101
|
Cheng JCK, Salomon A, Yaqub M, Boellaard R. Investigation of practical initial attenuation image estimates in TOF-MLAA reconstruction for PET/MR. Med Phys 2016; 43:4163. [DOI: 10.1118/1.4953634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
102
|
Comparison between MRI-based attenuation correction methods for brain PET in dementia patients. Eur J Nucl Med Mol Imaging 2016; 43:2190-2200. [PMID: 27094314 DOI: 10.1007/s00259-016-3394-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The combination of Positron Emission Tomography (PET) with magnetic resonance imaging (MRI) in hybrid PET/MRI scanners offers a number of advantages in investigating brain structure and function. A critical step of PET data reconstruction is attenuation correction (AC). Accounting for bone in attenuation maps (μ-map) was shown to be important in brain PET studies. While there are a number of MRI-based AC methods, no systematic comparison between them has been performed so far. The aim of this work was to study the different performance obtained by some of the recent methods presented in the literature. To perform such a comparison, we focused on [18F]-Fluorodeoxyglucose-PET/MRI neurodegenerative dementing disorders, which are known to exhibit reduced levels of glucose metabolism in certain brain regions. METHODS Four novel methods were used to calculate μ-maps from MRI data of 15 patients with Alzheimer's dementia (AD). The methods cover two atlas-based methods, a segmentation method, and a hybrid template/segmentation method. Additionally, the Dixon-based and a UTE-based method, offered by a vendor, were included in the comparison. Performance was assessed at three levels: tissue identification accuracy in the μ-map, quantitative accuracy of reconstructed PET data in specific brain regions, and precision in diagnostic images at identifying hypometabolic areas. RESULTS Quantitative regional errors of -20--10 % were obtained using the vendor's AC methods, whereas the novel methods produced errors in a margin of ±5 %. The obtained precision at identifying areas with abnormally low levels of glucose uptake, potentially regions affected by AD, were 62.9 and 79.5 % for the two vendor AC methods, the former ignoring bone and the latter including bone information. The precision increased to 87.5-93.3 % in average for the four new methods, exhibiting similar performances. CONCLUSION We confirm that the AC methods based on the Dixon and UTE sequences provided by the vendor are inferior to alternative techniques. As a novel finding, there was no substantial difference between the recently proposed atlas-based, template-based and segmentation-based methods.
Collapse
|
103
|
|
104
|
Abstract
Whole-body PET/MR hybrid imaging combines excellent soft tissue contrast and various functional imaging parameters provided by MR with high sensitivity and quantification of radiotracer uptake provided by PET. Although clinical evaluation now is under way, PET/MR demands for new technologies and innovative solutions, currently subject to interdisciplinary research. Attenuation correction (AC) of human soft tissues and of hardware components has to be MR based to maintain quantification of PET imaging as CT attenuation information is missing. MR-based AC is inherently associated with the following challenges: patient tissues are segmented into only few tissue classes, providing discrete attenuation coefficients; bone is substituted as soft tissue in MR-based AC; the limited field of view in MRI leads to truncations in body imaging and, consequently, in MR-based AC; and correct segmentation of lung tissue may be hampered by breathing artifacts. Use of time of flight during PET image acquisition and reconstruction, however, may improve the accuracy of AC. This article provides a status of current image acquisition options in PET/MR hybrid imaging.
Collapse
Affiliation(s)
- Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany.
| |
Collapse
|
105
|
Bailey DL, Antoch G, Bartenstein P, Barthel H, Beer AJ, Bisdas S, Bluemke DA, Boellaard R, Claussen CD, Franzius C, Hacker M, Hricak H, la Fougère C, Gückel B, Nekolla SG, Pichler BJ, Purz S, Quick HH, Sabri O, Sattler B, Schäfer J, Schmidt H, van den Hoff J, Voss S, Weber W, Wehrl HF, Beyer T. Combined PET/MR: The Real Work Has Just Started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17-21, 2014, Tübingen, Germany. Mol Imaging Biol 2016; 17:297-312. [PMID: 25672749 PMCID: PMC4422837 DOI: 10.1007/s11307-014-0818-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper summarises the proceedings and discussions at the third annual workshop held in Tübingen, Germany, dedicated to the advancement of the technical, scientific and clinical applications of combined PET/MRI systems in humans. Two days of basic scientific and technical instructions with "hands-on" tutorials were followed by 3 days of invited presentations from active researchers in this and associated fields augmented by round-table discussions and dialogue boards with specific themes. These included the use of PET/MRI in paediatric oncology and in adult neurology, oncology and cardiology, the development of multi-parametric analyses, and efforts to standardise PET/MRI examinations to allow pooling of data for evaluating the technology. A poll taken on the final day demonstrated that over 50 % of those present felt that while PET/MRI technology underwent an inevitable slump after its much-anticipated initial launch, it was now entering a period of slow, progressive development, with new key applications emerging. In particular, researchers are focusing on exploiting the complementary nature of the physiological (PET) and biochemical (MRI/MRS) data within the morphological framework (MRI) that these devices can provide. Much of the discussion was summed up on the final day when one speaker commented on the state of PET/MRI: "the real work has just started".
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Chun SY. The Use of Anatomical Information for Molecular Image Reconstruction Algorithms: Attenuation/Scatter Correction, Motion Compensation, and Noise Reduction. Nucl Med Mol Imaging 2016; 50:13-23. [PMID: 26941855 DOI: 10.1007/s13139-016-0399-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.
Collapse
Affiliation(s)
- Se Young Chun
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
107
|
Mehranian A, Arabi H, Zaidi H. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI. Neuroimage 2016; 130:123-133. [PMID: 26853602 DOI: 10.1016/j.neuroimage.2016.01.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. MATERIALS AND METHODS Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. RESULTS Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias. CONCLUSION The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva Neuroscience Centre, University of Geneva, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
108
|
Berker Y, Li Y. Attenuation correction in emission tomography using the emission data--A review. Med Phys 2016; 43:807-32. [PMID: 26843243 PMCID: PMC4715007 DOI: 10.1118/1.4938264] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 11/07/2022] Open
Abstract
The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason-Ludwig data consistency conditions of the Radon transform, or generalizations of John's partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging.
Collapse
Affiliation(s)
- Yannick Berker
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104
| | - Yusheng Li
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104
| |
Collapse
|
109
|
Izquierdo-Garcia D, Catana C. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging. PET Clin 2016; 11:129-49. [PMID: 26952727 DOI: 10.1016/j.cpet.2015.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA.
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| |
Collapse
|
110
|
Jung JH, Choi Y, Im KC. PET/MRI: Technical Challenges and Recent Advances. Nucl Med Mol Imaging 2016; 50:3-12. [PMID: 26941854 DOI: 10.1007/s13139-016-0393-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022] Open
Abstract
Integrated positron emission tomography (PET)/magnetic resonance imaging (MRI), which can provide complementary functional and anatomical information about a specific organ or body system at the molecular level, has become a powerful imaging modality to understand the molecular biology details, disease mechanisms, and pharmacokinetics in animals and humans. Although the first experiment on the PET/MRI was performed in the early 1990s, its clinical application was accomplished in recent years because there were various technical challenges in integrating PET and MRI in a single system with minimum mutual interference between PET and MRI. This paper presents the technical challenges and recent advances in combining PET and MRI along with several approaches for improving PET image quality of the PET/MRI hybrid imaging system.
Collapse
Affiliation(s)
- Jin Ho Jung
- Molecular Imaging Research & Education Laboratory, Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107 Korea
| | - Yong Choi
- Molecular Imaging Research & Education Laboratory, Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107 Korea
| | - Ki Chun Im
- Molecular Imaging Research & Education Laboratory, Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107 Korea
| |
Collapse
|
111
|
Bousse A, Bertolli O, Atkinson D, Arridge S, Ourselin S, Hutton BF, Thielemans K. Maximum-Likelihood Joint Image Reconstruction/Motion Estimation in Attenuation-Corrected Respiratory Gated PET/CT Using a Single Attenuation Map. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:217-28. [PMID: 26259017 DOI: 10.1109/tmi.2015.2464156] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This work provides an insight into positron emission tomography (PET) joint image reconstruction/motion estimation (JRM) by maximization of the likelihood, where the probabilistic model accounts for warped attenuation. Our analysis shows that maximum-likelihood (ML) JRM returns the same reconstructed gates for any attenuation map (μ-map) that is a deformation of a given μ-map, regardless of its alignment with the PET gates. We derived a joint optimization algorithm accordingly, and applied it to simulated and patient gated PET data. We first evaluated the proposed algorithm on simulations of respiratory gated PET/CT data based on the XCAT phantom. Our results show that independently of which μ-map is used as input to JRM: (i) the warped μ-maps correspond to the gated μ-maps, (ii) JRM outperforms the traditional post-registration reconstruction and consolidation (PRRC) for hot lesion quantification and (iii) reconstructed gated PET images are similar to those obtained with gated μ-maps. This suggests that a breath-held μ-map can be used. We then applied JRM on patient data with a μ-map derived from a breath-held high resolution CT (HRCT), and compared the results with PRRC, where each reconstructed PET image was obtained with a corresponding cine-CT gated μ-map. Results show that JRM with breath-held HRCT achieves similar reconstruction to that using PRRC with cine-CT. This suggests a practical low-dose solution for implementation of motion-corrected respiratory gated PET/CT.
Collapse
|
112
|
An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim HJ, Lee DS, Song IC, Kim YK, Lee JS. MRI-Based Attenuation Correction for PET/MRI Using Multiphase Level-Set Method. J Nucl Med 2015; 57:587-93. [PMID: 26697962 DOI: 10.2967/jnumed.115.163550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hyun Joon An
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seongho Seo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
| | - In Chan Song
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea; and
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Nuclear Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
113
|
Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. PLoS One 2015; 10:e0142019. [PMID: 26540274 PMCID: PMC4634927 DOI: 10.1371/journal.pone.0142019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
Abstract
In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.
Collapse
|
114
|
Huang C, Ouyang J, Reese TG, Wu Y, El Fakhri G, Ackerman JL. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR. Phys Med Biol 2015; 60:N369-81. [PMID: 26405761 PMCID: PMC4607313 DOI: 10.1088/0031-9155/60/20/n369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches.
Collapse
Affiliation(s)
- C Huang
- Center for Advanced Medical Imaging Sciences, Department of Imaging, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Radiology, Harvard Medical School, Boston, MA 02115, USA. Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
115
|
Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, Sattler B. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems. Med Phys 2015; 42:5961-9. [DOI: 10.1118/1.4930962] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
116
|
Mehranian A, Zaidi H. Joint Estimation of Activity and Attenuation in Whole-Body TOF PET/MRI Using Constrained Gaussian Mixture Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1808-1821. [PMID: 25769148 DOI: 10.1109/tmi.2015.2409157] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It has recently been shown that the attenuation map can be estimated from time-of-flight (TOF) PET emission data using joint maximum likelihood reconstruction of attenuation and activity (MLAA). In this work, we propose a novel MRI-guided MLAA algorithm for emission-based attenuation correction in whole-body PET/MR imaging. The algorithm imposes MR spatial and CT statistical constraints on the MLAA estimation of attenuation maps using a constrained Gaussian mixture model (GMM) and a Markov random field smoothness prior. Dixon water and fat MR images were segmented into outside air, lung, fat and soft-tissue classes and an MR low-intensity (unknown) class corresponding to air cavities, cortical bone and susceptibility artifacts. The attenuation coefficients over the unknown class were estimated using a mixture of four Gaussians, and those over the known tissue classes using unimodal Gaussians, parameterized over a patient population. To eliminate misclassification of spongy bones with surrounding tissues, and thus include them in the unknown class, we heuristically suppressed fat in water images and also used a co-registered bone probability map. The proposed MLAA-GMM algorithm was compared with the MLAA algorithms proposed by Rezaei and Salomon using simulation and clinical studies with two different tracer distributions. The results showed that our proposed algorithm outperforms its counterparts in suppressing the cross-talk and scaling problems of activity and attenuation and thus produces PET images of improved quantitative accuracy. It can be concluded that the proposed algorithm effectively exploits the MR information and can pave the way toward accurate emission-based attenuation correction in TOF PET/MRI.
Collapse
|
117
|
Ljungberg M, Gleisner KS. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy. Diagnostics (Basel) 2015; 5:296-317. [PMID: 26854156 PMCID: PMC4665601 DOI: 10.3390/diagnostics5030296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022] Open
Abstract
Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions.
Collapse
Affiliation(s)
- Michael Ljungberg
- Department of Medical Radiation Physics, Lund University, 221 85 Lund, Sweden.
| | | |
Collapse
|
118
|
Mehranian A, Zaidi H. Emission-based estimation of lung attenuation coefficients for attenuation correction in time-of-flight PET/MR. Phys Med Biol 2015; 60:4813-33. [PMID: 26047036 DOI: 10.1088/0031-9155/60/12/4813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In standard segmentation-based MRI-guided attenuation correction (MRAC) of PET data on hybrid PET/MRI systems, the inter/intra-patient variability of linear attenuation coefficients (LACs) is ignored owing to the assignment of a constant LAC to each tissue class. This can lead to PET quantification errors, especially in the lung regions. In this work, we aim to derive continuous and patient-specific lung LACs from time-of-flight (TOF) PET emission data using the maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm. The MLAA algorithm was constrained for estimation of lung LACs only in the standard 4-class MR attenuation map using Gaussian lung tissue preference and Markov random field smoothness priors. MRAC maps were derived from segmentation of CT images of 19 TOF-PET/CT clinical studies into background air, lung, soft tissue and fat tissue classes, followed by assignment of predefined LACs of 0, 0.0224, 0.0864 and 0.0975 cm(-1), respectively. The lung LACs of the resulting attenuation maps were then estimated from emission data using the proposed MLAA algorithm. PET quantification accuracy of MRAC and MLAA methods was evaluated against the reference CT-based AC method in the lungs, lesions located in/near the lungs and neighbouring tissues. The results show that the proposed MLAA algorithm is capable of retrieving lung density gradients and compensate fairly for respiratory-phase mismatch between PET and corresponding attenuation maps. It was found that the mean of the estimated lung LACs generally follow the trend of the reference CT-based attenuation correction (CTAC) method. Quantitative analysis revealed that the MRAC method resulted in average relative errors of -5.2 ± 7.1% and -6.1 ± 6.7% in the lungs and lesions, respectively. These were reduced by the MLAA algorithm to -0.8 ± 6.3% and -3.3 ± 4.7%, respectively. In conclusion, we demonstrated the potential and capability of emission-based methods in deriving patient-specific lung LACs to improve the accuracy of attenuation correction in TOF PET/MR imaging, thus paving the way for their adaptation in the clinic.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | | |
Collapse
|
119
|
|
120
|
Mehranian A, Zaidi H. Clinical Assessment of Emission- and Segmentation-Based MR-Guided Attenuation Correction in Whole-Body Time-of-Flight PET/MR Imaging. J Nucl Med 2015; 56:877-83. [PMID: 25858043 DOI: 10.2967/jnumed.115.154807] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The joint maximum-likelihood reconstruction of activity and attenuation (MLAA) for emission-based attenuation correction has regained attention since the advent of time-of-flight PET/MR imaging. Recently, we improved the performance of the MLAA algorithm using an MR imaging-constrained gaussian mixture model (GMM). In this study, we compare the performance of our proposed algorithm with standard 4-class MR-based attenuation correction (MRAC) implemented on commercial systems. METHODS Five head and neck (18)F-FDG patients were scanned on PET/MR imaging and PET/CT scanners. Dixon fat and water MR images were registered to CT images. MRAC maps were derived by segmenting the MR images into 4 tissue classes and assigning predefined attenuation coefficients. For MLAA-GMM, MR images were segmented into known tissue classes, including fat, soft tissue, lung, background air, and an unknown MR low-intensity class encompassing cortical bones, air cavities, and metal artifacts. A coregistered bone probability map was also included in the unknown tissue class. Finally, the GMM prior was constrained over known tissue classes of attenuation maps using unimodal gaussians parameterized over a patient population. RESULTS The results showed that the MLAA-GMM algorithm outperformed the MRAC method by differentiating bones from air gaps and providing more accurate patient-specific attenuation coefficients of soft tissue and lungs. It was found that the MRAC and MLAA-GMM methods resulted in average standardized uptake value errors of -5.4% and -3.5% in the lungs, -7.4% and -5.0% in soft tissues/lesions, and -18.4% and -10.2% in bones, respectively. CONCLUSION The proposed MLAA algorithm is promising for accurate derivation of attenuation maps on time-of-flight PET/MR systems.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland Geneva Neuroscience Centre, University of Geneva, Geneva, Switzerland; and Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
121
|
Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med 2015; 56:423-9. [PMID: 25678486 DOI: 10.2967/jnumed.114.146308] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Attenuation correction (AC) is a critical requirement for quantitative PET reconstruction. Accounting for bone information in the attenuation map (μ map) is of paramount importance for accurate brain PET quantification. However, to measure the signal from bone structures represents a challenging task in MR. Recent (18)F-FDG PET/MR studies showed quantitative bias for the assessment of radiotracer concentration when bone was ignored. This work is focused on (18)F-FDG PET/MR neurodegenerative dementing disorders. These are known to lead to specific patterns of (18)F-FDG hypometabolism, mainly in superficial brain structures, which might suffer from attenuation artifacts and thus have immediate diagnostic consequences. A fully automatic method to estimate the μ map, including bone tissue using only MR information, is presented. METHODS The algorithm was based on a dual-echo ultrashort-echo-time MR imaging sequence to calculate the R2 map, from which the μ map was derived. The R2-based μ map was postprocessed to calculate an estimated distribution of the bone tissue. μ maps calculated from datasets of 9 patients were compared with their CT-based μ maps (μ mapCT) by determining the confusion matrix. Additionally, a region-of-interest comparison between reconstructed PET data, corrected using different μ maps, was performed. PET data were reconstructed using a Dixon-based μ map (μ mapDX) and a dual-echo ultrashort-echo-time-based μ map (μ mapUTE), which are both calculated by the scanner, and the R2-based μ map presented in this work was compared with reconstructed PET data using the μ mapCT as a reference. RESULTS Errors were approximately 20% higher using the μ mapDX and μ mapUTE for AC, compared with reconstructed PET data using the reference μ mapCT. However, PET AC using the R2-based μ map resulted, for all the patients and all the analyzed regions of interest, in a significant improvement, reducing the error to -5.8% to 2.5%. CONCLUSION The proposed method successfully showed significantly reduced errors in quantification, compared with the μ mapDX and μ mapUTE, and therefore delivered more accurate PET image quantification for an improved diagnostic workup in dementia patients.
Collapse
Affiliation(s)
- Jorge Cabello
- Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; and
| | - Mathias Lukas
- Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; and
| | - Stefan Förster
- Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; and TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
| | - Thomas Pyka
- Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; and
| | - Stephan G Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; and
| | - Sibylle I Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; and
| |
Collapse
|
122
|
Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 2015; 60:R115-54. [PMID: 25650582 DOI: 10.1088/0031-9155/60/4/r115] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integration of positron emission tomography (PET) and magnetic resonance imaging (MRI) has been an ongoing research topic for the last 20 years. This paper gives an overview of the different developments and the technical problems associated with combining PET and MRI in one system. After explaining the different detector concepts for integrating PET-MRI and minimising interference the limitations and advantages of different solutions for the detector and system are described for preclinical and clinical imaging systems. The different integrated PET-MRI systems are described in detail. Besides detector concepts and system integration the challenges and proposed solutions for attenuation correction and the potential for motion correction and resolution recovery are also discussed in this topical review.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-iMinds Medical IT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent, Belgium
| | | |
Collapse
|
123
|
|
124
|
Yoo HJ, Lee JS, Lee JM. Integrated whole body MR/PET: where are we? Korean J Radiol 2015; 16:32-49. [PMID: 25598673 PMCID: PMC4296276 DOI: 10.3348/kjr.2015.16.1.32] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 01/16/2023] Open
Abstract
Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed.
Collapse
Affiliation(s)
- Hye Jin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea. ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea
| |
Collapse
|
125
|
Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, Nekolla SG, Ziegler SI. Motion correction strategies for integrated PET/MR. J Nucl Med 2015; 56:261-9. [PMID: 25572092 DOI: 10.2967/jnumed.114.146787] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Integrated whole-body PET/MR facilitates the implementation of a broad variety of respiratory motion correction strategies, taking advantage of the strengths of both modalities. The goal of this study was the quantitative evaluation with clinical data of different MR- and PET-data-based motion correction strategies for integrated PET/MR. METHODS The PET and MR data of 20 patients were simultaneously acquired for 10 min on an integrated PET/MR system after administration of (18)F-FDG or (68)Ga-DOTANOC. Respiratory traces recorded with a bellows were compared against MR self-gating signals and signals extracted from PET raw data with the sensitivity method, by applying principal component analysis (PCA) or Laplacian eigenmaps and by using a novel variation combining the former and either of the latter two. Gated sinograms and MR images were generated accordingly, followed by image registration to derive MR motion models. Corrected PET images were reconstructed by incorporating this information into the reconstruction. An optical flow algorithm was applied for PET-based motion correction. Gating and motion correction were evaluated by quantitative analysis of apparent tracer uptake, lesion volume, displacement, contrast, and signal-to-noise ratio. RESULTS The correlation between bellows- and MR-based signals was 0.63 ± 0.19, and that between MR and the sensitivity method was 0.52 ± 0.26. Depending on the PET raw-data compression, the average correlation between MR and PCA ranged from 0.25 ± 0.30 to 0.58 ± 0.33, and the range was 0.25 ± 0.30 to 0.42 ± 0.34 if Laplacian eigenmaps were applied. By combining the sensitivity method and PCA or Laplacian eigenmaps, the maximum average correlation to MR could be increased to 0.74 ± 0.21 and 0.70 ± 0.19, respectively. The selection of the best PET-based signal for each patient yielded an average correlation of 0.80 ± 0.13 with MR. Using the best PET-based respiratory signal for gating, mean tracer uptake increased by 17 ± 19% for gating, 13 ± 10% for MR-based motion correction, and 18 ± 15% for PET-based motion correction, compared with the static images. Lesion volumes were 76 ± 31%, 83 ± 18%, and 74 ± 22% of the sizes in the static images for gating, MR-based motion correction, and PET-based motion correction, respectively. CONCLUSION Respiratory traces extracted from MR and PET data are comparable to those based on external sensors. The proposed PET-driven gating method improved respiratory signals and overall stability. Consistent results from MR- and PET-based correction methods enable more flexible PET/MR scan protocols while achieving higher PET image quality.
Collapse
Affiliation(s)
- Sebastian Fürst
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany Graduate School of Information Science in Health (GSISH), Technische Universität München, Munich, Germany
| | - Robert Grimm
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Siemens Healthcare MR, Erlangen, Germany; and
| | - Inki Hong
- Siemens Healthcare MI, Knoxville, Tennessee
| | | | | | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
126
|
Ouyang J, Petibon Y, Huang C, Reese TG, Kolnick AL, El Fakhri G. Quantitative simultaneous positron emission tomography and magnetic resonance imaging. J Med Imaging (Bellingham) 2014; 1:033502. [PMID: 26158055 DOI: 10.1117/1.jmi.1.3.033502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 01/29/2023] Open
Abstract
Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality.
Collapse
Affiliation(s)
- Jinsong Ouyang
- Massachusetts General Hospital , Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts 02114, United States ; Harvard Medical School , Department of Radiology, Boston, Massachusetts 02114, United States
| | - Yoann Petibon
- Massachusetts General Hospital , Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts 02114, United States ; Sorbonne Universités , UPMC Univ Paris 06, Paris 75634, France
| | - Chuan Huang
- Massachusetts General Hospital , Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts 02114, United States ; Harvard Medical School , Department of Radiology, Boston, Massachusetts 02114, United States
| | - Timothy G Reese
- Harvard Medical School , Department of Radiology, Boston, Massachusetts 02114, United States ; Massachusetts General Hospital , Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts 02129, United States
| | - Aleksandra L Kolnick
- Massachusetts General Hospital , Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts 02114, United States
| | - Georges El Fakhri
- Massachusetts General Hospital , Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts 02114, United States ; Harvard Medical School , Department of Radiology, Boston, Massachusetts 02114, United States
| |
Collapse
|
127
|
Izquierdo-Garcia D, Hansen AE, Förster S, Benoit D, Schachoff S, Fürst S, Chen KT, Chonde DB, Catana C. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med 2014; 55:1825-30. [PMID: 25278515 DOI: 10.2967/jnumed.113.136341] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. METHODS Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. RESULTS The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. CONCLUSION We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stefan Förster
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Didier Benoit
- Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Sebastian Fürst
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Kevin T Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Daniel B Chonde
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Program in Biophysics, Harvard University, Cambridge, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
128
|
Blumhagen JO, Braun H, Ladebeck R, Fenchel M, Faul D, Scheffler K, Quick HH. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys 2014; 41:022303. [PMID: 24506641 DOI: 10.1118/1.4861097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE In quantitative PET imaging, it is critical to accurately measure and compensate for the attenuation of the photons absorbed in the tissue. While in PET/CT the linear attenuation coefficients can be easily determined from a low-dose CT-based transmission scan, in whole-body MR/PET the computation of the linear attenuation coefficients is based on the MR data. However, a constraint of the MR-based attenuation correction (AC) is the MR-inherent field-of-view (FoV) limitation due to static magnetic field (B0) inhomogeneities and gradient nonlinearities. Therefore, the MR-based human AC map may be truncated or geometrically distorted toward the edges of the FoV and, consequently, the PET reconstruction with MR-based AC may be biased. This is especially of impact laterally where the patient arms rest beside the body and are not fully considered. METHODS A method is proposed to extend the MR FoV by determining an optimal readout gradient field which locally compensates B0 inhomogeneities and gradient nonlinearities. This technique was used to reduce truncation in AC maps of 12 patients, and the impact on the PET quantification was analyzed and compared to truncated data without applying the FoV extension and additionally to an established approach of PET-based FoV extension. RESULTS The truncation artifacts in the MR-based AC maps were successfully reduced in all patients, and the mean body volume was thereby increased by 5.4%. In some cases large patient-dependent changes in SUV of up to 30% were observed in individual lesions when compared to the standard truncated attenuation map. CONCLUSIONS The proposed technique successfully extends the MR FoV in MR-based attenuation correction and shows an improvement of PET quantification in whole-body MR/PET hybrid imaging. In comparison to the PET-based completion of the truncated body contour, the proposed method is also applicable to specialized PET tracers with little uptake in the arms and might reduce the computation time by obviating the need for iterative calculations of the PET emission data beyond those required for reconstructing images.
Collapse
Affiliation(s)
- Jan O Blumhagen
- Magnetic Resonance, Siemens AG Healthcare Sector, Erlangen 91052, Germany
| | - Harald Braun
- Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91052, Germany
| | - Ralf Ladebeck
- Magnetic Resonance, Siemens AG Healthcare Sector, Erlangen 91052, Germany
| | - Matthias Fenchel
- Magnetic Resonance, Siemens AG Healthcare Sector, Erlangen 91052, Germany
| | - David Faul
- Siemens Medical Solutions, New York, New York 10015
| | - Klaus Scheffler
- MRC Department, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany and Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen 72076, Germany
| | - Harald H Quick
- Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91052, Germany
| |
Collapse
|
129
|
Berker Y, Kiessling F, Schulz V. Scattered PET data for attenuation-map reconstruction in PET/MRI. Med Phys 2014; 41:102502. [DOI: 10.1118/1.4894818] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
130
|
Liu H, Guo M, Hu Z, Shi P, Hu H. Nonlinear dual reconstruction of SPECT activity and attenuation images. PLoS One 2014; 9:e106951. [PMID: 25225796 PMCID: PMC4167322 DOI: 10.1371/journal.pone.0106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022] Open
Abstract
In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction.
Collapse
Affiliation(s)
- Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Min Guo
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Zhenghui Hu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Pengcheng Shi
- B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
131
|
Angelis GI, Kyme AZ, Ryder WJ, Fulton RR, Meikle SR. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry. Phys Med Biol 2014; 59:5651-66. [DOI: 10.1088/0031-9155/59/19/5651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
132
|
Hu Z, Yang W, Liu H, Wang K, Bao C, Song T, Wang J, Tian J. From PET/CT to PET/MRI: advances in instrumentation and clinical applications. Mol Pharm 2014; 11:3798-809. [PMID: 25058336 DOI: 10.1021/mp500321h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multimodality imaging of positron emission tomography/computed tomography (PET/CT) provides both metabolic information and the anatomic structure, which is significantly superior to either PET or CT alone and has greatly improved its clinical applications. Because of the higher soft-tissue contrast of magnetic resonance imaging (MRI) and no extra ionizing radiation, PET/MRI imaging is the hottest topic currently. PET/MRI is swiftly making its way into clinical practice. However, it has many technical difficulties to overcome, such as photomultiplier tubes, which cannot work properly in a magnetic field, and the inability to provide density information on the object for attenuation correction. This paper introduces the technique process of PET/MRI and summarizes its clinical applications, including imaging in oncology, neurology, and cardiology.
Collapse
Affiliation(s)
- Zhenhua Hu
- Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Rezaei A, Defrise M, Nuyts J. ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1563-1572. [PMID: 24760903 DOI: 10.1109/tmi.2014.2318175] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In positron emission tomography (PET), attenuation correction is typically done based on information obtained from transmission tomography. Recent studies show that time-of-flight (TOF) PET emission data allow joint estimation of activity and attenuation images. Mathematical analysis revealed that the joint estimation problem is determined up to a scale factor. In this work, we propose a maximum likelihood reconstruction algorithm that jointly estimates the activity image together with the sinogram of the attenuation factors. The algorithm is evaluated with 2-D and 3-D simulations as well as clinical TOF-PET measurements of a patient scan and compared to reference reconstructions. The robustness of the algorithm to possible imperfect scanner calibration is demonstrated with reconstructions of the patient scan ignoring the varying detector sensitivities.
Collapse
|
134
|
Schramm G, Maus J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, Platzek I, van den Hoff J. Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging. Phys Med Biol 2014; 59:2713-26. [DOI: 10.1088/0031-9155/59/11/2713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
135
|
Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys 2014; 40:082506. [PMID: 23927351 DOI: 10.1118/1.4812686] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Attenuation correction is essential for reliable interpretation of emission tomography, however, the use of transmission measurements to generate attenuation maps is limited by availability of equipment and potential mismatches between the transmission and emission measurements. The authors present a first step toward a method of estimating an attenuation map from measured scatter data without a transmission scan. METHODS A scatter model has been developed that accurately predicts the distribution of photons which have been scattered once. The scatter model has been used as the basis of a maximum likelihood gradient ascent method to estimate an attenuation map from measured scatter data. In order to estimate both the attenuation map and activity distribution, iterations of the derived scatter based algorithm have been alternated with the maximum likelihood expectation maximization algorithm in a joint estimation process. For each iteration of the attenuation map estimation, the activity distribution is fixed at the values estimated during the previous activity iteration, and in each iteration of the activity distribution estimation the attenuation map is fixed at the values estimated during the previous attenuation iteration. The use of photopeak data to enhance the estimation of the attenuation map compared to the use of scatter data alone has also been considered. The algorithm derived has been used to reconstruct data simulated for an idealized two-dimensional situation and using a physical phantom. RESULTS The reconstruction of idealized data demonstrated good reconstruction of both the activity distribution and attenuation map. The inclusion of information recorded in the photopeak energy window in the attenuation map estimation step demonstrated an improvement in the accuracy of the reconstruction, enabling an accurate attenuation map to be recovered. Validation of the results with physical phantom data demonstrated that different regions of attenuation could be distinguished in a real situation and produces results that represent a promising first step toward the use of scatter data to estimate the activity distribution and attenuation map from single photon emission tomography (SPECT) data without a transmission scan. CONCLUSIONS The technique presented shows promise as a method of attenuation correction for SPECT data without the need for a separate transmission scan. Further work is required to further improve the method and to compensate for the assumptions used in the scatter model.
Collapse
Affiliation(s)
- Sarah C Cade
- Institute of Nuclear Medicine, University College Hospital, London NW1 2BU, United Kingdom.
| | | | | | | |
Collapse
|
136
|
Chang T, Diab RH, Clark JW, Mawlawi OR. Investigating the use of nonattenuation corrected PET images for the attenuation correction of PET data. Med Phys 2014; 40:082508. [PMID: 23927353 DOI: 10.1118/1.4816304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The aim of this study is to investigate the feasibility of using the nonattenuated PET images (PET-NAC) as a means for the AC of PET data. METHODS A three-step iterative segmentation process is proposed. In step 1, a patient's body contour is segmented from the PET-NAC using an active contour algorithm. Voxels inside the contour are then assigned a value of 0.096 cm(-1) to represent the attenuation coefficient of soft tissue at 511 keV. This segmented attenuation map is then used to correct for attenuation the raw PET data and the resulting PET images are used as the input to Step 2 of the process. In step 2, the lung region is segmented using an optimal thresholding approach and the corresponding voxels are assigned a value of 0.024 cm(-1) representing the attenuation coefficients of lung tissue at 511 keV. The updated attenuation map is then used for a second time to correct for attenuation the raw PET data, and the resulting PET images are used as the input to step 3. The purpose of Step 3 is to delineate parts of the heart and liver in the lung contour using a region growing approach since these parts were unavoidably excluded in the lung contour in step 2. These parts are then corrected by using a value of 0.096 cm(-1) in the attenuation map. Finally the attenuation coefficients of the bed are included based on CT images to eliminate the impact of the couch on the accuracy of AC. The final attenuation map is then used to AC the raw PET data and generates the final PET image, which we name iterative AC PET (PET-IAC). To assess the proposed segmentation approach, a phantom and 14 patients (with a total of 55 lesions including bone) were scanned on a GE Discovery-RX PET∕CT scanner. PET-IAC images were generated using the proposed process and compared to those of CT-AC PET (PET-CTAC). Visual inspection, lesion SUV, and voxel by voxel histograms between PET-IAC and PET-CTAC for phantom and patient studies were performed to assess the accuracy of image quantification. RESULTS Visual inspection showed a small difference in lung parenchyma between the PET-IAC and PET-CTAC. Tumor SUV based on PET-IAC were on average different by 3%±9% (6%±7%) compared to the SUVs from the PET-CTAC in the phantom (patient) studies. For bone lesions only, the average difference was 3%±6%. The histogram comparing PET-CTAC and PET-IAC resulted in an average regression line of y=(1.08±0.07)x+(0.00007±0.0013), with R2=0.978±0.0057. CONCLUSIONS Preliminary results suggest that PET-NAC for the AC of PET images is feasible. Such an approach can potentially be used for dedicated PET or PET∕MR hybrid systems while minimizing scan time or potential image artifacts, respectively.
Collapse
Affiliation(s)
- Tingting Chang
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, MS-366, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
137
|
Defrise M, Rezaei A, Nuyts J. Transmission-less attenuation correction in time-of-flight PET: analysis of a discrete iterative algorithm. Phys Med Biol 2014; 59:1073-95. [PMID: 24504259 DOI: 10.1088/0031-9155/59/4/1073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The maximum likelihood attenuation correction factors (MLACF) algorithm has been developed to calculate the maximum-likelihood estimate of the activity image and the attenuation sinogram in time-of-flight (TOF) positron emission tomography, using only emission data without prior information on the attenuation. We consider the case of a Poisson model of the data, in the absence of scatter or random background. In this case the maximization with respect to the attenuation factors can be achieved in a closed form and the MLACF algorithm works by updating the activity. Despite promising numerical results, the convergence of this algorithm has not been analysed. In this paper we derive the algorithm and demonstrate that the MLACF algorithm monotonically increases the likelihood, is asymptotically regular, and that the limit points of the iteration are stationary points of the likelihood. Because the problem is not convex, however, the limit points might be saddle points or local maxima. To obtain some empirical insight into the latter question, we present data obtained by applying MLACF to 2D simulated TOF data, using a large number of iterations and different initializations.
Collapse
Affiliation(s)
- Michel Defrise
- Department of Nuclear Medicine, Vrije Universiteit Brussel, B-1090, Brussels, Belgium
| | | | | |
Collapse
|
138
|
Boellaard R, Hofman MBM, Hoekstra OS, Lammertsma AA. Accurate PET/MR Quantification Using Time of Flight MLAA Image Reconstruction. Mol Imaging Biol 2014; 16:469-77. [PMID: 24430291 DOI: 10.1007/s11307-013-0716-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands,
| | | | | | | |
Collapse
|
139
|
Mollet P, Keereman V, Bini J, Izquierdo-Garcia D, Fayad ZA, Vandenberghe S. Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source. J Nucl Med 2014; 55:329-36. [PMID: 24434291 DOI: 10.2967/jnumed.113.125989] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. METHODS Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. RESULTS The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. CONCLUSION In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.
Collapse
Affiliation(s)
- Pieter Mollet
- MEDISIP, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Ghent, Belgium; and
| | | | | | | | | | | |
Collapse
|
140
|
Quick HH. Integrated PET/MR. J Magn Reson Imaging 2013; 39:243-58. [DOI: 10.1002/jmri.24523] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023] Open
Affiliation(s)
- Harald H. Quick
- Institute of Medical Physics (IMP); Friedrich Alexander-University Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
141
|
The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging 2013; 41 Suppl 1:S3-16. [PMID: 24218098 DOI: 10.1007/s00259-013-2606-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.
Collapse
|
142
|
Bezrukov I, Schmidt H, Mantlik F, Schwenzer N, Brendle C, Schölkopf B, Pichler BJ. MR-Based Attenuation Correction Methods for Improved PET Quantification in Lesions Within Bone and Susceptibility Artifact Regions. J Nucl Med 2013; 54:1768-74. [DOI: 10.2967/jnumed.112.113209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
143
|
Jin X, Chan C, Mulnix T, Panin V, Casey ME, Liu C, Carson RE. List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction. Phys Med Biol 2013; 58:5567-91. [PMID: 23892635 DOI: 10.1088/0031-9155/58/16/5567] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Whole-body PET/CT scanners are important clinical and research tools to study tracer distribution throughout the body. In whole-body studies, respiratory motion results in image artifacts. We have previously demonstrated for brain imaging that, when provided with accurate motion data, event-by-event correction has better accuracy than frame-based methods. Therefore, the goal of this work was to develop a list-mode reconstruction with novel physics modeling for the Siemens Biograph mCT with event-by-event motion correction, based on the MOLAR platform (Motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction). Application of MOLAR for the mCT required two algorithmic developments. First, in routine studies, the mCT collects list-mode data in 32 bit packets, where averaging of lines-of-response (LORs) by axial span and angular mashing reduced the number of LORs so that 32 bits are sufficient to address all sinogram bins. This degrades spatial resolution. In this work, we proposed a probabilistic LOR (pLOR) position technique that addresses axial and transaxial LOR grouping in 32 bit data. Second, two simplified approaches for 3D time-of-flight (TOF) scatter estimation were developed to accelerate the computationally intensive calculation without compromising accuracy. The proposed list-mode reconstruction algorithm was compared to the manufacturer's point spread function + TOF (PSF+TOF) algorithm. Phantom, animal, and human studies demonstrated that MOLAR with pLOR gives slightly faster contrast recovery than the PSF+TOF algorithm that uses the average 32 bit LOR sinogram positioning. Moving phantom and a whole-body human study suggested that event-by-event motion correction reduces image blurring caused by respiratory motion. We conclude that list-mode reconstruction with pLOR positioning provides a platform to generate high quality images for the mCT, and to recover fine structures in whole-body PET scans through event-by-event motion correction.
Collapse
Affiliation(s)
- Xiao Jin
- Biomedical Engineering, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
144
|
Panin VY, Aykac M, Casey ME. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source. Phys Med Biol 2013; 58:3649-69. [PMID: 23648397 DOI: 10.1088/0031-9155/58/11/3649] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.
Collapse
Affiliation(s)
- V Y Panin
- Siemens Healthcare USA, Molecular Imaging, Knoxville, TN, USA.
| | | | | |
Collapse
|
145
|
Jha AK, Clarkson E, Kupinski MA, Barrett HH. Joint reconstruction of activity and attenuation map using LM SPECT emission data. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8668. [PMID: 26236067 DOI: 10.1117/12.2008111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Attenuation and scatter correction in single photon emission computed tomography (SPECT) imaging often requires a computed tomography (CT) scan to compute the attenuation map of the patient. This results in increased radiation dose for the patient, and also has other disadvantages such as increased costs and hardware complexity. Attenuation in SPECT is a direct consequence of Compton scattering, and therefore, if the scattered photon data can give information about the attenuation map, then the CT scan may not be required. In this paper, we investigate the possibility of joint reconstruction of the activity and attenuation map using list-mode (LM) SPECT emission data, including the scattered-photon data. We propose a path-based formalism to process scattered-photon data. Following this, we derive analytic expressions to compute the Cramér-Rao bound (CRB) of the activity and attenuation map estimates, using which, we can explore the fundamental limit of information-retrieval capacity from LM SPECT emission data. We then suggest a maximum-likelihood (ML) scheme that uses the LM emission data to jointly reconstruct the activity and attenuation map. We also propose an expectation-maximization (EM) algorithm to compute the ML solution.
Collapse
Affiliation(s)
- Abhinav K Jha
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Eric Clarkson
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA ; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Matthew A Kupinski
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA ; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Harrison H Barrett
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA ; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
146
|
Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med 2013; 54:402-15. [PMID: 23404088 DOI: 10.2967/jnumed.112.105353] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PET/CT and other combined scanners have in the past decade rapidly emerged as important research tools and are proving to be invaluable for improved diagnostics in routine nuclear medicine. The design of hybrid PET/MR scanners presented a formidable technical challenge, and only recently were these instruments introduced to the market. Initial expectations of the performance of these scanners have been high, notably because of the potential for superior tissue contrast inherent in the MR modality, as well as the potential for multiparametric functional imaging in conjunction with PET. However, the additional value and potential clinical role that these new systems might bring to the cardiac field have yet to be documented. This review presents a comparative summary of the existing applications for PET and MR in the field of cardiology and suggests potential cardiac applications exploiting unique properties of the newly introduced combined instrumentation.
Collapse
Affiliation(s)
- Christoph Rischpler
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | | | | | | |
Collapse
|
147
|
Laymon CM, Bowsher JE. Anomaly Detection and Artifact Recovery in PET Attenuation-Correction Images Using the Likelihood Function. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2013; 7:10.1109/JSTSP.2012.2237380. [PMID: 24198866 PMCID: PMC3815546 DOI: 10.1109/jstsp.2012.2237380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In dual modality PET/CT, CT data are used to generate the attenuation correction applied in the reconstruction of the PET emission image. This requires converting the CT image into a 511-keV attenuation map. Algorithms for making this transformation require assumptions about the makeup of material within the patient. Anomalous material such as contrast agent administered to enhance the CT scan confounds conversion algorithms and has been observed to result in inaccuracies, i.e., inconsistencies with the true 511-keV attenuation present at the time of the PET emission scan. These attenuation artifacts carry through to the final attenuation-corrected PET emission image and can resemble diseased tissue. We propose an approach to correcting this problem that employs the attenuation information carried by the PET emission data. A likelihood-based algorithm for identifying and correcting of contrast is presented and tested. The algorithm exploits the fact that contrast artifacts manifest as too-high attenuation values in an otherwise high quality attenuation image. In a separate study, the performance of the loglikelihood as an objective-function component of a detection/correction algorithm, independent of any particular algorithm was mapped out for several imaging scenarios as a function of statistical noise. Both the full algorithm and the loglikelihood performed well in studies with simulated data. Additional studies including those with patient data are required to fully understand their capabilities.
Collapse
Affiliation(s)
- Charles M. Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - James E. Bowsher
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
148
|
Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:237-246. [PMID: 23014717 DOI: 10.1109/tmi.2012.2220376] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Positron emission tomographs (PETs) are currently almost exclusively designed as hybrid systems. The current standard is the PET/CT combination, while prototype PET/MRI systems are being studied by several research groups. One problem in these systems is that the transaxial field-of-view of the second system is smaller than that of the PET camera and does not provide complete attenuation data. Because this second system provides the image for PET attenuation and scatter correction, the smaller FOV causes truncation of the attenuation map, producing bias in the attenuation corrected activity image. In this paper, we propose a maximum-a-posteriori algorithm for estimating the missing part of the attenuation map from the PET emission data. The method is evaluated on five artificially truncated 18F-FDGPET/CT studies, where it reduced the error on the reconstructed PET activities from 20% to less than 7%. The results on a PET/MRI patient study with 18F-FDG are presented as well.
Collapse
Affiliation(s)
- Johan Nuyts
- Nuclear Medicine, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
149
|
|
150
|
Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ. MR-Based PET Attenuation Correction for PET/MR Imaging. Semin Nucl Med 2013. [PMID: 23178088 DOI: 10.1053/j.semnuclmed.2012.08.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|