101
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
102
|
Bates PD. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1214-1225. [PMID: 27003249 DOI: 10.1016/j.bbalip.2016.03.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Philip D Bates
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Dr. #5043, Hattiesburg, MS 39406-0001, United States.
| |
Collapse
|
103
|
McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Hõrak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM. The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening. Curr Biol 2016; 26:707-12. [PMID: 26898465 PMCID: PMC4791430 DOI: 10.1016/j.cub.2016.01.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Stomata regulate the uptake of CO2 and the loss of water vapor [1] and contribute to the control of water-use efficiency [2] in plants. Although the guard-cell-signaling pathway coupling blue light perception to ion channel activity is relatively well understood [3], we know less about the sources of ATP required to drive K+ uptake [3, 4, 5, 6]. Here, we show that triacylglycerols (TAGs), present in Arabidopsis guard cells as lipid droplets (LDs), are involved in light-induced stomatal opening. Illumination induces reductions in LD abundance, and this involves the PHOT1 and PHOT2 blue light receptors [3]. Light also induces decreases in specific TAG molecular species. We hypothesized that TAG-derived fatty acids are metabolized by peroxisomal β-oxidation to produce ATP required for stomatal opening. In silico analysis revealed that guard cells express all the genes required for β-oxidation, and we showed that light-induced stomatal opening is delayed in three TAG catabolism mutants (sdp1, pxa1, and cgi-58) and in stomata treated with a TAG breakdown inhibitor. We reasoned that, if ATP supply was delaying light-induced stomatal opening, then the activity of the plasma membrane H+-ATPase should be reduced at this time. Monitoring changes in apoplastic pH in the mutants showed that this was the case. Together, our results reveal a new role for TAGs in vegetative tissue and show that PHOT1 and PHOT2 are involved in reductions in LD abundance. Reductions in LD abundance in guard cells of the lycophyte Selaginella suggest that TAG breakdown may represent an evolutionarily conserved mechanism in light-induced stomatal opening. Guard cells break down triacylglycerols to supply ATP for use in stomatal opening Light-induced stomatal opening is delayed in triacylglycerol catabolism mutants PHOT blue light receptors are involved in reductions in lipid droplet (LD) abundance Light-induced reductions in LD abundance occur in Selaginella guard cells
Collapse
Affiliation(s)
- Deirdre H McLachlan
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jue Lan
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christoph-Martin Geilfus
- Institut fur Pflanzenernährung und Bodenkunde, Christian-Albrechts-Universität zu Kiel, Hermann-Rodewald- Straße 2, 24118 Kiel, Germany
| | - Antony N Dodd
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tony Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Zhesi He
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Michael V Mickelbart
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
104
|
Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P. 50 years of Arabidopsis research: highlights and future directions. THE NEW PHYTOLOGIST 2016; 209:921-44. [PMID: 26465351 DOI: 10.1111/nph.13687] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 05/14/2023]
Abstract
922 I. 922 II. 922 III. 925 IV. 925 V. 926 VI. 927 VII. 928 VIII. 929 IX. 930 X. 931 XI. 932 XII. 933 XIII. Natural variation and genome-wide association studies 934 XIV. 934 XV. 935 XVI. 936 XVII. 937 937 References 937 SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. We present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlighting some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Colot
- Departement de Biologie École Normale Supérieure, Biologie Moleculaire des Organismes Photosynthetiques, F-75230, Paris, France
| | - Sean Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Jeff Dangl
- Department of Biology and Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Joanna D Friesner
- Department of Plant Biology, Agricultural Sustainability Institute, University of California, Davis, CA, 95616, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Erich Grotewold
- Center for Applied Plant Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Elliot Meyerowitz
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jennifer Nemhauser
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, A-1030, Vienna, Austria
| | - Craig Pikaard
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chris Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA, 94704, USA
| | - Mark Stitt
- Metabolic Networks Department, Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jamie Waese
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter McCourt
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
105
|
Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:661-669. [PMID: 26058948 PMCID: PMC11388909 DOI: 10.1111/pbi.12411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/26/2015] [Accepted: 05/04/2015] [Indexed: 05/07/2023]
Abstract
Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. Here we report metabolic engineering to elevate TAG accumulation in vegetative tissues of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. Lipid droplets were visible within mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.
Collapse
Affiliation(s)
- Janice Zale
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Je Hyeong Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Jae Yoon Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Hui Liu
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - Xiuhua Chen
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Hao Wu
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Jason Candreva
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - Zhiyang Zhai
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - John Shanklin
- Biosciences Department, Brookhaven National Laboratory 463, Upton, NY, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| |
Collapse
|
106
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
107
|
Kim SH, Shin YS, Choi HK. NanoESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal Bioanal Chem 2016; 408:2109-21. [PMID: 26800980 DOI: 10.1007/s00216-016-9314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 01/09/2023]
Abstract
Korean ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs used in Asia, including Korea and China. In the present study lipid profiling of two officially registered cultivars (P. ginseng 'Chunpoong' and P. ginseng 'Yunpoong') was performed at different cultivation ages (5 and 6 years) and on different parts (tap roots, lateral roots, and rhizomes) using nano-electrospray ionization-mass spectrometry (nanoESI-MS). In total, 30 compounds including galactolipids, phospholipids, triacylglycerols, and ginsenosides were identified. Among them, triacylglycerol 54:6 (18:2/18:2/18:2), phosphatidylglycerol 34:3 (16:0/18:3), monogalactosyldiacylglycerol 36:4 (18:2/18:2), phosphatidic acid species 36:4 (18:2/18:2), and 34:1 (16:0/18:1) were selected as biomarkers to discriminate cultivars, cultivation ages, and parts. In addition, an unknown P. ginseng sample was successfully predicted by applying validated partial least squares projection to latent structures regression models. This is the first study regarding the identification of intact lipid species from P. ginseng and to predict cultivars, cultivation ages, and parts of P. ginseng using nanoESI-MS-based lipidomic profiling with a multivariate statistical analysis.
Collapse
Affiliation(s)
- So-Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Yoo-Soo Shin
- Department of Medicinal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
108
|
Xu C, Andre C, Fan J, Shanklin J. Cellular Organization of Triacylglycerol Biosynthesis in Microalgae. Subcell Biochem 2016; 86:207-221. [PMID: 27023237 DOI: 10.1007/978-3-319-25979-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eukaryotic cells are characterized by compartmentalization and specialization of metabolism within membrane-bound organelles. Nevertheless, many fundamental processes extend across multiple subcellular compartments. Here, we describe and assess the pathways and cellular organization of triacylglycerol biosynthesis in microalgae. In particular, we emphases the dynamic interplay among the endoplasmic reticulum, lipid droplets and chloroplasts in acyl remodeling and triacylglycerol accumulation under nitrogen starvation in the model alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Carl Andre
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
109
|
Abstract
Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
110
|
Warakanont J, Tsai CH, Michel EJS, Murphy GR, Hsueh PY, Roston RL, Sears BB, Benning C. Chloroplast lipid transfer processes in Chlamydomonas reinhardtii involving a TRIGALACTOSYLDIACYLGLYCEROL 2 (TGD2) orthologue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1005-20. [PMID: 26496373 DOI: 10.1111/tpj.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 05/10/2023]
Abstract
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl-constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER-to-chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.
Collapse
Affiliation(s)
- Jaruswan Warakanont
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Chia-Hong Tsai
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elena J S Michel
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - George R Murphy
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Peter Y Hsueh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Rebecca L Roston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Barbara B Sears
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
111
|
Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sedbrook J, Benning C. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues. PLANT PHYSIOLOGY 2015; 169:1836-47. [PMID: 26419778 PMCID: PMC4634098 DOI: 10.1104/pp.15.01236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/25/2015] [Indexed: 05/04/2023]
Abstract
Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - Jacob Munz
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - Cynthia Cass
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - Que Kong
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - Wei Ma
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - John Sedbrook
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology (Y.Y., A.Z., Q.K., C.B.), Great Lakes Bioenergy Research Center (Y.Y., J.M., C.C., A.Z., Q.K., W.M., S., J.S., C.B.), and Department of Plant Biology (W.M.), Michigan State University, East Lansing, Michigan 48824;School of Biological Sciences, Illinois State University, Normal, Illinois 61790 (J.M., C.C., J.S.); andMichigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824 (Y.Y., A.Z., Q.K., W.M., C.B.)
| |
Collapse
|
112
|
Chen G, Woodfield HK, Pan X, Harwood JL, Weselake RJ. Acyl-Trafficking During Plant Oil Accumulation. Lipids 2015; 50:1057-68. [DOI: 10.1007/s11745-015-4069-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022]
|
113
|
Fan J, Zhai Z, Yan C, Xu C. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids. THE PLANT CELL 2015; 27:2941-55. [PMID: 26410300 PMCID: PMC4682317 DOI: 10.1105/tpc.15.00394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 05/20/2023]
Abstract
The biogenesis of photosynthetic membranes in the plastids of higher plants requires an extensive supply of lipid precursors from the endoplasmic reticulum (ER). Four TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins (TGD1,2,3,4) have thus far been implicated in this lipid transfer process. While TGD1, TGD2, and TGD3 constitute an ATP binding cassette transporter complex residing in the plastid inner envelope, TGD4 is a transmembrane lipid transfer protein present in the outer envelope. These observations raise questions regarding how lipids transit across the aqueous intermembrane space. Here, we describe the isolation and characterization of a novel Arabidopsis thaliana gene, TGD5. Disruption of TGD5 results in similar phenotypic effects as previously described in tgd1,2,3,4 mutants, including deficiency of ER-derived thylakoid lipids, accumulation of oligogalactolipids, and triacylglycerol. Genetic analysis indicates that TGD4 is epistatic to TGD5 in ER-to-plastid lipid trafficking, whereas double mutants of a null tgd5 allele with tgd1-1 or tgd2-1 show a synergistic embryo-lethal phenotype. TGD5 encodes a small glycine-rich protein that is localized in the envelope membranes of chloroplasts. Coimmunoprecipitation assays show that TGD5 physically interacts with TGD1, TGD2, TGD3, and TGD4. Collectively, these results suggest that TGD5 facilitates lipid transfer from the outer to the inner plastid envelope by bridging TGD4 with the TGD1,2,3 transporter complex.
Collapse
Affiliation(s)
- Jilian Fan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Zhiyang Zhai
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chengshi Yan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
114
|
D'Andrea S. Lipid droplet mobilization: The different ways to loosen the purse strings. Biochimie 2015; 120:17-27. [PMID: 26187474 DOI: 10.1016/j.biochi.2015.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/11/2015] [Indexed: 01/25/2023]
Abstract
Cytosolic lipid droplets are dynamic lipid-storage organelles that play a crucial role as reservoirs of metabolic energy and membrane precursors. These organelles are present in virtually all cell types, from unicellular to pluricellular organisms. Despite similar structural organization, lipid droplets are heterogeneous in morphology, distribution and composition. The protein repertoire associated to lipid droplet controls the organelle dynamics. Distinct structural lipid droplet proteins are associated to specific lipolytic pathways. The role of these structural lipid droplet-associated proteins in the control of lipid droplet degradation and lipid store mobilization is discussed. The control of the strictly-regulated lipolysis in lipid-storing tissues is compared between mammals and plants. Differences in the cellular regulation of lipolysis between lipid-storing tissues and other cell types are also discussed.
Collapse
Affiliation(s)
- Sabine D'Andrea
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France.
| |
Collapse
|
115
|
Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:504-522. [PMID: 25660108 DOI: 10.1111/tpj.12787] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 05/03/2023]
Abstract
Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Wayne Riekhof
- School of Biological Sciences and Center for Biological Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
116
|
Craddock CP, Adams N, Bryant FM, Kurup S, Eastmond PJ. PHOSPHATIDIC ACID PHOSPHOHYDROLASE Regulates Phosphatidylcholine Biosynthesis in Arabidopsis by Phosphatidic Acid-Mediated Activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE Activity. THE PLANT CELL 2015; 27:1251-64. [PMID: 25862304 PMCID: PMC4558698 DOI: 10.1105/tpc.15.00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/19/2015] [Indexed: 05/04/2023]
Abstract
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.
Collapse
Affiliation(s)
- Christian P Craddock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nicolette Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Fiona M Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Smita Kurup
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
117
|
Pan X, Peng FY, Weselake RJ. Genome-wide analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs. PLANT PHYSIOLOGY 2015; 167:887-904. [PMID: 25585619 PMCID: PMC4348769 DOI: 10.1104/pp.114.253658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs.
Collapse
Affiliation(s)
- Xue Pan
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Fred Y Peng
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Randall J Weselake
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
118
|
Vu HS, Roston R, Shiva S, Hur M, Wurtele ES, Wang X, Shah J, Welti R. Modifications of membrane lipids in response to wounding of Arabidopsis thaliana leaves. PLANT SIGNALING & BEHAVIOR 2015; 10:e1056422. [PMID: 26252884 PMCID: PMC4883853 DOI: 10.1080/15592324.2015.1056422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mechanical wounding of Arabidopsis thaliana leaves results in modifications of most membrane lipids within 6 hours. Here, we discuss the lipid changes, their underlying biochemistry, and possible relationships among activated pathways. New evidence is presented supporting the role of the processive galactosylating enzyme SENSITIVE TO FREEZING2 in the wounding response.
Collapse
Affiliation(s)
- Hieu Sy Vu
- Kansas Lipidomics Research Center; Division of Biology; Kansas State University; Manhattan, KS USA
- Department of Biochemistry and Center for Plant Science Innovation; University of Nebraska-Lincoln; Lincoln, NE USA
| | - Rebecca Roston
- Department of Biochemistry and Center for Plant Science Innovation; University of Nebraska-Lincoln; Lincoln, NE USA
| | - Sunitha Shiva
- Kansas Lipidomics Research Center; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Manhoi Hur
- Department of Genetics, Development, and Cell Biology; Iowa State University; Ames, IA USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development, and Cell Biology; Iowa State University; Ames, IA USA
| | - Xuemin Wang
- Department of Biology; University of Missouri; Donald Danforth Plant Science Center; St. Louis, MO USA
| | - Jyoti Shah
- Department of Biological Sciences; University of North Texas; Denton, TX USA
| | - Ruth Welti
- Kansas Lipidomics Research Center; Division of Biology; Kansas State University; Manhattan, KS USA
- Correspondence to: Ruth Welti;
| |
Collapse
|
119
|
Li Q, Shao J, Tang S, Shen Q, Wang T, Chen W, Hong Y. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2015; 6:1015. [PMID: 26635841 PMCID: PMC4652056 DOI: 10.3389/fpls.2015.01015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 05/05/2023]
Abstract
Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.
Collapse
|
120
|
Mach J. Lipids in leaves: fatty acid β-oxidation affects lipid homeostasis. THE PLANT CELL 2014; 26:3827. [PMID: 25351489 PMCID: PMC4247593 DOI: 10.1105/tpc.114.133447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|