101
|
Moreno-Risueno MA, Sozzani R, Yardımcı GG, Petricka JJ, Vernoux T, Blilou I, Alonso J, Winter CM, Ohler U, Scheres B, Benfey PN. Transcriptional control of tissue formation throughout root development. Science 2016; 350:426-30. [PMID: 26494755 DOI: 10.1126/science.aad1171] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tissue patterns are dynamically maintained. Continuous formation of plant tissues during postembryonic growth requires asymmetric divisions and the specification of cell lineages. We show that the BIRDs and SCARECROW regulate lineage identity, positional signals, patterning, and formative divisions throughout Arabidopsis root growth. These transcription factors are postembryonic determinants of the ground tissue stem cells and their lineage. Upon further activation by the positional signal SHORT-ROOT (a mobile transcription factor), they direct asymmetric cell divisions and patterning of cell types. The BIRDs and SCARECROW with SHORT-ROOT organize tissue patterns at all formative steps during growth, ensuring developmental plasticity.
Collapse
Affiliation(s)
- Miguel A Moreno-Risueno
- Department of Biotechnology, Center for Plant Genomics and Biotechnology, Universidad Politecnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Rosangela Sozzani
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Galip Gürkan Yardımcı
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Jalean J Petricka
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 69364 Lyon, France
| | - Ikram Blilou
- Department of Plant Biology, Wageningen University Research, Wageningen, Netherlands
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Cara M Winter
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ben Scheres
- Department of Plant Biology, Wageningen University Research, Wageningen, Netherlands
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
102
|
Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, Kinoshita T, Nakamichi N. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. THE PLANT CELL 2016; 28:696-711. [PMID: 26941090 PMCID: PMC4826007 DOI: 10.1105/tpc.15.00737] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/11/2016] [Accepted: 02/26/2016] [Indexed: 05/18/2023]
Abstract
The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5.
Collapse
Affiliation(s)
- Mari Kamioka
- School of Agriculture, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Saori Takao
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takamasa Suzuki
- Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan College of Bioscience and Biotechnology, Chub University, Kasugai 487-8501, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Kyomi Taki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan Exploratory Research for Advanced Technology (ERATO) Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Norihito Nakamichi
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
103
|
Fisher AP, Sozzani R. Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:38-43. [PMID: 26707611 DOI: 10.1016/j.pbi.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Stem cells are the source of different cell types and tissues in all multicellular organisms. In plants, the balance between stem cell self-renewal and differentiation of their progeny is crucial for correct tissue and organ formation. How transcriptional programs precisely control stem cell maintenance and identity, and what are the regulatory programs influencing stem cell asymmetric cell division (ACD), are key questions that researchers have sought to address for the past decade. Successful efforts in genetic, molecular, and developmental biology, along with mathematical modeling, have identified some of the players involved in stem cell regulation. In this review, we will discuss several studies that characterized many of the genetic programs and molecular mechanisms regulating stem cell ACD and their identity in the Arabidopsis root. We will also highlight how the growing use of mathematical modeling provides a comprehensive and quantitative perspective on the design rules governing stem cell ACDs.
Collapse
Affiliation(s)
- Adam P Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
104
|
Long Y, Goedhart J, Schneijderberg M, Terpstra I, Shimotohno A, Bouchet BP, Akhmanova A, Gadella TWJ, Heidstra R, Scheres B, Blilou I. SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:773-84. [PMID: 26415082 DOI: 10.1111/tpj.13038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 05/27/2023]
Abstract
Intercellular signaling through trafficking of regulatory proteins is a widespread phenomenon in plants and can deliver positional information for the determination of cell fate. In the Arabidopsis root meristem, the cell fate determinant SHORT-ROOT (SHR), a GRAS domain transcription factor, acts as a signaling molecule from the stele to the adjacent layer to specify endodermal cell fate. Upon exiting the stele, SHR activates another GRAS domain transcription factor, SCARCROW (SCR), which, together with several BIRD/INDETERMINATE DOMAIN proteins, restricts movement of SHR to define a single cell layer of endodermis. Here we report that endodermal cell fate also requires the joint activity of both SCR and its closest homologue SCARECROW-LIKE23 (SCL23). We show that SCL23 protein moves with zonation-dependent directionality. Within the meristem, SCL23 exhibits short-ranged movement from ground tissue to vasculature. Away from the meristem, SCL23 displays long-range rootward movement into meristematic vasculature and a bidirectional radial spread, respectively. As a known target of SHR and SCR, SCL23 also interacts with SCR and SHR and can restrict intercellular outspread of SHR without relying on nuclear retention as SCR does. Collectively, our data show that SCL23 is a mobile protein that controls movement of SHR and acts redundantly with SCR to specify endodermal fate in the root meristem.
Collapse
Affiliation(s)
- Yuchen Long
- Plant Developmental Biology, Plant Sciences, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708PB, the Netherlands
- Molecular Genetics, Department Biology, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | | | - Inez Terpstra
- Molecular Genetics, Department Biology, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Akie Shimotohno
- Molecular Genetics, Department Biology, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Benjamin P Bouchet
- Cell Biology, Department Biology, Utrecht University, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Department Biology, Utrecht University, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Renze Heidstra
- Plant Developmental Biology, Plant Sciences, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708PB, the Netherlands
- Molecular Genetics, Department Biology, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Ben Scheres
- Plant Developmental Biology, Plant Sciences, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708PB, the Netherlands
- Molecular Genetics, Department Biology, Padualaan 8, Utrecht, 3581CH, the Netherlands
| | - Ikram Blilou
- Plant Developmental Biology, Plant Sciences, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708PB, the Netherlands
- Molecular Genetics, Department Biology, Padualaan 8, Utrecht, 3581CH, the Netherlands
| |
Collapse
|
105
|
MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proc Natl Acad Sci U S A 2015; 112:12099-104. [PMID: 26371322 DOI: 10.1073/pnas.1515576112] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells are defined by their ability to self-renew and produce daughter cells that proliferate and mature. These maturing cells transition from a proliferative state to a terminal state through the process of differentiation. In the Arabidopsis thaliana root the transcription factors SCARECROW and SHORTROOT regulate specification of the bipotent stem cell that gives rise to cortical and endodermal progenitors. Subsequent progenitor proliferation and differentiation generate mature endodermis, marked by the Casparian strip, a cell-wall modification that prevents ion diffusion into and out of the vasculature. We identified a transcription factor, MYB DOMAIN PROTEIN 36 (MYB36), that regulates the transition from proliferation to differentiation in the endodermis. We show that SCARECROW directly activates MYB36 expression, and that MYB36 likely acts in a feed-forward loop to regulate essential Casparian strip formation genes. We show that myb36 mutants have delayed and defective barrier formation as well as extra divisions in the meristem. Our results demonstrate that MYB36 is a critical positive regulator of differentiation and negative regulator of cell proliferation.
Collapse
|
106
|
Drisch RC, Stahl Y. Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance. FRONTIERS IN PLANT SCIENCE 2015; 6:505. [PMID: 26217359 PMCID: PMC4491714 DOI: 10.3389/fpls.2015.00505] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 05/20/2023]
Abstract
Plant roots are essential for overall plant development, growth, and performance by providing anchorage in the soil and uptake of nutrients and water. The primary root of higher plants derives from a group of pluripotent, mitotically active stem cells residing in the root apical meristem (RAM) which provides the basis for growth, development, and regeneration of the root. The stem cells in the Arabidopsis thaliana RAM are surrounding the quiescent center (QC), which consists of a group of rarely dividing cells. The QC maintains the stem cells in a non-cell-autonomous manner and prevents them from differentiation. The necessary dynamic but also tight regulation of the transition from stem cell fate to differentiation most likely requires complex regulatory mechanisms to integrate external and internal cues. Transcription factors play a central role in root development and are regulated by phytohormones, small signaling molecules, and miRNAs. In this review we give a comprehensive overview about the function and regulation of specific transcription factors controlling stem cell fate and root apical meristem maintenance and discuss the possibility of TF complex formation, subcellular translocations and cell-to-cell movement functioning as another level of regulation.
Collapse
Affiliation(s)
| | - Yvonne Stahl
- *Correspondence: Yvonne Stahl, Institute for Developmental Genetics, Heinrich-Heine-University, Universitätsstrasse 1, Düsseldorf, NRW, Germany,
| |
Collapse
|
107
|
Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. THE PLANT CELL 2010; 22:2537-2544. [PMID: 20693355 DOI: 10.1007/978-3-319-45105-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
C(4) photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C(4) photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C(4) traits into C(3) crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C(4) photosynthesis has limited progress in dissecting the regulatory networks underlying the C(4) syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C(4) grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C(4) photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C(4) photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.
Collapse
Affiliation(s)
- Thomas P Brutnell
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|