101
|
Wang C, Liu R, Lim GH, de Lorenzo L, Yu K, Zhang K, Hunt AG, Kachroo A, Kachroo P. Pipecolic acid confers systemic immunity by regulating free radicals. SCIENCE ADVANCES 2018; 4:eaar4509. [PMID: 29854946 PMCID: PMC5976275 DOI: 10.1126/sciadv.aar4509] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
Pipecolic acid (Pip), a non-proteinaceous product of lysine catabolism, is an important regulator of immunity in plants and humans alike. In plants, Pip accumulates upon pathogen infection and has been associated with systemic acquired resistance (SAR). However, the molecular mechanisms underlying Pip-mediated signaling and its relationship to other known SAR inducers remain unknown. We show that in plants, Pip confers SAR by increasing levels of the free radicals, nitric oxide (NO), and reactive oxygen species (ROS), which act upstream of glycerol-3-phosphate (G3P). Plants defective in NO, ROS, G3P, or salicylic acid (SA) biosynthesis accumulate reduced Pip in their distal uninfected tissues although they contain wild-type-like levels of Pip in their infected leaves. These data indicate that de novo synthesis of Pip in distal tissues is dependent on both SA and G3P and that distal levels of SA and G3P play an important role in SAR. These results also suggest a unique scenario whereby metabolites in a signaling cascade can stimulate each other's biosynthesis depending on their relative levels and their site of action.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Kai Zhang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, P.R. China
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
- Corresponding author.
| |
Collapse
|
102
|
|
103
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
104
|
Xu B, Fan Z, Lei Y, Ping Y, Jaisi A, Xiao Y. Insights into Pipecolic Acid Biosynthesis in Huperzia serrata. Org Lett 2018; 20:2195-2198. [DOI: 10.1021/acs.orglett.8b00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Baofu Xu
- CAS Key Laboratory of Synthetic Biology, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhen Fan
- CAS Key Laboratory of Synthetic Biology, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yongxing Lei
- CAS Key Laboratory of Synthetic Biology, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yu Ping
- CAS Key Laboratory of Synthetic Biology, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Amit Jaisi
- CAS Key Laboratory of Synthetic Biology, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- CAS-JIC Centre
of
Excellence in Plant and Microbial Sciences, Shanghai, 200032, China
| |
Collapse
|
105
|
Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T, Ganter C, Zeier J. Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity. Cell 2018; 173:456-469.e16. [PMID: 29576453 DOI: 10.1016/j.cell.2018.02.049] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022]
Abstract
Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Denis Kim
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Michele Hohmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Torsten Hölzel
- Institute of Inorganic and Structural Chemistry, Department of Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Ganter
- Institute of Inorganic and Structural Chemistry, Department of Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
106
|
Banday ZZ, Nandi AK. Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:464-475. [PMID: 28093893 PMCID: PMC6638090 DOI: 10.1111/mpp.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
A partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence-related genes. However, the mechanisms by which mobile signals contribute to epigenetic changes are little known. Previously, we have shown that the Arabidopsis REDUCED SYSTEMIC IMMUNITY 1 (RSI1, alias FLOWERING LOCUS D; FLD), which codes for a putative histone demethylase, is required for the activation of SAR. Here, we report the identification of GLUTATHIONE-S-TRANSFERASE THETA 2 (GSTT2) as an interacting factor of FLD. GSTT2 expression increases in pathogen-inoculated as well as pathogen-free distal tissues. The loss-of-function mutant of GSTT2 is compromised for SAR, but activates normal local resistance. Complementation lines of GSTT2 support its role in SAR activation. The distal tissues of gstt2 mutant plants accumulate significantly less salicylic acid (SA) and express a reduced level of the SA biosynthetic gene PAL1. In agreement with the established histone modification activity of FLD, gstt2 mutant plants accumulate an enhanced level of methylated and acetylated histones in the promoters of WRKY6 and WRKY29 genes. Together, these results demonstrate that GSTT2 is an interactor of FLD, which is required for SAR and SAR-associated epigenetic modifications.
Collapse
Affiliation(s)
| | - Ashis Kumar Nandi
- School of Life SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
107
|
Maksym RP, Ghirardo A, Zhang W, von Saint Paul V, Lange B, Geist B, Hajirezaei MR, Schnitzler JP, Schäffner AR. The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related 2-Hydroxy Carboxylic Acids. FRONTIERS IN PLANT SCIENCE 2018; 9:766. [PMID: 29937770 PMCID: PMC6002512 DOI: 10.3389/fpls.2018.00766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/17/2018] [Indexed: 05/18/2023]
Abstract
The branched-chain amino acid (BCAA) related 2-hydroxy carboxylic acid isoleucic acid (ILA) enhances salicylic acid-mediated pathogen defense in Arabidopsis thaliana. ILA has been identified in A. thaliana as its glucose conjugate correlated with the activity of the small-molecule glucosyltransferase UGT76B1, which can glucosylate both salicylic acid and ILA in vitro. However, endogenous levels of the ILA aglycon have not yet been determined in planta. To quantify ILA as well as the related leucic acid (LA) and valic acid (VA) in plant extracts, a sensitive method based on the derivatization of small carboxylic acids by silylation and gas chromatography-mass spectrometric analysis was developed. ILA was present in all species tested including several monocotyledonous and dicotyledonous plants as well as broadleaf and coniferous trees, whereas LA and VA were only detectable in a few species. In A. thaliana both ILA and LA were found. However, their levels varied during plant growth and in root vs. leaves. ILA levels were higher in 2-week-old leaves and decreased in older plants, whereas LA exhibited a reverted accumulation pattern. Roots displayed higher ILA and LA levels compared to leaves. ILA was inversely related to UGT76B1 expression level indicating that UGT76B1 glucosylates ILA in planta. In contrast, LA was not affected by the expression of UGT76B1. To address the relation of both 2-hydroxy acids to plant defense, we studied ILA and LA levels upon infection by Pseudomonas syringae. LA abundance remained unaffected, whereas ILA was reduced. This change suggests an ILA-related attenuation of the salicylic acid response. Collectively, the BCAA-related ILA and LA differentially accumulated in Arabidopsis, supporting a specific role and regulation of the defense-modulating small-molecule ILA among these 2-hydroxy acids. The new sensitive method will pave the way to further unravel their role in plants.
Collapse
Affiliation(s)
- Rafał P. Maksym
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Andrea Ghirardo
- Research Unit for Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Wei Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | | | - Birgit Lange
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Mohammad-Reza Hajirezaei
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jörg-Peter Schnitzler
- Research Unit for Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Anton R. Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Anton R. Schäffner,
| |
Collapse
|
108
|
Sun T, Busta L, Zhang Q, Ding P, Jetter R, Zhang Y. TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). THE NEW PHYTOLOGIST 2018; 217:344-354. [PMID: 28898429 DOI: 10.1111/nph.14780] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/07/2017] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) and pipecolic acid (Pip) play important roles in plant immunity. Here we analyzed the roles of transcription factors TGACG-BINDING FACTOR 1 (TGA1) and TGA4 in regulating SA and Pip biosynthesis in Arabidopsis thaliana. We quantified the expression levels of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), which encode two master transcription factors of plant immunity, and the accumulation of SA and Pip in tga1-1 tga4-1 mutant plants. We tested whether SARD1 and CBP60g are direct targets of TGA1 by chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR). In addition to promoting pathogen-induced SA biosynthesis, we found that SARD1 and CBP60g also positively regulated Pip biosynthesis by targeting genes encoding key biosynthesis enzymes of Pip. TGA1/TGA4 were required for full induction of SARD1 and CBP60g in plant defense. ChIP-PCR analysis showed that SARD1 was a direct target of TGA1. In tga1-1 tga4-1 mutant plants, the expression levels of SARD1 and CBP60g along with SA and Pip accumulation following pathogen infection were dramatically reduced compared with those in wild-type plants. Consistent with reduced expression of SARD1 and CBP60g, pathogen-associated molecular pattern (PAMP)-induced pathogen resistance and systemic acquired resistance were compromised in tga1-1 tga4-1. Our study showed that TGA1 and TGA4 regulate Pip and SA biosynthesis by modulating the expression of SARD1 and CBP60g.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qian Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pingtao Ding
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
109
|
Dilla-Ermita CJ, Tandayu E, Juanillas VM, Detras J, Lozada DN, Dwiyanti MS, Vera Cruz C, Mbanjo EGN, Ardales E, Diaz MG, Mendioro M, Thomson MJ, Kretzschmar T. Genome-wide Association Analysis Tracks Bacterial Leaf Blight Resistance Loci In Rice Diverse Germplasm. RICE (NEW YORK, N.Y.) 2017; 10:8. [PMID: 28321828 PMCID: PMC5359197 DOI: 10.1186/s12284-017-0147-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/23/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND A range of resistance loci against different races of Xanthomonas oryzae pv. oryzae (Xoo), the pathogen causing bacterial blight (BB) disease of rice, have been discovered and characterized. Several have been deployed in modern varieties, however, due to rapid evolution of Xoo, a number have already become ineffective. The continuous "arms race" between Xoo and rice makes it imperative to discover new resistance loci to enable durable deployment of multiple resistance genes in modern breeding lines. Rice diversity panels can be exploited as reservoirs of useful genetic variation for bacterial blight (BB) resistance. This study was conducted to identify loci associated to BB resistance, new genetic donors and useful molecular markers for marker-assisted breeding. RESULTS A genome-wide association study (GWAS) of BB resistance using a diverse panel of 285 rice accessions was performed to identify loci that are associated with resistance to nine Xoo strains from the Philippines, representative of eight global races. Single nucleotide polymorphisms (SNPs) associated with differential resistance were identified in the diverse panel and a subset of 198 indica accessions. Strong associations were found for novel SNPs linked with known bacterial blight resistance Xa genes, from which high utility markers for tracking and selection of resistance genes in breeding programs were designed. Furthermore, significant associations of SNPs in chromosomes 6, 9, 11, and 12 did not overlap with known resistance loci and hence might prove to be novel sources of resistance. Detailed analysis revealed haplotypes that correlated with resistance and analysis of putative resistance alleles identified resistant genotypes as potential donors of new resistance genes. CONCLUSIONS The results of the GWAS validated known genes underlying resistance and identified novel loci that provide useful targets for further investigation. SNP markers and genetic donors identified in this study will help plant breeders in improving and diversifying resistance to BB.
Collapse
Affiliation(s)
- Christine Jade Dilla-Ermita
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Erwin Tandayu
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Venice Margarette Juanillas
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Jeffrey Detras
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Dennis Nicuh Lozada
- Crop, Soil, and Environmental Science, University of Arkansas, Fayettevile, AR, USA
| | - Maria Stefanie Dwiyanti
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Casiana Vera Cruz
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Edwige Gaby Nkouaya Mbanjo
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Edna Ardales
- Crop Protection Cluster, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Maria Genaleen Diaz
- Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Merlyn Mendioro
- Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines
| | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Tobias Kretzschmar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
110
|
Kamatham S, Pallu R, Pasupulati AK, Singh SS, Gudipalli P. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis. PHYTOCHEMISTRY 2017; 143:160-169. [PMID: 28818753 DOI: 10.1016/j.phytochem.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis.
Collapse
Affiliation(s)
- Samuel Kamatham
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | | | - Padmaja Gudipalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
111
|
Rotsch AH, Kopka J, Feussner I, Ischebeck T. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:129-146. [PMID: 28685881 DOI: 10.1111/tpj.13633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
While changes in the transcriptome and proteome of developing pollen have been investigated in tobacco and other species, the metabolic consequences remain rather unclear. Here, a broad range of metabolites was investigated in close succession of developmental stages. Thirteen stages of tobacco male gametophyte development were collected, ranging from tetrads to pollen tubes. Subsequently, the central metabolome and sterol composition were analyzed by GC-mass spectrometry (MS), monitoring 77 metabolites and 29 non-identified analytes. The overall results showed that development and tube growth could be divided into eight metabolic phases with the phase including mitosis I being most distinct. During maturation, compounds such as sucrose and proline accumulated. These were degraded after rehydration, while γ-aminobutyrate transiently increased, possibly deriving from proline breakdown. Sterol analysis revealed that tetrads harbor similar sterols as leaves, but throughout maturation unusual sterols increased. Lastly, two further sterols exclusively accumulated in pollen tubes. This study allows a deeper look into metabolic changes during the development of a quasi-single cell type. Metabolites accumulating during maturation might accelerate pollen germination and tube growth, protect from desiccation, and feed pollinators. Future studies of the underlying processes orchestrating the changes in metabolite levels might give valuable insights into cellular regulation of plant metabolism.
Collapse
Affiliation(s)
- Alexander H Rotsch
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
112
|
Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. PLANT PHYSIOLOGY 2017; 174:124-153. [PMID: 28330936 PMCID: PMC5411157 DOI: 10.1104/pp.17.00222] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Denis Kim
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Ziba Ajami-Rashidi
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| |
Collapse
|