian Luo
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Li Lian
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Hong-Quan Yang
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China.
| |
Collapse
|
111
|
Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 2015; 11:776. [PMID: 25600997 PMCID: PMC4332151 DOI: 10.15252/msb.20145766] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.
Collapse
Affiliation(s)
- Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert W Smith
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Kelly Stewart
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gavin Steel
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Julia Foreman
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
112
|
Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, Zhu M, Wang G, Sun X, Liao Z, Tang K. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. MOLECULAR PLANT 2015; 8:163-75. [PMID: 25578280 DOI: 10.1016/j.molp.2014.12.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/01/2014] [Accepted: 12/08/2014] [Indexed: 05/03/2023]
Abstract
Artemisinin is a sesquiterpenoid especially synthesized in the Chinese herbal plant, Artemisia annua, which is widely used in the treatment of malaria. Artemisinin accumulation can be enhanced by exogenous abscisic acid (ABA) treatment. However, it is not known how ABA signaling regulates artemisinin biosynthesis. A global expression profile and phylogenetic analysis as well as the dual-LUC screening revealed that a basic leucine zipper family transcription factor from A. annua (namely AabZIP1) was involved in ABA signaling to regulate artemisinin biosynthesis. AabZIP1 had a higher expression level in the inflorescences than in other tissues; ABA treatment, drought, and salt stress strongly induced the expression of AabZIP1. Yeast one-hybrid assay and electrophoretic mobility shift assay (EMSA) showed that AabZIP1 bound to the ABA-responsive elements (ABRE) in the promoter regions of the amorpha-4,11-diene synthase (ADS) gene and CYP71AV1, which are two key structural genes of the artemisinin biosynthetic pathway. A mutagenesis assay showed that the C1 domain in the N-terminus of AabZIP1 was important for its transactivation activity. Furthermore, the activation of ADS and CYP71AV1 promoters by AabZIP1 was enhanced by ABA treatment in transient dual-LUC analysis. The AabZIP1 variant with C1 domain deletion lost the ability to activate ADS and CYP71AV1 promoters regardless of ABA treatment. Notably, overexpression of AabZIP1 in A. annua resulted in significantly increased accumulation of artemisinin. Our results indicate that ABA promotes artemisinin biosynthesis, likely through 1 activation of ADS and CYP71AV1 expression by AabZIP in A. annua. Meanwhile, our findings reveal the potential value of AabZIP1 in genetic engineering of artemisinin production.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyou Lv
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Lu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Shen
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zhu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guofeng Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofen Sun
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihua Liao
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Kexuan Tang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
113
|
Chai T, Zhou J, Liu J, Xing D. LSD1 and HY5 antagonistically regulate red light induced-programmed cell death in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:292. [PMID: 25999965 PMCID: PMC4419654 DOI: 10.3389/fpls.2015.00292] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/10/2015] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) in plant is triggered by abiotic and biotic stress. Light-dependent PCD is unique to plants. Light-induced PCD also requires reactive oxygen species (ROS) and salicylic acid (SA). In this study, lesion simulating disease1 (LSD1) and elongated hypocotyl 5 (HY5) perform opposite roles to regulate excess red light (RL)-triggered PCD associated with ROS and SA production. Under RL, the lsd1 mutant released more ROS and SA and displayed a stronger cell death rate than the hy5 mutant. It was shown that active LSD1 converted into inactive form by changing the redox status of the plastoquinone pool, and HY5 interacted with phytochrome B (phyB) to promote PCD in response to RL. LSD1 inhibited the enhanced disease susceptibility 1 (EDS1) expression by upregulating SR1, whereas HY5 enhanced the enhanced EDS1 expression by binding to the G-box of the EDS1 promoter. This study suggested that LSD1 and HY5 antagonistically modulated EDS1-dependent ROS and SA signaling; thus, PCD was mediated in response to RL.
Collapse
Affiliation(s)
| | | | | | - Da Xing
- *Correspondence: Da Xing, MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Shipai, Tianhe District, Guangzhou 510631, China
| |
Collapse
|
114
|
14-3-3 proteins participate in light signaling through association with PHYTOCHROME INTERACTING FACTORs. Int J Mol Sci 2014; 15:22801-14. [PMID: 25501334 PMCID: PMC4284738 DOI: 10.3390/ijms151222801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022] Open
Abstract
14-3-3 proteins are regulatory proteins found in all eukaryotes and are known to selectively interact with phosphorylated proteins to regulate physiological processes. Through an affinity purification screening, many light-related proteins were recovered as 14-3-3 candidate binding partners. Yeast two-hybrid analysis revealed that the 14-3-3 kappa isoform (14-3-3κ) could bind to PHYTOCHROME INTERACTING FACTOR3 (PIF3) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). Further analysis by in vitro pull-down assay confirmed the interaction between 14-3-3κ and PIF3. Interruption of putative phosphorylation sites on the 14-3-3 binding motifs of PIF3 was not sufficient to inhibit 14-3-3κ from binding or to disturb nuclear localization of PIF3. It was also indicated that 14-3-3κ could bind to other members of the PIF family, such as PIF1 and PIF6, but not to LONG HYPOCOTYL IN FAR-RED1 (HFR1). 14-3-3 mutants, as well as the PIF3 overexpressor, displayed longer hypocotyls, and a pif3 mutant displayed shorter hypocotyls than the wild-type in red light, suggesting that 14-3-3 proteins are positive regulators of photomorphogenesis and function antagonistically with PIF3. Consequently, our results indicate that 14-3-3 proteins bind to PIFs and initiate photomorphogenesis in response to a light signal.
Collapse
|
115
|
Rodrigues MA, Bianchetti RE, Freschi L. Shedding light on ethylene metabolism in higher plants. FRONTIERS IN PLANT SCIENCE 2014; 5:665. [PMID: 25520728 PMCID: PMC4249713 DOI: 10.3389/fpls.2014.00665] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/07/2014] [Indexed: 05/20/2023]
Abstract
Ethylene metabolism in higher plants is regulated by a wide array of endogenous and environmental factors. During most physiological processes, ethylene levels are mainly determined by a strict control of the rate-limiting biosynthetic steps responsible for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and its subsequent conversion to ethylene. Responsible for these reactions, the key enzymes ACC synthase and ACC oxidase are encoded by multigene families formed by members that can be differentially regulated at the transcription and post-translational levels by specific developmental and environmental signals. Among the wide variety of environmental cues controlling plant ethylene production, light quality, duration, and intensity have consistently been demonstrated to influence the metabolism of this plant hormone in diverse plant tissues, organs, and species. Although still not completely elucidated, the mechanisms underlying the interaction between light signal transduction and ethylene evolution appears to involve a complex network that includes central transcription factors connecting multiple signaling pathways, which can be reciprocally modulated by ethylene itself, other phytohormones, and specific light wavelengths. Accumulating evidence has indicated particular photoreceptors as essential mediators in light-induced signaling cascades affecting ethylene levels. Therefore, this review specifically focuses on discussing the current knowledge of the potential molecular mechanisms implicated in the light-induced responses affecting ethylene metabolism during the regulation of developmental and metabolic plant responses. Besides presenting the state of the art in this research field, some overlooked mechanisms and future directions to elucidate the exact nature of the light-ethylene interplay in higher plants will also be compiled and discussed.
Collapse
Affiliation(s)
| | | | - Luciano Freschi
- Laboratory of Plant Physiology, Institute of Biosciences, Department of Botany, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
116
|
Li T, Jia KP, Lian HL, Yang X, Li L, Yang HQ. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem Biophys Res Commun 2014; 454:78-83. [PMID: 25450360 DOI: 10.1016/j.bbrc.2014.10.059] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
Abstract
Anthocyanins are critical for plants. It is shown that the expression of genes encoding the key enzymes such as dihydroflavonol 4-reductase (DFR), UDP-Glc: flavonoid 3-O-glucosyltransferase (UF3GT), and leucoanthocyanidin dioxygenase (LDOX) in anthocyanin biosynthesis pathway is regulated by MYB75, a R2R3 MYB transcription factor. The production of anthocyanin is known to be promoted by jasmonic acid (JA) in light but not in darkness. The photoreceptors cryptochrome 1 (CRY1), phytochrome B (phyB), and phytochrome A (phyA) are also shown to mediate light promotion of anthocyanin accumulation, respectively, whereas their downstream factor COP1, a master negative regulator of photomorphogensis, represses anthocyanin accumulation. However, whether JA coordinates with photoreceptors in the regulation of anthocyanin accumulation is unknown. Here, we show that under far-red light, JA promotes anthocyanin accumulation in a phyA signaling pathway-dependent manner. The phyA mutant is hyposensitive to jasmonic acid analog methyl jasmonic acid (MeJA) under far-red light. The dominant mutant of MYB75, pap1-D, accumulates significantly higher levels of anthocyanin than wild type under far-red light, whereas knockdown of MYBs (MYB75, MYB90, MYB113, and MYB114) through RNAi significantly reduces MeJA promotion of anthocyanin accumulation. The phyA pap1-D double mutant shows reduced responsiveness to MeJA, similar to phyA mutant under far-red light. In darkness, a mutant allele of cop1, cop1-4, shows enhanced responsiveness to MeJA, but pap1-D mutant is barely responsive to MeJA. Upon MeJA application, the cop1-4 pap1-D double mutant accumulates considerably higher levels of anthocyanin than cop1-4 in darkness. Protein studies indicate that MYB75 protein is stabilized by white light and far-red light. Further gene expression studies suggest that MeJA promotes the expression of DFR, UF3GT, and LDOX genes in a phyA- and MYB75-dependent manner under far-red light. Our findings suggest that JA promotion of anthocyanin accumulation under far-red light is dependent on phyA signaling pathway, consisting of phyA, COP1, and MYB75.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agricultural and Biological Sciences, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun-Peng Jia
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture and School of Agricultural and Biological Sciences, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hong-Li Lian
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xu Yang
- School of Life Science, Henan University, Jinming Avenue, Kaifeng 475001, China
| | - Ling Li
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hong-Quan Yang
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|