101
|
Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM. Multiple Routes of Light Signaling during Root Photomorphogenesis. TRENDS IN PLANT SCIENCE 2017; 22:803-812. [PMID: 28705537 DOI: 10.1016/j.tplants.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
102
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
103
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
104
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
105
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
106
|
Sakaguchi J, Watanabe Y. Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth. Sci Rep 2017; 7:1808. [PMID: 28500288 PMCID: PMC5431926 DOI: 10.1038/s41598-017-01872-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/05/2017] [Indexed: 02/02/2023] Open
Abstract
Many attempts have been made to characterize the activities of brassinosteroids (BRs), which are important plant hormones. The crosstalk between light perception and the BR signalling pathway has been extensively studied regarding its effects on photomorphogenesis, especially in elongating etiolated hypocotyls. In contrast, how and where the light induces BR biosynthesis remain uncharacterized. DWF4 is one of the main enzymes involved in the BR biosynthesis pathway in Arabidopsis thaliana. We established DWF4-GUS A. thaliana lines in a homozygous dwf4-102 genetic background, but functionally complemented with a genomic DWF4 sequence fused in-frame with a β-glucuronidase (GUS) marker gene. The DWF4-GUS plants enabled the visualization of the accumulation of DWF4 under different conditions. We investigated the effects of aboveground light on root and hypocotyl growth. We observed that root length increased when shoots were maintained under light irrespective of whether roots were exposed to light. We also determined that light perception in aerial tissues enhanced DWF4 accumulation in the root tips. Overall, our data indicate that BR biosynthesis is promoted in the root tip regions by an unknown mechanism in distantly located shoot tissues exposed to light, leading to increased root growth.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
107
|
Qu Y, Liu S, Bao W, Xue X, Ma Z, Yokawa K, Baluška F, Wan Y. Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods. Int J Mol Sci 2017; 18:ijms18050951. [PMID: 28467358 PMCID: PMC5454864 DOI: 10.3390/ijms18050951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the light conditions in dark chambers, and found that the highest light intensity was dramatically reduced deeper in the dark chamber. In the bottom and side parts of dark chambers, roots were almost completely shaded. Using the high-throughput RNA sequencing method on the whole RNA extraction from roots, we compared the global gene expression levels in roots of seedlings from these two conditions and identified 141 differently expressed genes (DEGs) between them. According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were most affected among all annotated pathways. Surprisingly, no genes of known plant photoreceptors were identified as DEGs by this method. Considering that the light intensity was decreased in the IPG system, we collected four sections (1.5 cm for each) of Arabidopsis roots grown in TPG and IPG conditions, and the spatial-related differential gene expression levels of plant photoreceptors and polar auxin transporters, including CRY1, CRY2, PHYA, PHYB, PHOT1, PHOT2, and UVR8 were analyzed by qRT-PCR. Using these results, we generated a map of the spatial-related expression patterns of these genes under IPG and TPG conditions. The expression levels of light-related genes in roots is highly sensitive to illumination and it provides a background reference for selecting an improved culture method for laboratory-maintained Arabidopsis seedlings.
Collapse
Affiliation(s)
- Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Shuai Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Wenlong Bao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Xian Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China.
| | - Zhengwen Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Ken Yokawa
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany.
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
108
|
Ramirez-Parra E, Perianez-Rodriguez J, Navarro-Neila S, Gude I, Moreno-Risueno MA, Del Pozo JC. The transcription factor OBP4 controls root growth and promotes callus formation. THE NEW PHYTOLOGIST 2017; 213:1787-1801. [PMID: 27859363 DOI: 10.1111/nph.14315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/26/2016] [Indexed: 05/27/2023]
Abstract
Plant growth and development require a continuous balance between cell division and differentiation. In root meristems, differentiated cells acquire specialized functions, losing their mitotic potential. Some plant cells, such as pericycle cells, have a remarkable plasticity to regenerate new organs. The molecular mechanisms underlying cell reprogramming are not completely known. In this work, a functional screening of transcription factors identified Arabidopsis OBP4 (OBF Binding Protein 4) as a novel regulator of root growth and cell elongation and differentiation. Overexpression of OBP4 regulates the levels of a large number of transcripts in roots, many involved in hormonal signaling and callus formation. OBP4 controls cell elongation and differentiation in root cells. OBP4 does not induce cell division in the root meristem, but promotes pericycle cell proliferation, forming callus-like structures at the root tip, as shown by the expression of stem cell markers. Callus formation is enhanced by ectopic expression of OBP4 in the wild-type or alf4-1, but is significantly reduced in roots that have lower levels of OBP4. Our data provide molecular insights into how differentiated root cells acquire the potential to generate callus, a pluripotent mass of cells that can regenerate fully functional plant organs.
Collapse
Affiliation(s)
- Elena Ramirez-Parra
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Juan Perianez-Rodriguez
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Inmaculada Gude
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
109
|
Jin M, Zhang X, Zhao M, Deng M, Du Y, Zhou Y, Wang S, Tohge T, Fernie AR, Willmitzer L, Brotman Y, Yan J, Wen W. Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis. BMC PLANT BIOLOGY 2017; 17:17. [PMID: 28100172 PMCID: PMC5242060 DOI: 10.1186/s12870-017-0972-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/05/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Flavonoids constitute a diverse class of secondary metabolites which exhibit potent bioactivities for human health and have been indicated to play an important role in plant development and defense. However, accumulation and variation of flavonoid content in diverse maize lines and the genes responsible for their biosynthesis in this important crop remain largely unknown. In this study, we combine genetic mapping, metabolite profiling and gene regulatory network analysis to further enhance understanding of the maize flavonoid pathway. RESULTS We repeatedly detected 25 QTL corresponding to 23 distinct flavonoids across different environments or populations. In addition, a total of 39 genes were revealed both by an expression based network analysis and genetic mapping. Finally, the function of three candidate genes, including two UDP-glycosyltransferases (UGT) and an oxygenase which belongs to the flavone synthase super family, was revealed via preliminary molecular functional characterization. CONCLUSION We explored the genetic influences on the flavonoid biosynthesis based on integrating the genomic, transcriptomic and metabolomic information which provided a rich source of potential candidate genes. The integrated genomics based genetic mapping strategy is highly efficient for defining the complexity of functional genetic variants and their respective regulatory networks as well as in helping to select candidate genes and allelic variance before embarking on laborious transgenic validations.
Collapse
Affiliation(s)
- Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuanhao Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Takayuki Tohge
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
110
|
Tohge T, Fernie AR. Specialized Metabolites of the Flavonol Class Mediate Root Phototropism and Growth. MOLECULAR PLANT 2016; 9:1554-1555. [PMID: 27845216 DOI: 10.1016/j.molp.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 05/12/2023]
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
111
|
Reactive Oxygen Species: From Harmful Molecules to Fine-Tuning Regulators of Stem Cell Niche Maintenance. PLoS Genet 2016; 12:e1006251. [PMID: 27583383 PMCID: PMC5008634 DOI: 10.1371/journal.pgen.1006251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|