101
|
Zhang W, Corwin JA, Copeland DH, Feusier J, Eshbaugh R, Cook DE, Atwell S, Kliebenstein DJ. Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield. eLife 2019; 8:e44279. [PMID: 31081752 PMCID: PMC6557632 DOI: 10.7554/elife.44279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinereagene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant PathologyKansas State UniversityManhattanUnited States
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Jason A Corwin
- Department of Ecology and Evolution BiologyUniversity of ColoradoBoulderUnited States
| | | | - Julie Feusier
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Robert Eshbaugh
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - David E Cook
- Department of Plant PathologyKansas State UniversityManhattanUnited States
| | - Suzi Atwell
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Daniel J Kliebenstein
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
- DynaMo Center of ExcellenceUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
102
|
Unravelling the Complex Genetics of Karnal Bunt ( Tilletia indica) Resistance in Common Wheat ( Triticum aestivum) by Genetic Linkage and Genome-Wide Association Analyses. G3-GENES GENOMES GENETICS 2019; 9:1437-1447. [PMID: 30824480 PMCID: PMC6505162 DOI: 10.1534/g3.119.400103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Karnal bunt caused by Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur] is a significant biosecurity concern for wheat-exporting countries that are free of the disease. It is a seed-, soil-and air-borne disease with no effective chemical control measures. The current study used data from multi-year field experiments of two bi-parental populations and a genome-wide association (GWA) mapping panel to unravel the genetic basis for resistance in common wheat. Broad-sense heritability for Karnal bunt resistance in the populations varied from 0.52 in the WH542×HD29 population, to 0.61 in the WH542×W485 cross and 0.71 in a GWAS panel. Quantitative trait locus (QTL) analysis with seven years of phenotypic data identified a major locus on chromosome 3B (R2 = 27.8%) and a minor locus on chromosome 1A (R2 = 12.2%), in the WH542×HD29 population, with both parents contributing the high-value alleles. A major locus (R2 = 27.8%) and seven minor loci (R2 = 4.4–15.8%) were detected in the WH542×W485 population. GWA mapping validated QTL regions in the bi-parent populations, but also identified novel loci not previously associated with Karnal bunt resistance. Meta-QTL analysis aligned the results from this study with those reported in wheat over the last two decades. Two major clusters were detected, the first on chromosome 4B, which clustered with Qkb.ksu-4B, QKb.cimmyt-4BL, Qkb.cim-4BL, and the second on chromosome 3B, which clustered with Qkb.cnl-3B, QKb.cimmyt-3BS and Qkb.cim-3BS1. The results provide definitive chromosomal assignments for QTL/genes controlling Karnal bunt resistance in common wheat, and will be useful in pre-emptive breeding against the pathogen in wheat-producing areas that are free of the disease.
Collapse
|
103
|
Badet T, Léger O, Barascud M, Voisin D, Sadon P, Vincent R, Le Ru A, Balagué C, Roby D, Raffaele S. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 222:480-496. [PMID: 30393937 DOI: 10.1111/nph.15580] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Quantitative disease resistance (QDR) is a form of plant immunity widespread in nature, and the only one active against broad host range fungal pathogens. The genetic determinants of QDR are complex and largely unknown, and are thought to rely partly on genes controlling plant morphology and development. We used genome-wide association mapping in Arabidopsis thaliana to identify ARPC4 as associated with QDR against the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Mutants impaired in ARPC4 showed enhanced susceptibility to S. sclerotiorum, defects in the structure of the actin filaments and in their responsiveness to S. sclerotiorum. Disruption of ARPC4 also alters callose deposition and the expression of defense-related genes upon S. sclerotiorum infection. Analysis of ARPC4 diversity in A. thaliana identified one haplotype (ARPC4R ) showing a c. 1 kbp insertion in ARPC4 regulatory region and associated with higher level of QDR. Accessions from the ARPC4R haplotype showed enhanced ARPC4 expression upon S. sclerotiorum challenge, indicating that polymorphisms in ARPC4 regulatory region are associated with enhanced QDR. This work identifies a novel actor of plant QDR against a fungal pathogen and provides a prime example of genetic mechanisms leading to the recruitment of cell morphology processes in plant immunity.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Ophélie Léger
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Marielle Barascud
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Derry Voisin
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Pierre Sadon
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Remy Vincent
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme Imagerie, Pôle de Biotechnologie Végétale, Fédération de Recherche 3450, 31326, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| |
Collapse
|
104
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
105
|
Pokou DN, Fister AS, Winters N, Tahi M, Klotioloma C, Sebastian A, Marden JH, Maximova SN, Guiltinan MJ. Resistant and susceptible cacao genotypes exhibit defense gene polymorphism and unique early responses to Phytophthora megakarya inoculation. PLANT MOLECULAR BIOLOGY 2019; 99:499-516. [PMID: 30739243 DOI: 10.1007/s11103-019-00832-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/24/2019] [Indexed: 05/26/2023]
Abstract
Key genes potentially involved in cacao disease resistance were identified by transcriptomic analysis of important cacao cultivars. Defense gene polymorphisms were identified which could contribute to pathogen recognition capacity. Cacao suffers significant annual losses to the water mold Phytophthora spp. (Oomycetes). In West Africa, P. megakarya poses a major threat to farmer livelihood and the stability of cocoa production. As part of a long-term goal to define key disease resistance genes in cacao, here we use a transcriptomic analysis of the disease-resistant cacao clone SCA6 and the susceptible clone NA32 to characterize basal differences in gene expression, early responses to infection, and polymorphisms in defense genes. Gene expression measurements by RNA-seq along a time course revealed the strongest transcriptomic response 24 h after inoculation in the resistant genotype. We observed strong regulation of several pathogenesis-related genes, pattern recognition receptors, and resistance genes, which could be critical for the ability of SCA6 to combat infection. These classes of genes also showed differences in basal expression between the two genotypes prior to infection, suggesting that prophylactic expression of defense-associated genes could contribute to SCA6's broad-spectrum disease resistance. Finally, we analyzed polymorphism in a set of defense-associated receptors, identifying coding variants between SCA6 and NA32 which could contribute to unique capacities for pathogen recognition. This work is an important step toward characterizing genetic differences underlying a successful defense response in cacao.
Collapse
Affiliation(s)
- Désiré N Pokou
- Centre National de Recherche Agronomique, Laboratoire Central de Biotechnologie, 01 BP 1740, Abidjan 01, Côte d'Ivoire
| | - Andrew S Fister
- Department of Plant Sciences, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
| | - Noah Winters
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mathias Tahi
- Centre National de Recherche Agronomique, Laboratoire Central de Biotechnologie, 01 BP 1740, Abidjan 01, Côte d'Ivoire
| | - Coulibaly Klotioloma
- Centre National de Recherche Agronomique, Laboratoire Central de Biotechnologie, 01 BP 1740, Abidjan 01, Côte d'Ivoire
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - James H Marden
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Siela N Maximova
- Department of Plant Sciences, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark J Guiltinan
- Department of Plant Sciences, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
106
|
Juyo Rojas DK, Soto Sedano JC, Ballvora A, Léon J, Mosquera Vásquez T. Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS One 2019. [PMID: 31310605 DOI: 10.1101/567289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Potato, Solanum tuberosum, is one of the major consumed food in the world, being the basis of the diet of millions of people. The main limiting and destructive disease of potato is late blight, caused by Phytophtora infestans. Here, we present a multi-environmental analysis of the response to P. infestans using an association panel of 150 accessions of S. tuberosum Group Phureja, evaluated in two localities in Colombia. Disease resistance data were merged with a genotyping matrix of 83,862 SNPs obtained by 2b-restriction site-associated DNA and Genotyping by sequencing approaches into a Genome-wide association study. We are reporting 16 organ-specific QTL conferring resistance to late blight. These QTL explain between 13.7% and 50.9% of the phenotypic variance. Six and ten QTL were detected for resistance response in leaves and stem, respectively. In silico analysis revealed 15 candidate genes for resistance to late blight. Four of them have no functional genome annotation, while eleven candidate genes code for diverse proteins, including a leucine-rich repeat kinase.
Collapse
Affiliation(s)
| | | | - Agim Ballvora
- University of Bonn, Institute of Crop Science and Resource Conservation Plant Breeding, Katzenburgweg, Bonn, Germany
| | - Jens Léon
- University of Bonn, Institute of Crop Science and Resource Conservation Plant Breeding, Katzenburgweg, Bonn, Germany
| | - Teresa Mosquera Vásquez
- Universidad Nacional de Colombia, sede Bogotá, Facultad de Ciencias Agrarias, Bogotá, Colombia
| |
Collapse
|
107
|
Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL. Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2019; 10:1314. [PMID: 31681392 PMCID: PMC6813280 DOI: 10.3389/fpls.2019.01314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/20/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is an unusual pathogen which has the broad host range, diverse infection modes, and potential double feeding lifestyles of both biotroph and necrotroph. It is capable of infecting over 400 plant species found worldwide and more than 60 names have agriculturally been used to refer to diseases caused by this pathogen. Plant defense to S. sclerotiorum is a complex biological process and exhibits a typical quantitative disease resistance (QDR) response. Recent studies using Arabidopsis thaliana and crop plants have obtained new advances in mechanisms used by plants to cope with S. sclerotiorum infection. In this review, we focused on our current understanding on plant defense mechanisms against this pathogen, and set up a model for the defense process including three stages: recognition of this pathogen, signal transduction and defense response. We also have a particular interest in defense signaling mediated by diverse signaling molecules. We highlight the current challenges and unanswered questions in both the defense process and defense signaling. Essentially, we discussed candidate resistance genes newly mapped by using high-throughput experiments in important crops, and classified these potential gene targets into different stages of the defense process, which will broaden our understanding of the genetic architecture underlying quantitative resistance to S. sclerotiorum. We proposed that more powerful mapping population(s) will be required for accurate and reliable QDR gene identification.
Collapse
|
108
|
Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: Embracing complexity in host-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:164-181. [PMID: 30466152 DOI: 10.1111/tpj.14170] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 05/18/2023]
Abstract
Environmental sequencing shows that plants harbor complex communities of microbes that vary across environments. However, many approaches for mapping plant genetic variation to microbe-related traits were developed in the relatively simple context of binary host-microbe interactions under controlled conditions. Recent advances in sequencing and statistics make genome-wide association studies (GWAS) an increasingly promising approach for identifying the plant genetic variation associated with microbes in a community context. This review discusses early efforts on GWAS of the plant phyllosphere microbiome and the outlook for future studies based on human microbiome GWAS. A workflow for GWAS of the phyllosphere microbiome is then presented, with particular attention to how perspectives on the mechanisms, evolution and environmental dependence of plant-microbe interactions will influence the choice of traits to be mapped.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Manus P M Thoen
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Benjamin Brachi
- BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France
| | - Andrew D Gloss
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Mohammad H Khan
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
109
|
Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, Templeton K, Deng C, Crowhurst R, Montefiori M, Morgan E, Wotton A, Funnell K, Wiedow C, Knaebel M, Hedderley D, Vanneste J, McCallum J, Hoeata K, Nath A, Chagné D, Gea L, Gardiner SE. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis). HORTICULTURE RESEARCH 2019; 6:101. [PMID: 31645956 PMCID: PMC6804790 DOI: 10.1038/s41438-019-0184-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 05/10/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - Heather Bassett
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Kerry Templeton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | | | - Ed Morgan
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Andrew Wotton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Keith Funnell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Mareike Knaebel
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Amardeep Nath
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| |
Collapse
|
110
|
Fordyce RF, Soltis NE, Caseys C, Gwinner R, Corwin JA, Atwell S, Copeland D, Feusier J, Subedy A, Eshbaugh R, Kliebenstein DJ. Digital Imaging Combined with Genome-Wide Association Mapping Links Loci to Plant-Pathogen Interaction Traits. PLANT PHYSIOLOGY 2018; 178:1406-1422. [PMID: 30266748 PMCID: PMC6236616 DOI: 10.1104/pp.18.00851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 05/04/2023]
Abstract
Plant resistance to generalist pathogens with broad host ranges, such as Botrytis cinerea (Botrytis), is typically quantitative and highly polygenic. Recent studies have begun to elucidate the molecular genetic basis of plant-pathogen interactions using commonly measured traits, including lesion size and/or pathogen biomass. However, with the advent of digital imaging and high-throughput phenomics, there are a large number of additional traits available to study quantitative resistance. In this study, we used high-throughput digital imaging analysis to investigate previously poorly characterized visual traits of plant-pathogen interactions related to disease resistance using the Arabidopsis (Arabidopsis thaliana)/Botrytis pathosystem. From a large collection of visual lesion trait measurements, we focused on color, shape, and size to test how these aspects of the Arabidopsis/Botrytis interaction are genetically related. Through genome-wide association mapping in Arabidopsis, we show that lesion color and shape are genetically separable traits associated with plant disease resistance. Moreover, by employing defined mutants in 23 candidate genes identified from the genome-wide association mapping, we demonstrate links between loci and each of the different plant-pathogen interaction traits. These results expand our understanding of the functional mechanisms driving plant disease resistance.
Collapse
Affiliation(s)
- Rachel F Fordyce
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Celine Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jason A Corwin
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Susana Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Anushriya Subedy
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Robert Eshbaugh
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
111
|
Dita M, Barquero M, Heck D, Mizubuti ESG, Staver CP. Fusarium Wilt of Banana: Current Knowledge on Epidemiology and Research Needs Toward Sustainable Disease Management. FRONTIERS IN PLANT SCIENCE 2018; 9:1468. [PMID: 30405651 PMCID: PMC6202804 DOI: 10.3389/fpls.2018.01468] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 05/10/2023]
Abstract
Banana production is seriously threatened by Fusarium wilt (FW), a disease caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). In the mid-twentieth century FW, also known as "Panama disease", wiped out the Gros Michel banana industry in Central America. The devastation caused by Foc race 1 was mitigated by a shift to resistant Cavendish cultivars, which are currently the source of 99% of banana exports. However, a new strain of Foc, the tropical race 4 (TR4), attacks Cavendish clones and a diverse range of other banana varieties. Foc TR4 has been restricted to East and parts of Southeast Asia for more than 20 years, but since 2010 the disease has spread westward into five additional countries in Southeast and South Asia (Vietnam, Laos, Myanmar, India, and Pakistan) and at the transcontinental level into the Middle East (Oman, Jordan, Lebanon, and Israel) and Africa (Mozambique). The spread of Foc TR4 is of great concern due to the limited knowledge about key aspects of disease epidemiology and the lack of effective management models, including resistant varieties and soil management approaches. In this review we summarize the current knowledge on the epidemiology of FW of banana, highlighting knowledge gaps in pathogen survival and dispersal, factors driving disease intensity, soil and plant microbiome and the dynamics of the disease. Comparisons with FW in other crops were also made to indicate possible differences and commonalities. Our current understanding of the role of main biotic and abiotic factors on disease intensity is reviewed, highlighting research needs and futures directions. Finally, a set of practices and their impact on disease intensity are discussed and proposed as an integrative management approach that could eventually be used by a range of users, including plant protection organizations, researchers, extension workers and growers.
Collapse
Affiliation(s)
- Miguel Dita
- Embrapa Mandioca e Fruticultura, Bahia, Brazil
- Bioversity International, Montpellier, France
| | - Marcia Barquero
- Bioversity International, Montpellier, France
- Institute of Environment, Natural Resources and Biodiversity, Universidad de León, León, Spain
| | - Daniel Heck
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | |
Collapse
|
112
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
113
|
Veloso J, van Kan JAL. Many Shades of Grey in Botrytis-Host Plant Interactions. TRENDS IN PLANT SCIENCE 2018; 23:613-622. [PMID: 29724660 DOI: 10.1016/j.tplants.2018.03.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 05/24/2023]
Abstract
The grey mould Botrytis cinerea causes disease in more than 1000 plant species, including important crops. The interaction between Botrytis and its (potential) hosts is determined by quantitative susceptibility and virulence traits in both interacting partners, resulting in a greyscale of disease outcomes. Fungal infection was long thought to rely mainly on its capacity to kill the host plant and degrade plant tissue. Recent research has revealed that Botrytis exploits two crucial biological processes in host plants for its own success. We highlight recent findings that illustrate that the interactions between Botrytis and its host plants are subtle and we discuss the molecular and cellular mechanisms controlling the many shades of grey during these interactions.
Collapse
Affiliation(s)
- Javier Veloso
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands; Department of Plant Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands.
| |
Collapse
|
114
|
Balan B, Ibáñez AM, Dandekar AM, Caruso T, Martinelli F. Identifying Host Molecular Features Strongly Linked With Responses to Huanglongbing Disease in Citrus Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:277. [PMID: 29541089 PMCID: PMC5836289 DOI: 10.3389/fpls.2018.00277] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46-68 million reads with an alignment percentage of 72.95-86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta 3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four datasets. Gene set enrichment analysis showed some different gene categories affected by HLB disease. Although sucrose and starch metabolism was highly linked with disease symptoms, different genes were significantly regulated depending on leaf growth and infection stages and experimental conditions. Histone-related transcription factors were highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with induction of proteins involved in detoxification. Protein-protein interaction (PPI) network analysis confirmed a possible role for heat shock proteins in curbing disease progression.
Collapse
Affiliation(s)
- Bipin Balan
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ana M. Ibáñez
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Tiziano Caruso
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
- *Correspondence: Federico Martinelli,
| |
Collapse
|
115
|
Badet T, Voisin D, Mbengue M, Barascud M, Sucher J, Sadon P, Balagué C, Roby D, Raffaele S. Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genet 2017; 13:e1007143. [PMID: 29272270 PMCID: PMC5757927 DOI: 10.1371/journal.pgen.1007143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/08/2018] [Accepted: 12/04/2017] [Indexed: 12/28/2022] Open
Abstract
Plant pathogens with a broad host range are able to infect plant lineages that diverged over 100 million years ago. They exert similar and recurring constraints on the evolution of unrelated plant populations. Plants generally respond with quantitative disease resistance (QDR), a form of immunity relying on complex genetic determinants. In most cases, the molecular determinants of QDR and how they evolve is unknown. Here we identify in Arabidopsis thaliana a gene mediating QDR against Sclerotinia sclerotiorum, agent of the white mold disease, and provide evidence of its convergent evolution in multiple plant species. Using genome wide association mapping in A. thaliana, we associated the gene encoding the POQR prolyl-oligopeptidase with QDR against S. sclerotiorum. Loss of this gene compromised QDR against S. sclerotiorum but not against a bacterial pathogen. Natural diversity analysis associated POQR sequence with QDR. Remarkably, the same amino acid changes occurred after independent duplications of POQR in ancestors of multiple plant species, including A. thaliana and tomato. Genome-scale expression analyses revealed that parallel divergence in gene expression upon S. sclerotiorum infection is a frequent pattern in genes, such as POQR, that duplicated both in A. thaliana and tomato. Our study identifies a previously uncharacterized gene mediating QDR against S. sclerotiorum. It shows that some QDR determinants are conserved in distantly related plants and have emerged through the repeated use of similar genetic polymorphisms at different evolutionary time scales.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Derry Voisin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Malick Mbengue
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Justine Sucher
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pierre Sadon
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
116
|
Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:1838. [PMID: 29163575 PMCID: PMC5664368 DOI: 10.3389/fpls.2017.01838] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.
Collapse
Affiliation(s)
- Marie-Laure Pilet-Nayel
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
- PISOM, UMT INRA-Terres Inovia, Le Rheu, France
| | | | - Valérie Caffier
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Josselin Montarry
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Marie-Claire Kerlan
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Sylvain Fournet
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Charles-Eric Durel
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Régine Delourme
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| |
Collapse
|
117
|
Eckardt NA. The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, ROS-RLK Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off. THE PLANT CELL 2017; 29:601-602. [PMID: 28396552 PMCID: PMC5435444 DOI: 10.1105/tpc.17.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
118
|
Sheshukova EV, Komarova TV, Pozdyshev DV, Ershova NM, Shindyapina AV, Tashlitsky VN, Sheval EV, Dorokhov YL. The Intergenic Interplay between Aldose 1-Epimerase-Like Protein and Pectin Methylesterase in Abiotic and Biotic Stress Control. FRONTIERS IN PLANT SCIENCE 2017; 8:1646. [PMID: 28993784 PMCID: PMC5622589 DOI: 10.3389/fpls.2017.01646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
The mechanical damage that often precedes the penetration of a leaf by a pathogen promotes the activation of pectin methylesterase (PME); the activation of PME leads to the emission of methanol, resulting in a "priming" effect on intact leaves, which is accompanied by an increased sensitivity to Tobacco mosaic virus (TMV) and resistance to bacteria. In this study, we revealed that mRNA levels of the methanol-inducible gene encoding Nicotiana benthamiana aldose 1-epimerase-like protein (NbAELP) in the leaves of intact plants are very low compared with roots. However, stress and pathogen attack increased the accumulation of the NbAELP mRNA in the leaves. Using transiently transformed plants, we obtained data to support the mechanism underlying AELP/PME-related negative feedback The insertion of the NbAELP promoter sequence (proNbAELP) into the N. benthamiana genome resulted in the co-suppression of the natural NbAELP gene expression, accompanied by a reduction in the NbAELP mRNA content and increased PME synthesis. Knockdown of NbAELP resulted in high activity of PME in the cell wall and a decrease in the leaf glucose level, creating unfavorable conditions for Agrobacterium tumefaciens reproduction in injected leaves. Our results showed that NbAELP is capable of binding the TMV movement protein (MPTMV) in vitro and is likely to affect the cellular nucleocytoplasmic transport, which may explain the sensitivity of NbAELP knockdown plants to TMV. Although NbAELP was primarily detected in the cell wall, the influence of this protein on cellular PME mRNA levels might be associated with reduced transcriptional activity of the PME gene in the nucleus. To confirm this hypothesis, we isolated the N. tabacum PME gene promoter (proNtPME) and showed the inhibition of proNtPME-directed GFP and GUS expression in leaves when co-agroinjected with the NbAELP-encoding plasmid. We hypothesized that plant wounding and/or pathogen attack lead to PME activation and increased methanol emission, followed by increased NbAELP expression, which results in reversion of PME mRNA level and methanol emission to levels found in the intact plant.
Collapse
Affiliation(s)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Natalia M. Ershova
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Anastasia V. Shindyapina
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Eugene V. Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics (RAS)Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
- *Correspondence: Yuri L. Dorokhov
| |
Collapse
|