101
|
Gu Y, Zavaliev R, Dong X. Membrane Trafficking in Plant Immunity. MOLECULAR PLANT 2017; 10:1026-1034. [PMID: 28698057 PMCID: PMC5673114 DOI: 10.1016/j.molp.2017.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
102
|
Wang P, Zhang X, Ma X, Sun Y, Liu N, Li F, Hou Y. Identification of CkSNAP33, a gene encoding synaptosomal-associated protein from Cynanchum komarovii, that enhances Arabidopsis resistance to Verticillium dahliae. PLoS One 2017; 12:e0178101. [PMID: 28575006 PMCID: PMC5456056 DOI: 10.1371/journal.pone.0178101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/07/2017] [Indexed: 02/03/2023] Open
Abstract
SNARE proteins are essential to vesicle trafficking and membrane fusion in eukaryotic cells. In addition, the SNARE-mediated secretory pathway can deliver diverse defense products to infection sites during exocytosis-associated immune responses in plants. In this study, a novel gene (CkSNAP33) encoding a synaptosomal-associated protein was isolated from Cynanchum komarovii and characterized. CkSNAP33 contains Qb- and Qc-SNARE domains in the N- and C-terminal regions, respectively, and shares high sequence identity with AtSNAP33 from Arabidopsis. CkSNAP33 expression was induced by H2O2, salicylic acid (SA), Verticillium dahliae, and wounding. Arabidopsis lines overexpressing CkSNAP33 had longer primary roots and larger seedlings than the wild type (WT). Transgenic Arabidopsis lines showed significantly enhanced resistance to V. dahliae, and displayed reductions in disease index and fungal biomass, and also showed elevated expression of PR1 and PR5. The leaves of transgenic plants infected with V. dahliae showed strong callose deposition and cell death that hindered the penetration and spread of the fungus at the infection site. Taken together, these results suggest that CkSNAP33 is involved in the defense response against V. dahliae and enhanced disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaowen Ma
- College of Science, China Agricultural University, Beijing, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- * E-mail: (FL); (YH)
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
- * E-mail: (FL); (YH)
| |
Collapse
|
103
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
104
|
Jezek M, Blatt MR. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:487-519. [PMID: 28408539 PMCID: PMC5462021 DOI: 10.1104/pp.16.01949] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
105
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
106
|
Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1669-1687. [PMID: 28369599 DOI: 10.1093/jxb/erx033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Grapevine is one of the world's most important fruit crops. European cultivated grape species have the best fruit quality but show almost no resistance to powdery mildew (PM). PM caused by Uncinula necator is a harmful disease that has a significant impact on the economic value of the grape crop. In this study, we examined a RING-H2-type ubiquitin ligase gene VpRH2 that is associated with significant PM-resistance of Chinese wild-growing grape Vitis pseudoreticulata accession Baihe-35-1. The expression of VpRH2 was clearly induced by U. necator inoculation compared with its homologous gene VvRH2 in a PM-susceptible grapevine V. vinifera cv. Thompson Seedless. Using a yeast two-hybrid assay we confirmed that VpRH2 interacted with VpGRP2A, a glycine-rich RNA-binding protein. The degradation of VpGRP2A was inhibited by treatment with the proteasome inhibitor MG132 while VpRH2 did not promote the degradation of VpGRP2A. Instead, the transcripts of VpRH2 were increased by over-expressing VpGRP2A while VpRH2 suppressed the expression of VpGRP2A. Furthermore, VpGRP2A was down-regulated in both Baihe-35-1 and Thompson Seedless after U. necator inoculation. Specifically, we generated VpRH2 overexpression transgenic lines in Thompson Seedless and found that the transgenic plants showed enhanced resistance to powdery mildew compared with the wild-type. In summary, our results indicate that VpRH2 interacts with VpGRP2A and plays a positive role in resistance to powdery mildew.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| |
Collapse
|
107
|
Xing S, Mehlhorn DG, Wallmeroth N, Asseck LY, Kar R, Voss A, Denninger P, Schmidt VAF, Schwarzländer M, Stierhof YD, Grossmann G, Grefen C. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Proc Natl Acad Sci U S A 2017; 114:E1544-E1553. [PMID: 28096354 PMCID: PMC5338382 DOI: 10.1073/pnas.1619525114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634-645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147-1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants.
Collapse
Affiliation(s)
- Shuping Xing
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany
| | - Dietmar Gerald Mehlhorn
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany
| | - Niklas Wallmeroth
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany
| | - Lisa Yasmin Asseck
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany
| | - Alessa Voss
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany
| | - Philipp Denninger
- Centre for Organismal Studies, CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Vanessa Aphaia Fiona Schmidt
- Centre for Organismal Studies, CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Schwarzländer
- Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - York-Dieter Stierhof
- Centre for Plant Molecular Biology, Microscopy, University of Tübingen, 72076 Tuebingen, Germany
| | - Guido Grossmann
- Centre for Organismal Studies, CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076 Tuebingen, Germany;
| |
Collapse
|
108
|
Pietro DSG, Fabrizio B. Transient Secretory Enzyme Expression in Leaf Protoplasts to Characterize SNARE Functional Classes in Conventional and Unconventional Secretion. Methods Mol Biol 2017; 1662:209-221. [PMID: 28861831 DOI: 10.1007/978-1-4939-7262-3_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite a long case history, the use of protoplasts in cell biology research still divides scientists but their weaknesses can be exploited as strengths. Transient expression in protoplasts can saturate protein-protein interactions very efficiently, inhibiting the process of interest more efficiently than other approaches at gene expression level. The method described here consists of an assay providing a functional characterization of SNARE proteins in a heterogeneous population of cells, by the comparison of native and dominant negative mutant forms. In particular, it allows for discriminating between t-SNARE and i-SNARE functional classes.
Collapse
Affiliation(s)
- Di Sansebastiano Gian Pietro
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Lecce, 73100, Italy.
| | - Barozzi Fabrizio
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Lecce, 73100, Italy
| |
Collapse
|
109
|
Rutter BD, Innes RW. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. PLANT PHYSIOLOGY 2017; 173:728-741. [PMID: 27837092 PMCID: PMC5210723 DOI: 10.1104/pp.16.01253] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/14/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
110
|
Karnik R, Waghmare S, Zhang B, Larson E, Lefoulon C, Gonzalez W, Blatt MR. Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control. TRENDS IN PLANT SCIENCE 2017; 22:81-95. [PMID: 27818003 PMCID: PMC5224186 DOI: 10.1016/j.tplants.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H+-ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ben Zhang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily Larson
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wendy Gonzalez
- Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
111
|
Maurice P, Baud S, Bocharova OV, Bocharov EV, Kuznetsov AS, Kawecki C, Bocquet O, Romier B, Gorisse L, Ghirardi M, Duca L, Blaise S, Martiny L, Dauchez M, Efremov RG, Debelle L. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability. Sci Rep 2016; 6:38363. [PMID: 27917893 PMCID: PMC5137157 DOI: 10.1038/srep38363] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.
Collapse
Affiliation(s)
- Pascal Maurice
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphanie Baud
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France.,Plateau de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, URCA, Reims, France
| | - Olga V Bocharova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Eduard V Bocharov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S Kuznetsov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Charlotte Kawecki
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Olivier Bocquet
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Beatrice Romier
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laetitia Gorisse
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Maxime Ghirardi
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Martiny
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Manuel Dauchez
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France.,Plateau de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, URCA, Reims, France
| | - Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - Laurent Debelle
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
112
|
Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C. Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. PLANT MOLECULAR BIOLOGY 2016; 92:731-744. [PMID: 27671160 DOI: 10.1007/s11103-016-0542-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/08/2016] [Indexed: 05/23/2023]
Abstract
Salt stress triggers a simultaneous transcriptional repression and aquaporin internalization to modify root cell water conductivity. Plasma membrane intrinsic proteins (PIPs) are involved in the adjustment of plant water balance in response to changing environmental conditions. In this study, Arabidopsis wild-type (Col-0) and transgenic lines overexpressing PIP2;7 were used to investigate and compare their response to salt stress. Hydraulic conductivity measurements using a high-pressure flowmeter (HPFM) revealed that overexpression of PIP2;7 induced a sixfold increase in root hydraulic conductivity of four week-old Arabidopsis thaliana plants compared to WT. Exposure to a high salt stress (150 mM NaCl) triggered a rapid repression of overall aquaporin activity in both genotypes. Response to salt stress was also investigated in 8 day-old seedlings. Exposure to salt led to a repression of PIP2;7 promoter activity and a significant decrease in PIP2;7 mRNA abundance within 2 h. Concomitantly, a rapid internalization of fluorescently-tagged PIP2;7 proteins was observed but removal from the cell membrane was not accompanied by further degradation of the protein within 4 h of exposure to salinity stress. These data suggest that PIP transcriptional repression and channel internalization act in concert during salt stress conditions to modulate aquaporin activity, thereby significantly altering the plant hydraulic parameters in the short term.
Collapse
Affiliation(s)
- Alicia Pou
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Linda Jeanguenin
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Thomas Milhiet
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| | - Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
113
|
Bellati J, Champeyroux C, Hem S, Rofidal V, Krouk G, Maurel C, Santoni V. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Mol Cell Proteomics 2016; 15:3473-3487. [PMID: 27609422 PMCID: PMC5098044 DOI: 10.1074/mcp.m116.060087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, a immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status.
Collapse
Affiliation(s)
- Jorge Bellati
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Chloé Champeyroux
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Sonia Hem
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Valérie Rofidal
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Gabriel Krouk
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Véronique Santoni
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| |
Collapse
|
114
|
Ambrosone A, Batelli G, Bostan H, D'Agostino N, Chiusano ML, Perrotta G, Leone A, Grillo S, Costa A. Distinct gene networks drive differential response to abrupt or gradual water deficit in potato. Gene 2016; 597:30-39. [PMID: 27771448 DOI: 10.1016/j.gene.2016.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023]
Abstract
Water-limiting conditions affect dramatically plant growth and development and, ultimately, yield of potato plants (Solanum tuberosum L.). Therefore, understanding the mechanisms underlying the response to water deficit is of paramount interest to obtain drought tolerant potato varieties. Herein, potato 10K cDNA array slides were used to profile transcriptomic changes of two potato cell populations under abrupt (shocked cells) or gradual exposure (adapted cells) to polyethylene glycol (PEG)-mediated water stress. Data analysis identified >1000 differentially expressed genes (DEGs) in our experimental conditions. Noteworthy, our microarray study also suggests that distinct gene networks underlie the cellular response to shock or gradual water stress. On the basis of our experimental findings, it is possible to speculate that DEGs identified in shocked cells participate in early protective and sensing mechanisms to environmental insults, while the genes whose expression was modulated in adapted cells are directly involved in the acquisition of a new cellular homeostasis to cope with water stress conditions. To validate microarray data obtained for potato cells, the expression analysis of 21 selected genes of interest was performed by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Intriguingly, the expression levels of these transcripts in 4-week old potato plants exposed to long-term water-deficit. qRT-PCR analysis showed that several genes were regulated similarly in potato cells cultures and tissues exposed to drought, thus confirming the efficacy of our simple experimental system to capture important genes involved in osmotic stress response. Highlighting the differences in gene expression between shock-like and adaptive response, our findings could contribute to the discussion on the biological function of distinct gene networks involved in the response to abrupt and gradual adaptation to water deficit.
Collapse
Affiliation(s)
- Alfredo Ambrosone
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici (NA), Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici (NA), Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (NA), Italy
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per l'orticoltura (CREA-ORT), Pontecagnano Faiano (SA), Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (NA), Italy
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TRISAIA Research Center, Rotondella, MT, Italy
| | - Antonietta Leone
- Department of Pharmacy, University of Salerno, Fisciano SA, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici (NA), Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici (NA), Italy.
| |
Collapse
|
115
|
Meng D, Walsh M, Fricke W. Rapid changes in root hydraulic conductivity and aquaporin expression in rice (Oryza sativa L.) in response to shoot removal - xylem tension as a possible signal. ANNALS OF BOTANY 2016; 118:809-819. [PMID: 27524161 PMCID: PMC5055636 DOI: 10.1093/aob/mcw150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/31/2016] [Accepted: 06/03/2016] [Indexed: 05/10/2023]
Abstract
Background and Aims It is not clear how plants adjust the rate of root water uptake to that of shoot water loss. The aim of this study on rice was to test the idea that root aquaporins (AQPs) and xylem tension play a role in this adjustment. Methods Three-week-old rice (Oryza sativa L.) plants, which were grown hydroponically, had their entire shoot system removed, and root hydraulic conductivity (exudation analyses) and gene expression (quantitative real-time PCR) of root plasma membrane intrinsic aquaporin proteins (PIPs) was followed within 60 min after shoot excision. Key Results All three PIP1 genes (OsPIP1;1, OsPIP1;2 and OsPIP1;3) and three of the six PIP2 genes tested (OsPIP2;1, OsPIP2;4 and OsPIP2;5) showed a rapid (5 min) and lasting (60 min) decrease in gene expression. Expression decreased by up to 85 % within 60 min. The other three PIP2 genes tested (OsPIP2;2, OsPIP2;3 and OsPIP2;6) showed a varied response, with expression decreasing either only initially (5 min) or after 60 min, or not changing at all. In a follow-up experiment, plants had their shoot system removed and the detached root system immediately connected to a vacuum pump through which some tension (80 kPa) was applied. This application of tension prevented any significant decrease in PIP expression. Conclusions Shoot removal leads to a rapid decrease in expression of all PIP1s and some PIP2s in roots of rice. Xylem tension plays some role in this process.
Collapse
Affiliation(s)
- Delong Meng
- School of Biology and Environmental Sciences, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Marc Walsh
- School of Biology and Environmental Sciences, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
116
|
Martínez-Ballesta MDC, Carvajal M. Mutual Interactions between Aquaporins and Membrane Components. FRONTIERS IN PLANT SCIENCE 2016; 7:1322. [PMID: 27625676 PMCID: PMC5003842 DOI: 10.3389/fpls.2016.01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/18/2016] [Indexed: 05/08/2023]
Abstract
In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein-protein interaction is an extensive theme that is difficult to tackle and new methodologies are being used to study the physical interactions involved. Bimolecular fluorescence complementation and the identification of cross-linked peptides based on tandem mass spectra, that are complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, are discussed in this review. The chemical composition and the physical characteristics of the lipid bilayer also influence many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the positions of the lipids around aquaporins could define their activity, thereby altering the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is provided. Finally, it is described how the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances.
Collapse
Affiliation(s)
| | - Micaela Carvajal
- Plant Nutrition Department, Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| |
Collapse
|
117
|
Wang M, Ding L, Gao L, Li Y, Shen Q, Guo S. The Interactions of Aquaporins and Mineral Nutrients in Higher Plants. Int J Mol Sci 2016; 17:E1229. [PMID: 27483251 PMCID: PMC5000627 DOI: 10.3390/ijms17081229] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
Aquaporins, major intrinsic proteins (MIPs) present in the plasma and intracellular membranes, facilitate the transport of small neutral molecules across cell membranes in higher plants. Recently, progress has been made in understanding the mechanisms of aquaporin subcellular localization, transport selectivity, and gating properties. Although the role of aquaporins in maintaining the plant water status has been addressed, the interactions between plant aquaporins and mineral nutrients remain largely unknown. This review highlights the roles of various aquaporin orthologues in mineral nutrient uptake and transport, as well as the regulatory effects of mineral nutrients on aquaporin expression and activity, and an integrated link between aquaporins and mineral nutrient metabolism was identified.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Ding
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | - Limin Gao
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingrui Li
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shiwei Guo
- Jiangsu Key Lab for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
118
|
Pertl-Obermeyer H, Wu XN, Schrodt J, Müdsam C, Obermeyer G, Schulze WX. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling. Mol Cell Proteomics 2016; 15:2877-89. [PMID: 27371946 DOI: 10.1074/mcp.m116.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jens Schrodt
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Christina Müdsam
- ¶Molecular Plant Physiology, University of Erlangen, Staudtstraβe 5, 91058 Erlangen, Germany
| | - Gerhard Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstraβe 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany;
| |
Collapse
|
119
|
Xing S, Wallmeroth N, Berendzen KW, Grefen C. Techniques for the Analysis of Protein-Protein Interactions in Vivo. PLANT PHYSIOLOGY 2016; 171:727-58. [PMID: 27208310 PMCID: PMC4902627 DOI: 10.1104/pp.16.00470] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 05/20/2023]
Abstract
Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique.
Collapse
Affiliation(s)
- Shuping Xing
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Kenneth W Berendzen
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Christopher Grefen
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| |
Collapse
|
120
|
Kim H, Kwon H, Kim S, Kim MK, Botella MA, Yun HS, Kwon C. Synaptotagmin 1 Negatively Controls the Two Distinct Immune Secretory Pathways to Powdery Mildew Fungi in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1133-41. [PMID: 27016097 DOI: 10.1093/pcp/pcw061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/18/2016] [Indexed: 05/23/2023]
Abstract
PEN1, one of the plasma membrane (PM) syntaxins, comprises an immune exocytic pathway by forming the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex with SNAP33 and VAMP721/722 in plants. Although this secretory pathway is also involved in plant growth and development, how plants control their exocytic activity is as yet poorly understood. Since constitutive PEN1 cycling between the PM and endocytosed vesicles is critical for its immune activity, we studied here the relationship of PEN1 to synaptotagmin 1 (SYT1) that is known to regulate endocytosis at the PM. Interestingly, syt1 plants showed enhanced disease resistance to the Arabidopsis-adapted Golovinomyces orontii fungus, and elevated protein but not transcript levels of PEN1 Calcium-dependent promotion of PEN1-SYT1 interaction suggests that SYT1 controls defense activities of the PEN1-associated secretory pathway by post-translationally modulating PEN1. Increased PEN1-SYT1 interaction and inhibited PEN1 SNARE complex induction by G. orontii additionally suggest that the adaption of phytopathogens to host plants might partly result from effective suppression of the PEN1-related secretory pathway. Further genetic analyses revealed that SYT1 also regulates the atypical peroxisomal myrosinase PEN2-associated secretory pathway.
Collapse
Affiliation(s)
- Hyeran Kim
- Max-Planck-Institut für Züchtungsforschung, Department of Plant Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea These authors contributed equally to this work.
| | - Hyeokjin Kwon
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea These authors contributed equally to this work
| | - Soohong Kim
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
| | - Mi Kyung Kim
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
| | - Miguel A Botella
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga, 29071 Malaga, Spain
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
| |
Collapse
|
121
|
Sparks JA, Kwon T, Renna L, Liao F, Brandizzi F, Blancaflor EB. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis. THE PLANT CELL 2016; 28:746-69. [PMID: 26941089 PMCID: PMC4826010 DOI: 10.1105/tpc.15.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 05/26/2023]
Abstract
The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of ahlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.
Collapse
Affiliation(s)
- J Alan Sparks
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Taegun Kwon
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Luciana Renna
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Fuqi Liao
- Computing Services Department, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Federica Brandizzi
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| |
Collapse
|
122
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|
123
|
Bolaños-Villegas P, Guo CL, Jauh GY. Arabidopsis Qc-SNARE genes BET11 and BET12 are required for fertility and pollen tube elongation. BOTANICAL STUDIES 2015; 56:21. [PMID: 28510830 PMCID: PMC5430320 DOI: 10.1186/s40529-015-0102-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/12/2015] [Indexed: 05/13/2023]
Abstract
BET11 and 12 are required for pollen tube elongation. Pollen tubes are rapidly growing specialized structures that elongate in a polar manner. They play a crucial role in the delivery of sperm cells through the stylar tissues of the flower and into the embryo sac, where the sperm cells are released to fuse with the egg cell and the central cell to give rise to the embryo and the endosperm. Polar growth at the pollen tube tip is believed to result from secretion of materials by membrane trafficking mechanisms. In this study, we report the functional characterization of Arabidopsis BET11 and BET12, two genes that may code for Qc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Double mutants (bet11/bet12) in a homozygous/heterozygous background showed reduced transmission of the mutant alleles, reduced fertilization of seeds, defective embryo development, reduced pollen tube lengths and formation of secondary pollen tubes. Both BET11 and BET12 are required for fertility and development of pollen tubes in Arabidopsis. More experiments are required to dissect the mechanisms involved.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Experimental Station, University of Costa Rica, La Garita de Alajuela, P.O. Box 183-4050, Alajuela, Costa Rica
| | - Cian-Ling Guo
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529 Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529 Taiwan
| |
Collapse
|
124
|
Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane. PLANT PHYSIOLOGY 2015; 169:1933-45. [PMID: 26353761 PMCID: PMC4634090 DOI: 10.1104/pp.15.01153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/08/2015] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Stanley W Botchway
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Susan E Slade
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Kirsten Knox
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Lorenzo Frigerio
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Karl Oparka
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| |
Collapse
|
125
|
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in Plants. Physiol Rev 2015; 95:1321-58. [DOI: 10.1152/physrev.00008.2015] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| | - Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université de Montpellier, Montpellier, France
| |
Collapse
|
126
|
Abstract
Subcellular flavonoid transport and its underlying regulatory mechanisms are still poorly understood, but are fascinating research frontiers in plant science. Recent studies support and further extend previous hypotheses indicating that vacuolar sequestration of flavonoids involves vesicle trafficking, membrane transporters, and glutathione S-transferase (GST). However, the question remains to be addressed of how three distinct but nonexclusive mechanisms are functionally integrated into diverse but redundant transport routes for vacuolar sequestration or extracellular secretion of flavonoids. In this review, I highlight recent progress in understanding flavonoid-transporting vesicle behavior and properties, GST and membrane transporter functions and mechanisms, and flavonoid transport substrate specificity and preference.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
127
|
Bi Z, Merl-Pham J, Uehlein N, Zimmer I, Mühlhans S, Aichler M, Walch AK, Kaldenhoff R, Palme K, Schnitzler JP, Block K. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology. J Proteomics 2015; 128:321-32. [PMID: 26248320 DOI: 10.1016/j.jprot.2015.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022]
Abstract
Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement.
Collapse
Affiliation(s)
- Zhen Bi
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science-Core Facility Proteomics, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Norbert Uehlein
- Institute of Applied Plant Science, University of Technology Darmstadt, Schnittspahndtr.10, 64287 Darmstadt, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Stefanie Mühlhans
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Ralf Kaldenhoff
- Institute of Applied Plant Science, University of Technology Darmstadt, Schnittspahndtr.10, 64287 Darmstadt, Germany
| | - Klaus Palme
- BIOSS Centre for Biological Signalling Studies, ZBSA Centre for Biosystems Studies, Faculty of Biology, Schänzlestr. 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Katja Block
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany.
| |
Collapse
|
128
|
At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:10545-50. [PMID: 26240315 DOI: 10.1073/pnas.1510140112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited knowledge of how plants regulate their growth and metabolism in response to drought and reduced soil water potential has impeded efforts to improve stress tolerance. Increased expression of the membrane-associated protein At14a-like1 (AFL1) led to increased growth and accumulation of the osmoprotective solute proline without negative effects on unstressed plants. Conversely, inducible RNA-interference suppression of AFL1 decreased growth and proline accumulation during low water potential while having no effect on unstressed plants. AFL1 overexpression lines had reduced expression of many stress-responsive genes, suggesting AFL1 may promote growth in part by suppression of negative regulatory genes. AFL1 interacted with the endomembrane proteins protein disulfide isomerase 5 (PDI5) and NAI2, with the PDI5 interaction being particularly increased by stress. PDI5 and NAI2 are negative regulatory factors, as pdi5, nai2, and pdi5-2nai2-3 mutants had increased growth and proline accumulation at low water potential. AFL1 also interacted with Adaptor protein2-2A (AP2-2A), which is part of a complex that recruits cargo proteins and promotes assembly of clathrin-coated vesicles. AFL1 colocalization with clathrin light chain along the plasma membrane, together with predictions of AFL1 structure, were consistent with a role in vesicle formation or trafficking. Fractionation experiments indicated that AFL1 is a peripheral membrane protein associated with both plasma membrane and endomembranes. These data identify classes of proteins (AFL1, PDI5, and NAI2) not previously known to be involved in drought signaling. AFL1-predicted structure, protein interactions, and localization all indicate its involvement in previously uncharacterized membrane-associated drought sensing or signaling mechanisms.
Collapse
|
129
|
Hecker A, Wallmeroth N, Peter S, Blatt MR, Harter K, Grefen C. Binary 2in1 Vectors Improve in Planta (Co)localization and Dynamic Protein Interaction Studies. PLANT PHYSIOLOGY 2015; 168:776-87. [PMID: 25971551 PMCID: PMC4741326 DOI: 10.1104/pp.15.00533] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Fluorescence-based protein-protein interaction techniques are vital tools for understanding in vivo cellular functions on a mechanistic level. However, only under the condition of highly efficient (co)transformation and accumulation can techniques such as Förster resonance energy transfer (FRET) realize their potential for providing highly accurate and quantitative interaction data. FRET as a fluorescence-based method unifies several advantages, such as measuring in an in vivo environment, real-time context, and the ability to include transient interactions as well as detecting the mere proximity of proteins. Here, we introduce a novel vector set that incorporates the benefit of the recombination-based 2in1 cloning system with the latest state-of-the-art fluorescent proteins for optimal coaccumulation and FRET output studies. We demonstrate its utility across a range of methods. Merging the 2in1 cloning system with new-generation FRET fluorophore pairs allows for enhanced detection, speeds up the preparation of clones, and enables colocalization studies and the identification of meaningful protein-protein interactions in vivo.
Collapse
Affiliation(s)
- Andreas Hecker
- University of Tübingen, Centre for Plant Molecular Biology-Plant Physiology (A.H., K.H.), Centre for Plant Molecular Biology-Developmental Genetics (N.W., C.G.), and Institut für Physikalische und Theoretische Chemie (S.P.), D-72076 Tuebingen, Germany; andUniversity of Glasgow, Laboratory of Plant Physiology and Biophysics, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| | - Niklas Wallmeroth
- University of Tübingen, Centre for Plant Molecular Biology-Plant Physiology (A.H., K.H.), Centre for Plant Molecular Biology-Developmental Genetics (N.W., C.G.), and Institut für Physikalische und Theoretische Chemie (S.P.), D-72076 Tuebingen, Germany; andUniversity of Glasgow, Laboratory of Plant Physiology and Biophysics, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| | - Sébastien Peter
- University of Tübingen, Centre for Plant Molecular Biology-Plant Physiology (A.H., K.H.), Centre for Plant Molecular Biology-Developmental Genetics (N.W., C.G.), and Institut für Physikalische und Theoretische Chemie (S.P.), D-72076 Tuebingen, Germany; andUniversity of Glasgow, Laboratory of Plant Physiology and Biophysics, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| | - Michael R Blatt
- University of Tübingen, Centre for Plant Molecular Biology-Plant Physiology (A.H., K.H.), Centre for Plant Molecular Biology-Developmental Genetics (N.W., C.G.), and Institut für Physikalische und Theoretische Chemie (S.P.), D-72076 Tuebingen, Germany; andUniversity of Glasgow, Laboratory of Plant Physiology and Biophysics, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| | - Klaus Harter
- University of Tübingen, Centre for Plant Molecular Biology-Plant Physiology (A.H., K.H.), Centre for Plant Molecular Biology-Developmental Genetics (N.W., C.G.), and Institut für Physikalische und Theoretische Chemie (S.P.), D-72076 Tuebingen, Germany; andUniversity of Glasgow, Laboratory of Plant Physiology and Biophysics, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| | - Christopher Grefen
- University of Tübingen, Centre for Plant Molecular Biology-Plant Physiology (A.H., K.H.), Centre for Plant Molecular Biology-Developmental Genetics (N.W., C.G.), and Institut für Physikalische und Theoretische Chemie (S.P.), D-72076 Tuebingen, Germany; andUniversity of Glasgow, Laboratory of Plant Physiology and Biophysics, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| |
Collapse
|
130
|
Zhang B, Karnik R, Wang Y, Wallmeroth N, Blatt MR, Grefen C. The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. THE PLANT CELL 2015; 27:1697-717. [PMID: 26002867 PMCID: PMC4498211 DOI: 10.1105/tpc.15.00305] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 05/04/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive vesicle traffic, delivering membrane and cargo to target sites within the cell and at its surface. They contribute to cell homeostasis, morphogenesis, and pathogen defense. A subset of SNAREs, including the Arabidopsis thaliana SNARE SYP121, are known also to coordinate solute uptake via physical interactions with K(+) channels and to moderate their gating at the plasma membrane. Here, we identify a second subset of SNAREs that interact to control these K(+) channels, but with opposing actions on gating. We show that VAMPs (vesicle-associated membrane proteins), which target vesicles to the plasma membrane, also interact with and suppress the activities of the inward-rectifying K(+) channels KAT1 and KC1. Interactions were evident in yeast split-ubiquitin assays, they were recovered in vivo by ratiometric bimolecular fluorescence complementation, and they were sensitive to mutation of a single residue, Tyr-57, within the longin domain of VAMP721. Interaction was also recovered on exchange of the residue at this site in the homolog VAMP723, which normally localizes to the endoplasmic reticulum and otherwise did not interact. Functional analysis showed reduced channel activity and alterations in voltage sensitivity that are best explained by a physical interaction with the channel gates. These actions complement those of SYP121, a cognate SNARE partner of VAMP721, and lead us to propose that the channel interactions reflect a "hand-off" in channel control between the two SNARE proteins that is woven together with vesicle fusion.
Collapse
Affiliation(s)
- Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
131
|
Kaneko T, Horie T, Nakahara Y, Tsuji N, Shibasaka M, Katsuhara M. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress. PLANT & CELL PHYSIOLOGY 2015; 56:875-82. [PMID: 25634964 DOI: 10.1093/pcp/pcv013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/23/2015] [Indexed: 05/15/2023]
Abstract
Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.
Collapse
Affiliation(s)
- Toshiyuki Kaneko
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan Department of Physiology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa, Hokkaido, 078-8510 Japan These authors contributed equally to this work
| | - Tomoaki Horie
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan These authors contributed equally to this work
| | - Yoshiki Nakahara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Nobuya Tsuji
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
132
|
Chevalier AS, Chaumont F. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals. PLANT & CELL PHYSIOLOGY 2015; 56:819-29. [PMID: 25520405 PMCID: PMC7107115 DOI: 10.1093/pcp/pcu203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
133
|
Verdoucq L, Rodrigues O, Martinière A, Luu DT, Maurel C. Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:101-107. [PMID: 25299641 DOI: 10.1016/j.pbi.2014.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are channel proteins present in the plasma membrane and most of intracellular compartments of plant cells. This review focuses on recent insights into the cellular function of plant aquaporins, with an emphasis on the subfamily of Plasma membrane Intrinsic Proteins (PIPs). Whereas PIPs mostly serve as water channels, novel functions associated with their ability to transport carbon dioxide and hydrogen peroxide are emerging. Phosphorylation of PIPs was found to play a central role in the mechanisms that determine their gating and subcellular dynamics. Dynamic tracking of single aquaporin molecules in native plant membranes and the search for cell signaling intermediates acting upstream of aquaporins are now used to dissect their cellular regulation by hormonal and environmental stimuli.
Collapse
Affiliation(s)
- Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Olivier Rodrigues
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Doan Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France.
| |
Collapse
|
134
|
Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, Batoko H. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. THE PLANT CELL 2014; 26:4974-90. [PMID: 25538184 PMCID: PMC4311218 DOI: 10.1105/tpc.114.134080] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Vasko Veljanovski
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Hagen Reinhardt
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Damien Guillaumot
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Celine Vanhee
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|