101
|
Arora M, Davis CM, Gowda NR, Foster DG, Mondal A, Coopersmith CM, Kamaleswaran R. Uncertainty-Aware Convolutional Neural Network for Identifying Bilateral Opacities on Chest X-rays: A Tool to Aid Diagnosis of Acute Respiratory Distress Syndrome. Bioengineering (Basel) 2023; 10:946. [PMID: 37627831 PMCID: PMC10451804 DOI: 10.3390/bioengineering10080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung injury with high mortality, primarily characterized by bilateral pulmonary opacities on chest radiographs and hypoxemia. In this work, we trained a convolutional neural network (CNN) model that can reliably identify bilateral opacities on routine chest X-ray images of critically ill patients. We propose this model as a tool to generate predictive alerts for possible ARDS cases, enabling early diagnosis. Our team created a unique dataset of 7800 single-view chest-X-ray images labeled for the presence of bilateral or unilateral pulmonary opacities, or 'equivocal' images, by three blinded clinicians. We used a novel training technique that enables the CNN to explicitly predict the 'equivocal' class using an uncertainty-aware label smoothing loss. We achieved an Area under the Receiver Operating Characteristic Curve (AUROC) of 0.82 (95% CI: 0.80, 0.85), a precision of 0.75 (95% CI: 0.73, 0.78), and a sensitivity of 0.76 (95% CI: 0.73, 0.78) on the internal test set while achieving an (AUROC) of 0.84 (95% CI: 0.81, 0.86), a precision of 0.73 (95% CI: 0.63, 0.69), and a sensitivity of 0.73 (95% CI: 0.70, 0.75) on an external validation set. Further, our results show that this approach improves the model calibration and diagnostic odds ratio of the hypothesized alert tool, making it ideal for clinical decision support systems.
Collapse
Affiliation(s)
- Mehak Arora
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Carolyn M. Davis
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30332, USA; (C.M.D.); (D.G.F.); (C.M.C.)
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Niraj R. Gowda
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Dennis G. Foster
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30332, USA; (C.M.D.); (D.G.F.); (C.M.C.)
| | - Angana Mondal
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Craig M. Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30332, USA; (C.M.D.); (D.G.F.); (C.M.C.)
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30332, USA;
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30332, USA
| |
Collapse
|
102
|
Parsarad S, Saeedizadeh N, Soufi GJ, Shafieyoon S, Hekmatnia F, Zarei AP, Soleimany S, Yousefi A, Nazari H, Torabi P, S. Milani A, Madani Tonekaboni SA, Rabbani H, Hekmatnia A, Kafieh R. Biased Deep Learning Methods in Detection of COVID-19 Using CT Images: A Challenge Mounted by Subject-Wise-Split ISFCT Dataset. J Imaging 2023; 9:159. [PMID: 37623691 PMCID: PMC10455108 DOI: 10.3390/jimaging9080159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Accurate detection of respiratory system damage including COVID-19 is considered one of the crucial applications of deep learning (DL) models using CT images. However, the main shortcoming of the published works has been unreliable reported accuracy and the lack of repeatability with new datasets, mainly due to slice-wise splits of the data, creating dependency between training and test sets due to shared data across the sets. We introduce a new dataset of CT images (ISFCT Dataset) with labels indicating the subject-wise split to train and test our DL algorithms in an unbiased manner. We also use this dataset to validate the real performance of the published works in a subject-wise data split. Another key feature provides more specific labels (eight characteristic lung features) rather than being limited to COVID-19 and healthy labels. We show that the reported high accuracy of the existing models on current slice-wise splits is not repeatable for subject-wise splits, and distribution differences between data splits are demonstrated using t-distribution stochastic neighbor embedding. We indicate that, by examining subject-wise data splitting, less complicated models show competitive results compared to the exiting complicated models, demonstrating that complex models do not necessarily generate accurate and repeatable results.
Collapse
Affiliation(s)
- Shiva Parsarad
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
- Law, Economics, and Data Science Group, Department of Humanities, Social and Political Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Narges Saeedizadeh
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
- Institute for Intelligent Systems Research and Innovation, Deakin University, Melbourne, VIC 3125, Australia
| | - Ghazaleh Jamalipour Soufi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Shamim Shafieyoon
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | | | | | - Samira Soleimany
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Amir Yousefi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Hengameh Nazari
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Pegah Torabi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Abbas S. Milani
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Ali Hekmatnia
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
| | - Rahele Kafieh
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan JM76+5M3, Iran
- Department of Engineering, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
103
|
Chang TH, Liu YC, Lin SR, Chiu PH, Chou CC, Chang LY, Lai FP. Clinical characteristics of hospitalized children with community-acquired pneumonia and respiratory infections: Using machine learning approaches to support pathogen prediction at admission. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:772-781. [PMID: 37246060 DOI: 10.1016/j.jmii.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Acute respiratory infections (ARIs) are common in children. We developed machine learning models to predict pediatric ARI pathogens at admission. METHODS We included hospitalized children with respiratory infections between 2010 and 2018. Clinical features were collected within 24 h of admission to construct models. The outcome of interest was the prediction of 6 common respiratory pathogens, including adenovirus, influenza virus types A and B, parainfluenza virus (PIV), respiratory syncytial virus (RSV), and Mycoplasma pneumoniae (MP). Model performance was estimated using area under the receiver operating characteristic curve (AUROC). Feature importance was measured using Shapley Additive exPlanation (SHAP) values. RESULTS A total of 12,694 admissions were included. Models trained with 9 features (age, event pattern, fever, C-reactive protein, white blood cell count, platelet count, lymphocyte ratio, peak temperature, peak heart rate) achieved the best performance (AUROC: MP 0.87, 95% CI 0.83-0.90; RSV 0.84, 95% CI 0.82-0.86; adenovirus 0.81, 95% CI 0.77-0.84; influenza A 0.77, 95% CI 0.73-0.80; influenza B 0.70, 95% CI 0.65-0.75; PIV 0.73, 95% CI 0.69-0.77). Age was the most important feature to predict MP, RSV and PIV infections. Event patterns were useful for influenza virus prediction, and C-reactive protein had the highest SHAP value for adenovirus infections. CONCLUSION We demonstrate how artificial intelligence can assist clinicians identify potential pathogens associated with pediatric ARIs upon admission. Our models provide explainable results that could help optimize the use of diagnostic testing. Integrating our models into clinical workflows may lead to improved patient outcomes and reduce unnecessary medical costs.
Collapse
Affiliation(s)
- Tu-Hsuan Chang
- Department of Pediatrics, Chi Mei Medical Center, Tainan City, Taiwan
| | - Yun-Chung Liu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Siang-Rong Lin
- Institute of Applied Mechanics, National Taiwan University, Taipei City, Taiwan
| | - Pei-Hsin Chiu
- Institute of Applied Mechanics, National Taiwan University, Taipei City, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei City, Taiwan.
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan.
| | - Fei-Pei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei City, National Taiwan University, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei City, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
104
|
Gopatoti A, Vijayalakshmi P. MTMC-AUR2CNet: Multi-textural multi-class attention recurrent residual convolutional neural network for COVID-19 classification using chest X-ray images. Biomed Signal Process Control 2023; 85:104857. [PMID: 36968651 PMCID: PMC10027978 DOI: 10.1016/j.bspc.2023.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/13/2023] [Accepted: 03/11/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease (COVID-19) has infected over 603 million confirmed cases as of September 2022, and its rapid spread has raised concerns worldwide. More than 6.4 million fatalities in confirmed patients have been reported. According to reports, the COVID-19 virus causes lung damage and rapidly mutates before the patient receives any diagnosis-specific medicine. Daily increasing COVID-19 cases and the limited number of diagnosis tool kits encourage the use of deep learning (DL) models to assist health care practitioners using chest X-ray (CXR) images. The CXR is a low radiation radiography tool available in hospitals to diagnose COVID-19 and combat this spread. We propose a Multi-Textural Multi-Class (MTMC) UNet-based Recurrent Residual Convolutional Neural Network (MTMC-UR2CNet) and MTMC-UR2CNet with attention mechanism (MTMC-AUR2CNet) for multi-class lung lobe segmentation of CXR images. The lung lobe segmentation output of MTMC-UR2CNet and MTMC-AUR2CNet are mapped individually with their input CXRs to generate the region of interest (ROI). The multi-textural features are extracted from the ROI of each proposed MTMC network. The extracted multi-textural features from ROI are fused and are trained to the Whale optimization algorithm (WOA) based DeepCNN classifier on classifying the CXR images into normal (healthy), COVID-19, viral pneumonia, and lung opacity. The experimental result shows that the MTMC-AUR2CNet has superior performance in multi-class lung lobe segmentation of CXR images with an accuracy of 99.47%, followed by MTMC-UR2CNet with an accuracy of 98.39%. Also, MTMC-AUR2CNet improves the multi-textural multi-class classification accuracy of the WOA-based DeepCNN classifier to 97.60% compared to MTMC-UR2CNet.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
- Centre for Research, Anna University, Chennai, Tamil Nadu, India
| | - P Vijayalakshmi
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
105
|
Shamshad F, Khan S, Zamir SW, Khan MH, Hayat M, Khan FS, Fu H. Transformers in medical imaging: A survey. Med Image Anal 2023; 88:102802. [PMID: 37315483 DOI: 10.1016/j.media.2023.102802] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 06/16/2023]
Abstract
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as de facto operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, restoration, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at https://github.com/fahadshamshad/awesome-transformers-in-medical-imaging.
Collapse
Affiliation(s)
- Fahad Shamshad
- MBZ University of Artificial Intelligence, Abu Dhabi, United Arab Emirates.
| | - Salman Khan
- MBZ University of Artificial Intelligence, Abu Dhabi, United Arab Emirates; CECS, Australian National University, Canberra ACT 0200, Australia
| | - Syed Waqas Zamir
- Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | | | - Munawar Hayat
- Faculty of IT, Monash University, Clayton VIC 3800, Australia
| | - Fahad Shahbaz Khan
- MBZ University of Artificial Intelligence, Abu Dhabi, United Arab Emirates; Computer Vision Laboratory, Linköping University, Sweden
| | - Huazhu Fu
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
106
|
Pan X, Zhu H, Du J, Hu G, Han B, Jia Y. MS-DCANet: A Novel Segmentation Network For Multi-Modality COVID-19 Medical Images. J Multidiscip Healthc 2023; 16:2023-2043. [PMID: 37489133 PMCID: PMC10363353 DOI: 10.2147/jmdh.s417068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Aim The Coronavirus Disease 2019 (COVID-19) pandemic has increased the public health burden and brought profound disaster to humans. For the particularity of the COVID-19 medical images with blurred boundaries, low contrast and different infection sites, some researchers have improved the accuracy by adding more complexity. Also, they overlook the complexity of lesions, which hinder their ability to capture the relationship between segmentation sites and the background, as well as the edge contours and global context. However, increasing the computational complexity, parameters and inference speed is unfavorable for model transfer from laboratory to clinic. A perfect segmentation network needs to balance the above three factors completely. To solve the above issues, this paper propose a symmetric automatic segmentation framework named MS-DCANet. We introduce Tokenized MLP block, a novel attention scheme that uses a shift-window mechanism to conditionally fuse local and global features to get more continuous boundaries and spatial positioning capabilities. It has greater understanding of irregular lesion contours. MS-DCANet also uses several Dual Channel blocks and a Res-ASPP block to improve the ability to recognize small targets. On multi-modality COVID-19 tasks, MS-DCANet achieved state-of-the-art performance compared with other baselines. It can well trade off the accuracy and complexity. To prove the strong generalization ability of our proposed model, we apply it to other tasks (ISIC 2018 and BAA) and achieve satisfactory results. Patients The X-ray dataset from Qatar University which contains 3379 cases for light, normal and heavy COVID-19 lung infection. The CT dataset contains the scans of 10 patient cases with COVID-19, a total of 1562 CT axial slices. The BAA dataset is obtained from the hospital and includes 387 original images. The ISIC 2018 dataset is from the International Skin Imaging Collaborative (ISIC) containing 2594 original images. Results The proposed MS-DCANet achieved evaluation metrics (MIOU) of 73.86, 97.26, 89.54, and 79.54 on the four datasets, respectively, far exceeding other current state-of-the art baselines. Conclusion The proposed MS-DCANet can help clinicians to automate the diagnosis of COVID-19 patients with different symptoms.
Collapse
Affiliation(s)
- Xiaoyu Pan
- College of Medical Informatics, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huazheng Zhu
- College of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| | - Jinglong Du
- College of Medical Informatics, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Guangtao Hu
- College of Medical Informatics, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Baoru Han
- College of Medical Informatics, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuanyuan Jia
- College of Medical Informatics, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
107
|
Dan R, Li Y, Wang Y, Chen X, Jia G, Wang S, Ge R, Qian G, Jin Q, Ye J, Wang Y. CDNet: Contrastive Disentangled Network for Fine-Grained Image Categorization of Ocular B-Scan Ultrasound. IEEE J Biomed Health Inform 2023; 27:3525-3536. [PMID: 37126620 DOI: 10.1109/jbhi.2023.3271696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and rapid categorization of images in the B-scan ultrasound modality is vital for diagnosing ocular diseases. Nevertheless, distinguishing various diseases in ultrasound still challenges experienced ophthalmologists. Thus a novel contrastive disentangled network (CDNet) is developed in this work, aiming to tackle the fine-grained image categorization (FGIC) challenges of ocular abnormalities in ultrasound images, including intraocular tumor (IOT), retinal detachment (RD), posterior scleral staphyloma (PSS), and vitreous hemorrhage (VH). Three essential components of CDNet are the weakly-supervised lesion localization module (WSLL), contrastive multi-zoom (CMZ) strategy, and hyperspherical contrastive disentangled loss (HCD-Loss), respectively. These components facilitate feature disentanglement for fine-grained recognition in both the input and output aspects. The proposed CDNet is validated on our ZJU Ocular Ultrasound Dataset (ZJUOUSD), consisting of 5213 samples. Furthermore, the generalization ability of CDNet is validated on two public and widely-used chest X-ray FGIC benchmarks. Quantitative and qualitative results demonstrate the efficacy of our proposed CDNet, which achieves state-of-the-art performance in the FGIC task.
Collapse
|
108
|
Dong N, Kampffmeyer M, Voiculescu I, Xing E. Federated Partially Supervised Learning With Limited Decentralized Medical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1944-1954. [PMID: 37015445 DOI: 10.1109/tmi.2022.3231017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Data government has played an instrumental role in securing the privacy-critical infrastructure in the medical domain and has led to an increased need of federated learning (FL). While decentralization can limit the effectiveness of standard supervised learning, the impact of decentralization on partially supervised learning remains unclear. Besides, due to data scarcity, each client may have access to only limited partially labeled data. As a remedy, this work formulates and discusses a new learning problem federated partially supervised learning (FPSL) for limited decentralized medical images with partial labels. We study the impact of decentralized partially labeled data on deep learning-based models via an exemplar of FPSL, namely, federated partially supervised learning multi-label classification. By dissecting FedAVG, a seminal FL framework, we formulate and analyze two major challenges of FPSL and propose a simple yet robust FPSL framework, FedPSL, which addresses these challenges. In particular, FedPSL contains two modules, task-dependent model aggregation and task-agnostic decoupling learning, where the first module addresses the weight assignment and the second module improves the generalization ability of the feature extractor. We provide a comprehensive empirical understanding of FSPL under data scarcity with simulated experiments. The empirical results not only indicate that FPSL is an under-explored problem with practical value but also show that the proposed FedPSL can achieve robust performance against baseline methods on data challenges such as data scarcity and domain shifts. The findings of this study also pose a new research direction towards label-efficient learning on medical images.
Collapse
|
109
|
Ukwuoma CC, Cai D, Heyat MBB, Bamisile O, Adun H, Al-Huda Z, Al-Antari MA. Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images. JOURNAL OF KING SAUD UNIVERSITY. COMPUTER AND INFORMATION SCIENCES 2023; 35:101596. [PMID: 37275558 PMCID: PMC10211254 DOI: 10.1016/j.jksuci.2023.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
COVID-19 is a contagious disease that affects the human respiratory system. Infected individuals may develop serious illnesses, and complications may result in death. Using medical images to detect COVID-19 from essentially identical thoracic anomalies is challenging because it is time-consuming, laborious, and prone to human error. This study proposes an end-to-end deep-learning framework based on deep feature concatenation and a Multi-head Self-attention network. Feature concatenation involves fine-tuning the pre-trained backbone models of DenseNet, VGG-16, and InceptionV3, which are trained on a large-scale ImageNet, whereas a Multi-head Self-attention network is adopted for performance gain. End-to-end training and evaluation procedures are conducted using the COVID-19_Radiography_Dataset for binary and multi-classification scenarios. The proposed model achieved overall accuracies (96.33% and 98.67%) and F1_scores (92.68% and 98.67%) for multi and binary classification scenarios, respectively. In addition, this study highlights the difference in accuracy (98.0% vs. 96.33%) and F_1 score (97.34% vs. 95.10%) when compared with feature concatenation against the highest individual model performance. Furthermore, a virtual representation of the saliency maps of the employed attention mechanism focusing on the abnormal regions is presented using explainable artificial intelligence (XAI) technology. The proposed framework provided better COVID-19 prediction results outperforming other recent deep learning models using the same dataset.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, China
| | - Dongsheng Cai
- The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan, 610059, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, China
| | - Humphrey Adun
- Department of Mechanical and Energy Systems Engineering, Cyprus International University, Nicosia, North Nicosia, Cyprus
| | - Zaid Al-Huda
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
110
|
Hatamizadeh A, Yin H, Molchanov P, Myronenko A, Li W, Dogra P, Feng A, Flores MG, Kautz J, Xu D, Roth HR. Do Gradient Inversion Attacks Make Federated Learning Unsafe? IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2044-2056. [PMID: 37021996 DOI: 10.1109/tmi.2023.3239391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in FL use-cases where the clients' training involves updating the Batch Normalization (BN) statistics and provide a new baseline attack that works for such scenarios. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics.
Collapse
|
111
|
Highly accurate multiclass classification of respiratory system diseases from chest radiography images using deep transfer learning technique. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
112
|
Dumakude A, Ezugwu AE. Automated COVID-19 detection with convolutional neural networks. Sci Rep 2023; 13:10607. [PMID: 37391527 PMCID: PMC10313722 DOI: 10.1038/s41598-023-37743-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
This paper focuses on addressing the urgent need for efficient and accurate automated screening tools for COVID-19 detection. Inspired by existing research efforts, we propose two framework models to tackle this challenge. The first model combines a conventional CNN architecture as a feature extractor with XGBoost as the classifier. The second model utilizes a classical CNN architecture with a Feedforward Neural Network for classification. The key distinction between the two models lies in their classification layers. Bayesian optimization techniques are employed to optimize the hyperparameters of both models, enabling a "cheat-start" to the training process with optimal configurations. To mitigate overfitting, transfer learning techniques such as Dropout and Batch normalization are incorporated. The CovidxCT-2A dataset is used for training, validation, and testing purposes. To establish a benchmark, we compare the performance of our models with state-of-the-art methods reported in the literature. Evaluation metrics including Precision, Recall, Specificity, Accuracy, and F1-score are employed to assess the efficacy of the models. The hybrid model demonstrates impressive results, achieving high precision (98.43%), recall (98.41%), specificity (99.26%), accuracy (99.04%), and F1-score (98.42%). The standalone CNN model exhibits slightly lower but still commendable performance, with precision (98.25%), recall (98.44%), specificity (99.27%), accuracy (98.97%), and F1-score (98.34%). Importantly, both models outperform five other state-of-the-art models in terms of classification accuracy, as demonstrated by the results of this study.
Collapse
Affiliation(s)
- Aphelele Dumakude
- School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa
| | - Absalom E Ezugwu
- Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa.
| |
Collapse
|
113
|
Elmasry RM, Salem MAM, Fahmy OM, El Ghany MA. Image Enhancement using Recursive Anisotropic and Stationary Wavelet Transform. 2023 30TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP) 2023. [DOI: 10.1109/iwssip58668.2023.10180278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Ramez M. Elmasry
- German University in Cairo,Media Engineering and Technology,Cairo,Egypt
| | | | - Omar M. Fahmy
- Badr University,Electrical Engineering Department,Cairo,Egypt
| | | |
Collapse
|
114
|
Nahiduzzaman M, Faruq Goni MO, Robiul Islam M, Sayeed A, Shamim Anower M, Ahsan M, Haider J, Kowalski M. Detection of various lung diseases including COVID-19 using extreme learning machine algorithm based on the features extracted from a lightweight CNN architecture. Biocybern Biomed Eng 2023; 43:S0208-5216(23)00037-2. [PMID: 38620111 PMCID: PMC10292668 DOI: 10.1016/j.bbe.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 11/09/2023]
Abstract
Around the world, several lung diseases such as pneumonia, cardiomegaly, and tuberculosis (TB) contribute to severe illness, hospitalization or even death, particularly for elderly and medically vulnerable patients. In the last few decades, several new types of lung-related diseases have taken the lives of millions of people, and COVID-19 has taken almost 6.27 million lives. To fight against lung diseases, timely and correct diagnosis with appropriate treatment is crucial in the current COVID-19 pandemic. In this study, an intelligent recognition system for seven lung diseases has been proposed based on machine learning (ML) techniques to aid the medical experts. Chest X-ray (CXR) images of lung diseases were collected from several publicly available databases. A lightweight convolutional neural network (CNN) has been used to extract characteristic features from the raw pixel values of the CXR images. The best feature subset has been identified using the Pearson Correlation Coefficient (PCC). Finally, the extreme learning machine (ELM) has been used to perform the classification task to assist faster learning and reduced computational complexity. The proposed CNN-PCC-ELM model achieved an accuracy of 96.22% with an Area Under Curve (AUC) of 99.48% for eight class classification. The outcomes from the proposed model demonstrated better performance than the existing state-of-the-art (SOTA) models in the case of COVID-19, pneumonia, and tuberculosis detection in both binary and multiclass classifications. For eight class classification, the proposed model achieved precision, recall and fi-score and ROC are 100%, 99%, 100% and 99.99% respectively for COVID-19 detection demonstrating its robustness. Therefore, the proposed model has overshadowed the existing pioneering models to accurately differentiate COVID-19 from the other lung diseases that can assist the medical physicians in treating the patient effectively.
Collapse
Affiliation(s)
- Md Nahiduzzaman
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Omaer Faruq Goni
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Robiul Islam
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Abu Sayeed
- Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Shamim Anower
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Mominul Ahsan
- Department of Computer Science, University of York, Deramore Lane, Heslington, York YO10 5GH, UK
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Marcin Kowalski
- Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, Warsaw, Poland
| |
Collapse
|
115
|
Thakur K, Kaur M, Kumar Y. A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-21. [PMID: 37359745 PMCID: PMC10249943 DOI: 10.1007/s11831-023-09952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Artificial intelligence is the most powerful and promising tool for the present analytic technologies. It can provide real-time insights into disease spread and predict new pandemic epicenters by processing massive amount of data. The main aim of the paper is to detect and classify multiple infectious diseases using deep learning models. The work is conducted by using 29,252 images of COVID-19, Middle East Respiratory Syndrome Coronavirus, Pneumonia, normal, Severe Acute Respiratory Syndrome, tuberculosis, viral pneumonia, and lung opacity which has been collected from various disease datasets. These datasets are used to train the deep learning models such as EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, NASNetLarge, DenseNet169, ResNet152V2, and InceptionResNetV2. The images have been initially graphically represented using exploratory data analysis to study the pixel intensity and find anomalies by extracting the color channels in an RGB histogram. Later, the dataset has been pre-processed to remove noisy signals using image augmentation and contrast enhancement techniques. Further, feature extraction techniques such as morphological values of contour features and Otsu thresholding have been applied to extract the feature. The models have been evaluated on the basis of various parameters, and it has been discovered that during the testing phase, the InceptionResNetV2 model generated the highest accuracy of 88%, best loss value of 0.399, and root mean square error of 0.63.
Collapse
Affiliation(s)
- Kavita Thakur
- Desh Bhagat University, Mandi Gobindgarh, Punjab India
| | - Manjot Kaur
- Desh Bhagat University, Mandi Gobindgarh, Punjab India
| | - Yogesh Kumar
- Department of CSE, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| |
Collapse
|
116
|
Chetoui M, Akhloufi MA, Bouattane EM, Abdulnour J, Roux S, Bernard CD. Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture. Viruses 2023; 15:1327. [PMID: 37376626 DOI: 10.3390/v15061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19,which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst pandemics in recent history. The identification of patients suspected to be infected with COVID-19 is becoming crucial to reduce its spread. We aimed to validate and test a deep learning model to detect COVID-19 based on chest X-rays. The recent deep convolutional neural network (CNN) RegNetX032 was adapted for detecting COVID-19 from chest X-ray (CXR) images using polymerase chain reaction (RT-PCR) as a reference. The model was customized and trained on five datasets containing more than 15,000 CXR images (including 4148COVID-19-positive cases) and then tested on 321 images (150 COVID-19-positive) from Montfort Hospital. Twenty percent of the data from the five datasets were used as validation data for hyperparameter optimization. Each CXR image was processed by the model to detect COVID-19. Multi-binary classifications were proposed, such as: COVID-19 vs. normal, COVID-19 + pneumonia vs. normal, and pneumonia vs. normal. The performance results were based on the area under the curve (AUC), sensitivity, and specificity. In addition, an explainability model was developed that demonstrated the high performance and high generalization degree of the proposed model in detecting and highlighting the signs of the disease. The fine-tuned RegNetX032 model achieved an overall accuracy score of 96.0%, with an AUC score of 99.1%. The model showed a superior sensitivity of 98.0% in detecting signs from CXR images of COVID-19 patients, and a specificity of 93.0% in detecting healthy CXR images. A second scenario compared COVID-19 + pneumonia vs. normal (healthy X-ray) patients. The model achieved an overall score of 99.1% (AUC) with a sensitivity of 96.0% and specificity of 93.0% on the Montfort dataset. For the validation set, the model achieved an average accuracy of 98.6%, an AUC score of 98.0%, a sensitivity of 98.0%, and a specificity of 96.0% for detection (COVID-19 patients vs. healthy patients). The second scenario compared COVID-19 + pneumonia vs. normal patients. The model achieved an overall score of 98.8% (AUC) with a sensitivity of 97.0% and a specificity of 96.0%. This robust deep learning model demonstrated excellent performance in detecting COVID-19 from chest X-rays. This model could be used to automate the detection of COVID-19 and improve decision making for patient triage and isolation in hospital settings. This could also be used as a complementary aid for radiologists or clinicians when differentiating to make smart decisions.
Collapse
Affiliation(s)
- Mohamed Chetoui
- Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Moulay A Akhloufi
- Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - El Mostafa Bouattane
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | - Joseph Abdulnour
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | - Stephane Roux
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | | |
Collapse
|
117
|
Suwalska A, Tobiasz J, Prazuch W, Socha M, Foszner P, Piotrowski D, Gruszczynska K, Sliwinska M, Walecki J, Popiela T, Przybylski G, Nowak M, Fiedor P, Pawlowska M, Flisiak R, Simon K, Zapolska G, Gizycka B, Szurowska E, Marczyk M, Cieszanowski A, Polanska J. POLCOVID: a multicenter multiclass chest X-ray database (Poland, 2020-2021). Sci Data 2023; 10:348. [PMID: 37268643 DOI: 10.1038/s41597-023-02229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
The outbreak of the SARS-CoV-2 pandemic has put healthcare systems worldwide to their limits, resulting in increased waiting time for diagnosis and required medical assistance. With chest radiographs (CXR) being one of the most common COVID-19 diagnosis methods, many artificial intelligence tools for image-based COVID-19 detection have been developed, often trained on a small number of images from COVID-19-positive patients. Thus, the need for high-quality and well-annotated CXR image databases increased. This paper introduces POLCOVID dataset, containing chest X-ray (CXR) images of patients with COVID-19 or other-type pneumonia, and healthy individuals gathered from 15 Polish hospitals. The original radiographs are accompanied by the preprocessed images limited to the lung area and the corresponding lung masks obtained with the segmentation model. Moreover, the manually created lung masks are provided for a part of POLCOVID dataset and the other four publicly available CXR image collections. POLCOVID dataset can help in pneumonia or COVID-19 diagnosis, while the set of matched images and lung masks may serve for the development of lung segmentation solutions.
Collapse
Affiliation(s)
- Aleksandra Suwalska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Joanna Tobiasz
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Computer Graphics, Vision and Digital Systems, Silesian University of Technology, Gliwice, Poland
| | - Wojciech Prazuch
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marek Socha
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Pawel Foszner
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Computer Graphics, Vision and Digital Systems, Silesian University of Technology, Gliwice, Poland
| | - Damian Piotrowski
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gruszczynska
- Department of Radiology and Nuclear Medicine, Medical University of Silesia, Katowice, Poland
| | - Magdalena Sliwinska
- Department of Diagnostic Imaging, Voivodship Specialist Hospital, Wroclaw, Poland
| | - Jerzy Walecki
- Department of Diagnostic Radiology, Central Clinical Hospital of the Ministry of Internal Affairs and Administration, Warsaw, Poland
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Przybylski
- Department of Lung Diseases, Cancer and Tuberculosis, Kujawsko-Pomorskie Pulmonology Center, Bydgoszcz, Poland
| | - Mateusz Nowak
- Department of Radiology, Silesian Hospital, Cieszyn, Poland
| | - Piotr Fiedor
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Pawlowska
- Department of Infectious Diseases and Hepatology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Simon
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Barbara Gizycka
- Department of Imaging Diagnostics, MEGREZ Hospital, Tychy, Poland
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| | - Andrzej Cieszanowski
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
118
|
Sailunaz K, Özyer T, Rokne J, Alhajj R. A survey of machine learning-based methods for COVID-19 medical image analysis. Med Biol Eng Comput 2023; 61:1257-1297. [PMID: 36707488 PMCID: PMC9883138 DOI: 10.1007/s11517-022-02758-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches.
Collapse
Affiliation(s)
- Kashfia Sailunaz
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Tansel Özyer
- Department of Computer Engineering, Ankara Medipol University, Ankara, Turkey
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
- Department of Health Informatics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
119
|
Xie T, Wang Z, Li H, Wu P, Huang H, Zhang H, Alsaadi FE, Zeng N. Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-19 diagnosis. Comput Biol Med 2023; 159:106947. [PMID: 37099976 PMCID: PMC10116157 DOI: 10.1016/j.compbiomed.2023.106947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
In this paper, a novel deep learning-based medical imaging analysis framework is developed, which aims to deal with the insufficient feature learning caused by the imperfect property of imaging data. Named as multi-scale efficient network (MEN), the proposed method integrates different attention mechanisms to realize sufficient extraction of both detailed features and semantic information in a progressive learning manner. In particular, a fused-attention block is designed to extract fine-grained details from the input, where the squeeze-excitation (SE) attention mechanism is applied to make the model focus on potential lesion areas. A multi-scale low information loss (MSLIL)-attention block is proposed to compensate for potential global information loss and enhance the semantic correlations among features, where the efficient channel attention (ECA) mechanism is adopted. The proposed MEN is comprehensively evaluated on two COVID-19 diagnostic tasks, and the results show that as compared with some other advanced deep learning models, the proposed method is competitive in accurate COVID-19 recognition, which yields the best accuracy of 98.68% and 98.85%, respectively, and exhibits satisfactory generalization ability as well.
Collapse
Affiliation(s)
- Tingyi Xie
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Zidong Wang
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Han Li
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian 361005, China
| | - Peishu Wu
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian 361005, China
| | - Huixiang Huang
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Hongyi Zhang
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Fuad E Alsaadi
- Communication Systems and Networks Research Group, Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nianyin Zeng
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian 361005, China.
| |
Collapse
|
120
|
Riedel P, von Schwerin R, Schaudt D, Hafner A, Späte C. ResNetFed: Federated Deep Learning Architecture for Privacy-Preserving Pneumonia Detection from COVID-19 Chest Radiographs. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2023; 7:203-224. [PMID: 37359194 PMCID: PMC10265567 DOI: 10.1007/s41666-023-00132-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Personal health data is subject to privacy regulations, making it challenging to apply centralized data-driven methods in healthcare, where personalized training data is frequently used. Federated Learning (FL) promises to provide a decentralized solution to this problem. In FL, siloed data is used for the model training to ensure data privacy. In this paper, we investigate the viability of the federated approach using the detection of COVID-19 pneumonia as a use case. 1411 individual chest radiographs, sourced from the public data repository COVIDx8 are used. The dataset contains radiographs of 753 normal lung findings and 658 COVID-19 related pneumonias. We partition the data unevenly across five separate data silos in order to reflect a typical FL scenario. For the binary image classification analysis of these radiographs, we propose ResNetFed, a pre-trained ResNet50 model modified for federation so that it supports Differential Privacy. In addition, we provide a customized FL strategy for the model training with COVID-19 radiographs. The experimental results show that ResNetFed clearly outperforms locally trained ResNet50 models. Due to the uneven distribution of the data in the silos, we observe that the locally trained ResNet50 models perform significantly worse than ResNetFed models (mean accuracies of 63% and 82.82%, respectively). In particular, ResNetFed shows excellent model performance in underpopulated data silos, achieving up to +34.9 percentage points higher accuracy compared to local ResNet50 models. Thus, with ResNetFed, we provide a federated solution that can assist the initial COVID-19 screening in medical centers in a privacy-preserving manner.
Collapse
Affiliation(s)
- Pascal Riedel
- Institute for Informatics, University of Applied Sciences, Prittwitzstraße 10, Ulm, 89075 Baden-Württemberg Germany
| | - Reinhold von Schwerin
- Institute for Informatics, University of Applied Sciences, Prittwitzstraße 10, Ulm, 89075 Baden-Württemberg Germany
| | - Daniel Schaudt
- Institute for Informatics, University of Applied Sciences, Prittwitzstraße 10, Ulm, 89075 Baden-Württemberg Germany
| | - Alexander Hafner
- Institute for Informatics, University of Applied Sciences, Prittwitzstraße 10, Ulm, 89075 Baden-Württemberg Germany
| | - Christian Späte
- Transferzentrum für Digitalisierung, Analytics & Data Science Ulm (DASU), Ensingerstraße 4, Ulm, 89073 Baden-Württemberg Germany
| |
Collapse
|
121
|
Yuan J, Wu F, Li Y, Li J, Huang G, Huang Q. DPDH-CapNet: A Novel Lightweight Capsule Network with Non-routing for COVID-19 Diagnosis Using X-ray Images. J Digit Imaging 2023; 36:988-1000. [PMID: 36813978 PMCID: PMC9946284 DOI: 10.1007/s10278-023-00791-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
COVID-19 has claimed millions of lives since its outbreak in December 2019, and the damage continues, so it is urgent to develop new technologies to aid its diagnosis. However, the state-of-the-art deep learning methods often rely on large-scale labeled data, limiting their clinical application in COVID-19 identification. Recently, capsule networks have achieved highly competitive performance for COVID-19 detection, but they require expensive routing computation or traditional matrix multiplication to deal with the capsule dimensional entanglement. A more lightweight capsule network is developed to effectively address these problems, namely DPDH-CapNet, which aims to enhance the technology of automated diagnosis for COVID-19 chest X-ray images. It adopts depthwise convolution (D), point convolution (P), and dilated convolution (D) to construct a new feature extractor, thus successfully capturing the local and global dependencies of COVID-19 pathological features. Simultaneously, it constructs the classification layer by homogeneous (H) vector capsules with an adaptive, non-iterative, and non-routing mechanism. We conduct experiments on two publicly available combined datasets, including normal, pneumonia, and COVID-19 images. With a limited number of samples, the parameters of the proposed model are reduced by 9x compared to the state-of-the-art capsule network. Moreover, our model has faster convergence speed and better generalization, and its accuracy, precision, recall, and F-measure are improved to 97.99%, 98.05%, 98.02%, and 98.03%, respectively. In addition, experimental results demonstrate that, contrary to the transfer learning method, the proposed model does not require pre-training and a large number of training samples.
Collapse
Affiliation(s)
- Jianjun Yuan
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China.
| | - Fujun Wu
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Yuxi Li
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Jinyi Li
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Guojun Huang
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Quanyong Huang
- College of Machinery and Automation, Wuhan University of Science and Technology, Heping Avenue No. 947, Wuhan, Hubei Province, 430091, China.
| |
Collapse
|
122
|
Poola RG, Pl L, Y SS. COVID-19 diagnosis: A comprehensive review of pre-trained deep learning models based on feature extraction algorithm. RESULTS IN ENGINEERING 2023; 18:101020. [PMID: 36945336 PMCID: PMC10017171 DOI: 10.1016/j.rineng.2023.101020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 05/14/2023]
Abstract
Due to the augmented rise of COVID-19, clinical specialists are looking for fast faultless diagnosis strategies to restrict Covid spread while attempting to lessen the computational complexity. In this way, swift diagnosis techniques for COVID-19 with high precision can offer valuable aid to clinical specialists. RT- PCR test is an expensive and tedious COVID diagnosis technique in practice. Medical imaging is feasible to diagnose COVID-19 by X-ray chest radiography to get around the shortcomings of RT-PCR. Through a variety of Deep Transfer-learning models, this research investigates the potential of Artificial Intelligence -based early diagnosis of COVID-19 via X-ray chest radiographs. With 10,192 normal and 3616 Covid X-ray chest radiographs, the deep transfer-learning models are optimized to further the accurate diagnosis. The x-ray chest radiographs undergo a data augmentation phase before developing a modified dataset to train the Deep Transfer-learning models. The Deep Transfer-learning architectures are trained using the extracted features from the Feature Extraction stage. During training, the classification of X-ray Chest radiographs based on feature extraction algorithm values is converted into a feature label set containing the classified image data with a feature string value representing the number of edges detected after edge detection. The feature label set is further tested with the SVM, KNN, NN, Naive Bayes and Logistic Regression classifiers to audit the quality metrics of the proposed model. The quality metrics include accuracy, precision, F1 score, recall and AUC. The Inception-V3 dominates the six Deep Transfer-learning models, according to the assessment results, with a training accuracy of 84.79% and a loss function of 2.4%. The performance of Cubic SVM was superior to that of the other SVM classifiers, with an AUC score of 0.99, precision of 0.983, recall of 0.8977, accuracy of 95.8%, and F1 score of 0.9384. Cosine KNN fared better than the other KNN classifiers with an AUC score of 0.95, precision of 0.974, recall of 0.777, accuracy of 90.8%, and F1 score of 0.864. Wide NN fared better than the other NN classifiers with an AUC score of 0.98, precision of 0.975, recall of 0.907, accuracy of 95.5%, and F1 score of 0.939. According to the findings, SVM classifiers topped other classifiers in terms of performance indicators like accuracy, precision, recall, F1-score, and AUC. The SVM classifiers reported better mean optimal scores compared to other classifiers. The performance assessment metrics uncover that the proposed methodology can aid in preliminary COVID diagnosis.
Collapse
Affiliation(s)
| | - Lahari Pl
- Dept. of ECE, SRM University, AP, India
| | | |
Collapse
|
123
|
Mozaffari J, Amirkhani A, Shokouhi SB. A survey on deep learning models for detection of COVID-19. Neural Comput Appl 2023; 35:1-29. [PMID: 37362568 PMCID: PMC10224665 DOI: 10.1007/s00521-023-08683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligence can be employed as an effective tool for an earlier detection and treatment of this illness. In this review paper, we evaluate the performance of the deep learning models in processing the X-Ray and CT-Scan images of the Corona patients' lungs and describe the changes made to these models in order to enhance their Corona detection accuracy. To this end, we introduce the famous deep learning models such as VGGNet, GoogleNet and ResNet and after reviewing the research works in which these models have been used for the detection of COVID-19, we compare the performances of the newer models such as DenseNet, CapsNet, MobileNet and EfficientNet. We then present the deep learning techniques of GAN, transfer learning, and data augmentation and examine the statistics of using these techniques. Here, we also describe the datasets introduced since the onset of the COVID-19. These datasets contain the lung images of Corona patients, healthy individuals, and the patients with non-Corona pulmonary diseases. Lastly, we elaborate on the existing challenges in the use of artificial intelligence for COVID-19 detection and the prospective trends of using this method in similar situations and conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s00521-023-08683-x.
Collapse
Affiliation(s)
- Javad Mozaffari
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Abdollah Amirkhani
- School of Automotive Engineering, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Shahriar B. Shokouhi
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| |
Collapse
|
124
|
Lee MH, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J Clin Med 2023; 12:jcm12103446. [PMID: 37240552 DOI: 10.3390/jcm12103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 is a novel virus that has been affecting the global population by spreading rapidly and causing severe complications, which require prompt and elaborate emergency treatment. Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-based classification approaches is presented. The reviewed papers have presented a variety of CNN models and architectures that were developed to provide an accurate and quick automatic tool to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic review, we focused on the critical components of the deep learning approach, such as network architecture, model complexity, parameter optimization, explainability, and dataset/code availability. The literature search yielded a large number of studies over the past period of the virus spread, and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely implement current AI studies in medical practice.
Collapse
Affiliation(s)
- Min-Ho Lee
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Adai Shomanov
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Madina Kudaibergenova
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Dmitriy Viderman
- School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khandar Str., Astana 010000, Kazakhstan
| |
Collapse
|
125
|
Alablani IAL, Alenazi MJF. COVID-ConvNet: A Convolutional Neural Network Classifier for Diagnosing COVID-19 Infection. Diagnostics (Basel) 2023; 13:diagnostics13101675. [PMID: 37238159 DOI: 10.3390/diagnostics13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The novel coronavirus (COVID-19) pandemic still has a significant impact on the worldwide population's health and well-being. Effective patient screening, including radiological examination employing chest radiography as one of the main screening modalities, is an important step in the battle against the disease. Indeed, the earliest studies on COVID-19 found that patients infected with COVID-19 present with characteristic anomalies in chest radiography. In this paper, we introduce COVID-ConvNet, a deep convolutional neural network (DCNN) design suitable for detecting COVID-19 symptoms from chest X-ray (CXR) scans. The proposed deep learning (DL) model was trained and evaluated using 21,165 CXR images from the COVID-19 Database, a publicly available dataset. The experimental results demonstrate that our COVID-ConvNet model has a high prediction accuracy at 97.43% and outperforms recent related works by up to 5.9% in terms of prediction accuracy.
Collapse
Affiliation(s)
- Ibtihal A L Alablani
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| | - Mohammed J F Alenazi
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| |
Collapse
|
126
|
Rahman T, Chowdhury MEH, Khandakar A, Mahbub ZB, Hossain MSA, Alhatou A, Abdalla E, Muthiyal S, Islam KF, Kashem SBA, Khan MS, Zughaier SM, Hossain M. BIO-CXRNET: a robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest X-ray images and clinical data. Neural Comput Appl 2023; 35:1-23. [PMID: 37362565 PMCID: PMC10157130 DOI: 10.1007/s00521-023-08606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk. Supplementary Information The online version contains supplementary material available at 10.1007/s00521-023-08606-w.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zaid Bin Mahbub
- Department of Physics and Mathematics, North South University, Dhaka, 1229 Bangladesh
| | | | - Abraham Alhatou
- Department of Biology, University of South Carolina (USC), Columbia, SC 29208 USA
| | - Eynas Abdalla
- Anesthesia Department, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | - Sreekumar Muthiyal
- Department of Radiology, Hamad General Hospital, P.O. Box 3050, Doha, Qatar
| | | | - Saad Bin Abul Kashem
- Department of Computer Science, AFG College with the University of Aberdeen, Doha, Qatar
| | - Muhammad Salman Khan
- Department of Electrical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Susu M. Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, 1229 Bangladesh
| |
Collapse
|
127
|
Sultana A, Nahiduzzaman M, Bakchy SC, Shahriar SM, Peyal HI, Chowdhury MEH, Khandakar A, Arselene Ayari M, Ahsan M, Haider J. A Real Time Method for Distinguishing COVID-19 Utilizing 2D-CNN and Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094458. [PMID: 37177662 PMCID: PMC10181786 DOI: 10.3390/s23094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Rapid identification of COVID-19 can assist in making decisions for effective treatment and epidemic prevention. The PCR-based test is expert-dependent, is time-consuming, and has limited sensitivity. By inspecting Chest R-ray (CXR) images, COVID-19, pneumonia, and other lung infections can be detected in real time. The current, state-of-the-art literature suggests that deep learning (DL) is highly advantageous in automatic disease classification utilizing the CXR images. The goal of this study is to develop models by employing DL models for identifying COVID-19 and other lung disorders more efficiently. For this study, a dataset of 18,564 CXR images with seven disease categories was created from multiple publicly available sources. Four DL architectures including the proposed CNN model and pretrained VGG-16, VGG-19, and Inception-v3 models were applied to identify healthy and six lung diseases (fibrosis, lung opacity, viral pneumonia, bacterial pneumonia, COVID-19, and tuberculosis). Accuracy, precision, recall, f1 score, area under the curve (AUC), and testing time were used to evaluate the performance of these four models. The results demonstrated that the proposed CNN model outperformed all other DL models employed for a seven-class classification with an accuracy of 93.15% and average values for precision, recall, f1-score, and AUC of 0.9343, 0.9443, 0.9386, and 0.9939. The CNN model equally performed well when other multiclass classifications including normal and COVID-19 as the common classes were considered, yielding accuracy values of 98%, 97.49%, 97.81%, 96%, and 96.75% for two, three, four, five, and six classes, respectively. The proposed model can also identify COVID-19 with shorter training and testing times compared to other transfer learning models.
Collapse
Affiliation(s)
- Abida Sultana
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Nahiduzzaman
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Sagor Chandro Bakchy
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Saleh Mohammed Shahriar
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Hasibul Islam Peyal
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Mominul Ahsan
- Department of Computer Science, University of York, Deramore Lane, Heslington, York YO10 5GH, UK
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
128
|
Karbasi Z, Gohari SH, Sabahi A. Bibliometric analysis of the use of artificial intelligence in COVID-19 based on scientific studies. Health Sci Rep 2023; 6:e1244. [PMID: 37152228 PMCID: PMC10158785 DOI: 10.1002/hsr2.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background and Aims One such strategy is citation analysis used by researchers for research planning an article referred to by another article receives a "citation." By using bibliometric analysis, the development of research areas and authors' influence can be investigated. The current study aimed to identify and analyze the characteristics of 100 highly cited articles on the use of artificial intelligence concerning COVID-19. Methods On July 27, 2022, this database was searched using the keywords "artificial intelligence" and "COVID-19" in the topic. After extensive searching, all retrieved articles were sorted by the number of citations, and 100 highly cited articles were included based on the number of citations. The following data were extracted: year of publication, type of study, name of journal, country, number of citations, language, and keywords. Results The average number of citations for 100 highly cited articles was 138.54. The top three cited articles with 745, 596, and 549 citations. The top 100 articles were all in English and were published in 2020 and 2021. China was the most prolific country with 19 articles, followed by the United States with 15 articles and India with 10 articles. Conclusion The current bibliometric analysis demonstrated the significant growth of the use of artificial intelligence for COVID-19. Using these results, research priorities are more clearly defined, and researchers can focus on hot topics.
Collapse
Affiliation(s)
- Zahra Karbasi
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
- Department of Health Information Sciences, Faculty of Management and Medical Information SciencesKerman University of Medical SciencesKermanIran
| | - Sadrieh H. Gohari
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Azam Sabahi
- Department of Health Information Technology, Ferdows School of Health and Allied Medical SciencesBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
129
|
Rehman A, Xing H, Adnan Khan M, Hussain M, Hussain A, Gulzar N. Emerging technologies for COVID (ET-CoV) detection and diagnosis: Recent advancements, applications, challenges, and future perspectives. Biomed Signal Process Control 2023; 83:104642. [PMID: 36818992 PMCID: PMC9917176 DOI: 10.1016/j.bspc.2023.104642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
In light of the constantly changing terrain of the COVID outbreak, medical specialists have implemented proactive schemes for vaccine production. Despite the remarkable COVID-19 vaccine development, the virus has mutated into new variants, including delta and omicron. Currently, the situation is critical in many parts of the world, and precautions are being taken to stop the virus from spreading and mutating. Early identification and diagnosis of COVID-19 are the main challenges faced by emerging technologies during the outbreak. In these circumstances, emerging technologies to tackle Coronavirus have proven magnificent. Artificial intelligence (AI), big data, the internet of medical things (IoMT), robotics, blockchain technology, telemedicine, smart applications, and additive manufacturing are suspicious for detecting, classifying, monitoring, and locating COVID-19. Henceforth, this research aims to glance at these COVID-19 defeating technologies by focusing on their strengths and limitations. A CiteSpace-based bibliometric analysis of the emerging technology was established. The most impactful keywords and the ongoing research frontiers were compiled. Emerging technologies were unstable due to data inconsistency, redundant and noisy datasets, and the inability to aggregate the data due to disparate data formats. Moreover, the privacy and confidentiality of patient medical records are not guaranteed. Hence, Significant data analysis is required to develop an intelligent computational model for effective and quick clinical diagnosis of COVID-19. Remarkably, this article outlines how emerging technology has been used to counteract the virus disaster and offers ongoing research frontiers, directing readers to concentrate on the real challenges and thus facilitating additional explorations to amplify emerging technologies.
Collapse
Affiliation(s)
- Amir Rehman
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Huanlai Xing
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Muhammad Adnan Khan
- Pattern Recognition and Machine Learning, Department of Software, Gachon University, Seongnam 13557, Republic of Korea
- Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Mehboob Hussain
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Abid Hussain
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Nighat Gulzar
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
130
|
Das G, Swain M, Panda R, Naik MK, Agrawal S. A non-entropy-based optimal multilevel threshold selection technique for COVID-19 X-ray images using chance-based birds' intelligence. Soft comput 2023:1-21. [PMID: 37362283 PMCID: PMC10127190 DOI: 10.1007/s00500-023-08135-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
Recently, image thresholding methods based on various entropy functions have been found popularity. Nonetheless, entropic-based methods depend on the spatial distribution of the grey level values in an image. Hence, the accuracy of these methods is limited due to the non-uniform distribution of the grey values. Further, the analysis of the COVID-19 X-ray images is evolved as an important area of research. Therefore, it is needed to develop an efficient method for the segmentation of the COVID-19 X-ray images. To address these issues, an efficient non-entropy-based thresholding method is suggested. A novel fitness function in terms of the segmentation score (SS) is introduced, which is used to reduce the segmentation error. A soft computing approach is suggested. An efficient optimizer using the chance-based birds' intelligence is introduced to maximize the fitness values. The new optimizer is validated utilizing the benchmark test functions. The statistical parameters reveal that the suggested optimizer is efficient. It shows a quite significant improvement over its counterparts-optimization based on seagull/cuckoo birds. Precisely, the paper includes three novel contributions-(i) fitness function, (ii) chance-based birds' intelligence for optimization, (iii) multiclass segmentation. The COVID-19 X-ray images are taken from the Kaggle Radiography database, to the experiment. Its results are compared with three different state-of-the-art entropy-based techniques-Tsallis, Kapur's, and Masi. For providing a statistical analysis, Friedman's mean rank test is conducted and our method Ranked one. Its superiority is claimed in terms of Peak Signal to Noise Ratio (PSNR), Feature Similarity Index (FSIM) and Structure Similarity Index (SSIM). On the whole, an improvement of about 11% in PSNR values is achieved using the proposed method. This method would be helpful for medical image analysis.
Collapse
Affiliation(s)
- Gyanesh Das
- Department of Electronics and TCE, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| | - Monorama Swain
- Department of ECE, Silicon Institute of Technology, Bhubaneswar, Odisha 751024 India
| | - Rutuparna Panda
- Department of Electronics and TCE, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| | - Manoj K. Naik
- Faculty of Engineering and Technology, Siksha O Anusandhan, Bhubaneswar, Odisha 751030 India
| | - Sanjay Agrawal
- Department of Electronics and TCE, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| |
Collapse
|
131
|
Pfeuffer N, Baum L, Stammer W, Abdel-Karim BM, Schramowski P, Bucher AM, Hügel C, Rohde G, Kersting K, Hinz O. Explanatory Interactive Machine Learning. BUSINESS & INFORMATION SYSTEMS ENGINEERING 2023. [PMCID: PMC10119840 DOI: 10.1007/s12599-023-00806-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/17/2023] [Indexed: 11/22/2023]
Abstract
The most promising standard machine learning methods can deliver highly accurate classification results, often outperforming standard white-box methods. However, it is hardly possible for humans to fully understand the rationale behind the black-box results, and thus, these powerful methods hamper the creation of new knowledge on the part of humans and the broader acceptance of this technology. Explainable Artificial Intelligence attempts to overcome this problem by making the results more interpretable, while Interactive Machine Learning integrates humans into the process of insight discovery. The paper builds on recent successes in combining these two cutting-edge technologies and proposes how Explanatory Interactive Machine Learning (XIL) is embedded in a generalizable Action Design Research (ADR) process – called XIL-ADR. This approach can be used to analyze data, inspect models, and iteratively improve them. The paper shows the application of this process using the diagnosis of viral pneumonia, e.g., Covid-19, as an illustrative example. By these means, the paper also illustrates how XIL-ADR can help identify shortcomings of standard machine learning projects, gain new insights on the part of the human user, and thereby can help to unlock the full potential of AI-based systems for organizations and research.
Collapse
Affiliation(s)
- Nicolas Pfeuffer
- Information Systems and Information Management, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lorenz Baum
- Information Systems and Information Management, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Stammer
- Machine Learning Group, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Benjamin M. Abdel-Karim
- Information Systems and Information Management, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Schramowski
- Machine Learning Group, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Andreas M. Bucher
- Diagnostic and Interventional Radiology, Center of Radiology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Hügel
- Pneumology and Allergology, Center of Internal Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gernot Rohde
- Pneumology and Allergology, Center of Internal Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kristian Kersting
- Machine Learning Group, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Hinz
- Information Systems and Information Management, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
132
|
Akinyelu AA, Bah B. COVID-19 Diagnosis in Computerized Tomography (CT) and X-ray Scans Using Capsule Neural Network. Diagnostics (Basel) 2023; 13:diagnostics13081484. [PMID: 37189585 DOI: 10.3390/diagnostics13081484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
This study proposes a deep-learning-based solution (named CapsNetCovid) for COVID-19 diagnosis using a capsule neural network (CapsNet). CapsNets are robust for image rotations and affine transformations, which is advantageous when processing medical imaging datasets. This study presents a performance analysis of CapsNets on standard images and their augmented variants for binary and multi-class classification. CapsNetCovid was trained and evaluated on two COVID-19 datasets of CT images and X-ray images. It was also evaluated on eight augmented datasets. The results show that the proposed model achieved classification accuracy, precision, sensitivity, and F1-score of 99.929%, 99.887%, 100%, and 99.319%, respectively, for the CT images. It also achieved a classification accuracy, precision, sensitivity, and F1-score of 94.721%, 93.864%, 92.947%, and 93.386%, respectively, for the X-ray images. This study presents a comparative analysis between CapsNetCovid, CNN, DenseNet121, and ResNet50 in terms of their ability to correctly identify randomly transformed and rotated CT and X-ray images without the use of data augmentation techniques. The analysis shows that CapsNetCovid outperforms CNN, DenseNet121, and ResNet50 when trained and evaluated on CT and X-ray images without data augmentation. We hope that this research will aid in improving decision making and diagnostic accuracy of medical professionals when diagnosing COVID-19.
Collapse
Affiliation(s)
- Andronicus A Akinyelu
- Research Centre, African Institute for Mathematical Sciences (AIMS) South Africa, Cape Town 7945, South Africa
- Department of Computer Science and Informatics, University of the Free State, Phuthaditjhaba 9866, South Africa
| | - Bubacarr Bah
- Research Centre, African Institute for Mathematical Sciences (AIMS) South Africa, Cape Town 7945, South Africa
- Department of Mathematical Sciences, Stellenbosch University, Cape Town 7945, South Africa
| |
Collapse
|
133
|
Türk F, Kökver Y. Detection of Lung Opacity and Treatment Planning with Three-Channel Fusion CNN Model. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023:1-13. [PMID: 37361471 PMCID: PMC10103673 DOI: 10.1007/s13369-023-07843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Lung opacities are extremely important for physicians to monitor and can have irreversible consequences for patients if misdiagnosed or confused with other findings. Therefore, long-term monitoring of the regions of lung opacity is recommended by physicians. Tracking the regional dimensions of images and classifying differences from other lung cases can provide significant ease to physicians. Deep learning methods can be easily used for the detection, classification, and segmentation of lung opacity. In this study, a three-channel fusion CNN model is applied to effectively detect lung opacity on a balanced dataset compiled from public datasets. The MobileNetV2 architecture is used in the first channel, the InceptionV3 model in the second channel, and the VGG19 architecture in the third channel. The ResNet architecture is used for feature transfer from the previous layer to the current layer. In addition to being easy to implement, the proposed approach can also provide significant cost and time advantages to physicians. Our accuracy values for two, three, four, and five classes on the newly compiled dataset for lung opacity classifications are found to be 92.52%, 92.44%, 87.12%, and 91.71%, respectively.
Collapse
Affiliation(s)
- Fuat Türk
- Department of Computer Engineering, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Yunus Kökver
- Department of Computer Technologies, Elmadağ Vocational School, Ankara University, 06780 Ankara, Turkey
| |
Collapse
|
134
|
Lizzi F, Postuma I, Brero F, Cabini RF, Fantacci ME, Lascialfari A, Oliva P, Rinaldi L, Retico A. Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:326. [PMID: 37064789 PMCID: PMC10088731 DOI: 10.1140/epjp/s13360-023-03896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-19 pneumonia. Here, we present an improved version of the LungQuant automatic segmentation software (LungQuant v2), which implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19 pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net 1 ) outputs the mask of the lungs, and the final one (U-net 2 ) generates the mask of the COVID-19 lesions. With respect to the previous version (LungQuant v1), three main improvements are introduced: the BB-net, a new term in the loss function in the U-net for lesion segmentation and a post-processing procedure to separate the right and left lungs. The three DNNs were optimized, trained and tested on publicly available CT scans. We evaluated the system segmentation capability on an independent test set consisting of ten fully annotated CT scans, the COVID-19-CT-Seg benchmark dataset. The test performances are reported by means of the volumetric dice similarity coefficient (vDSC) and the surface dice similarity coefficient (sDSC) between the reference and the segmented objects. LungQuant v2 achieves a vDSC (sDSC) equal to 0.96 ± 0.01 (0.97 ± 0.01) and 0.69 ± 0.08 (0.83 ± 0.07) for the lung and lesion segmentations, respectively. The output of the segmentation software was then used to assess the percentage of infected lungs, obtaining a Mean Absolute Error (MAE) equal to 2%.
Collapse
Affiliation(s)
- Francesca Lizzi
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy
| | | | - Francesca Brero
- Pavia Division, INFN, Pavia, Italy
- Department of Physics, University of Pavia, Pavia, Italy
| | - Raffaella Fiamma Cabini
- Pavia Division, INFN, Pavia, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Maria Evelina Fantacci
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Italy
| | - Alessandro Lascialfari
- Pavia Division, INFN, Pavia, Italy
- Department of Physics, University of Pavia, Pavia, Italy
| | - Piernicola Oliva
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
- Cagliari Division, INFN, Cagliari, Italy
| | - Lisa Rinaldi
- Pavia Division, INFN, Pavia, Italy
- Department of Physics, University of Pavia, Pavia, Italy
| | - Alessandra Retico
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy
| |
Collapse
|
135
|
Khattab R, Abdelmaksoud IR, Abdelrazek S. Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical Images: A Survey. NEW GENERATION COMPUTING 2023; 41:343-400. [PMID: 37229176 PMCID: PMC10071474 DOI: 10.1007/s00354-023-00213-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), surprised the world in December 2019 and has threatened the lives of millions of people. Countries all over the world closed worship places and shops, prevented gatherings, and implemented curfews to stand against the spread of COVID-19. Deep Learning (DL) and Artificial Intelligence (AI) can have a great role in detecting and fighting this disease. Deep learning can be used to detect COVID-19 symptoms and signs from different imaging modalities, such as X-Ray, Computed Tomography (CT), and Ultrasound Images (US). This could help in identifying COVID-19 cases as a first step to curing them. In this paper, we reviewed the research studies conducted from January 2020 to September 2022 about deep learning models that were used in COVID-19 detection. This paper clarified the three most common imaging modalities (X-Ray, CT, and US) in addition to the DL approaches that are used in this detection and compared these approaches. This paper also provided the future directions of this field to fight COVID-19 disease.
Collapse
Affiliation(s)
- Rana Khattab
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Islam R. Abdelmaksoud
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Samir Abdelrazek
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| |
Collapse
|
136
|
D 3SENet: A hybrid deep feature extraction network for Covid-19 classification using chest X-ray images. Biomed Signal Process Control 2023; 82:104559. [PMID: 36618337 PMCID: PMC9805894 DOI: 10.1016/j.bspc.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Covid-19 is one of the biggest global epidemics seen in the world in recent years. Because of this, people's daily lifestyles, the economic conditions of countries and individuals, and most importantly, their health status has been adversely affected all over the world. Millions of people around the world have died from this disease. For this reason, rapid and accurate detection of the disease is of great importance in terms of treatment and precautions. In addition, it is especially important to correctly distinguish between Covid-19 and non-Covid-19 pneumonia diseases for correct diagnosis and treatment. These two diseases cause similar symptoms, and the symptoms and the effects of the disease on the body should be carefully examined for their differentiation. Chest X-ray images, chest computerized tomography, and swab tests are commonly used to detect patients infected with COVID-19. This disease affects the lungs the most in the body and causes fatal side effects such as shortness of breath. Therefore, medical images taken from the chest play an important role in the diagnosis of the disease. The fact that X-rays are faster and cheaper than computerized tomography has led to an increase in studies on the detection of disease with X-rays. In recent years, the impressive results of deep learning in the field of computer vision have attracted researchers to this field when working with image data. This study aims to detect these diseases on chest X-ray images collected from Covid-19 patients, pneumonia patients, and healthy individuals. We proposed a hybrid feature extraction network namely D3SENET which consists of DarkNet53, DarkNet19, DenseNet201, SqueezeNet, and EfficientNetb0. After a balanced data set was prepared, feature vectors were obtained from images using deep learning-based CNN models and the size of feature vectors was reduced by feature selection algorithms. Obtained features were classified by traditional machine learning methods such as SVMs. The number of features to be selected was tested by the iterative increment method and the parameters with the highest accuracy rate were obtained. As a result, it was seen that healthy and infected individuals were detected in 3 classes with an accuracy rate of 98.78%. In addition, the confusion matrix, precision, recall values, and F1 score of the obtained model are also given.
Collapse
|
137
|
Ying X, Liu H, Huang R. COVID-19 chest X-ray image classification in the presence of noisy labels. DISPLAYS 2023; 77:102370. [PMID: 36644695 PMCID: PMC9826538 DOI: 10.1016/j.displa.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The Corona Virus Disease 2019 (COVID-19) has been declared a worldwide pandemic, and a key method for diagnosing COVID-19 is chest X-ray imaging. The application of convolutional neural network with medical imaging helps to diagnose the disease accurately, where the label quality plays an important role in the classification problem of COVID-19 chest X-rays. However, most of the existing classification methods ignore the problem that the labels are hardly completely true and effective, and noisy labels lead to a significant degradation in the performance of image classification frameworks. In addition, due to the wide distribution of lesions and the large number of local features of COVID-19 chest X-ray images, existing label recovery algorithms have to face the bottleneck problem of the difficult reuse of noisy samples. Therefore, this paper introduces a general classification framework for COVID-19 chest X-ray images with noisy labels and proposes a noisy label recovery algorithm based on subset label iterative propagation and replacement (SLIPR). Specifically, the proposed algorithm first obtains random subsets of the samples multiple times. Then, it integrates several techniques such as principal component analysis, low-rank representation, neighborhood graph regularization, and k-nearest neighbor for feature extraction and image classification. Finally, multi-level weight distribution and replacement are performed on the labels to cleanse the noise. In addition, for the label-recovered dataset, high confidence samples are further selected as the training set to improve the stability and accuracy of the classification framework without affecting its inherent performance. In this paper, three typical datasets are chosen to conduct extensive experiments and comparisons of existing algorithms under different metrics. Experimental results on three publicly available COVID-19 chest X-ray image datasets show that the proposed algorithm can effectively recover noisy labels and improve the accuracy of the image classification framework by 18.9% on the Tawsifur dataset, 19.92% on the Skytells dataset, and 16.72% on the CXRs dataset. Compared to the state-of-the-art algorithms, the gain of classification accuracy of SLIPR on the three datasets can reach 8.67%-19.38%, and the proposed algorithm also has certain scalability while ensuring data integrity.
Collapse
Affiliation(s)
- Xiaoqing Ying
- Collage of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Hao Liu
- Collage of Information Science and Technology, Donghua University, Shanghai 201620, China
- Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Shanghai 201620, China
| | - Rong Huang
- Collage of Information Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
138
|
Almuayqil S, Abd El-Ghany S, Shehab A. Multimodality Imaging of COVID-19 Using Fine-Tuned Deep Learning Models. Diagnostics (Basel) 2023; 13:1268. [PMID: 37046486 PMCID: PMC10093688 DOI: 10.3390/diagnostics13071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
In the face of the COVID-19 pandemic, many studies have been undertaken to provide assistive recommendations to patients to help overcome the burden of the expected shortage in clinicians. Thus, this study focused on diagnosing the COVID-19 virus using a set of fine-tuned deep learning models to overcome the latency in virus checkups. Five recent deep learning algorithms (EfficientB0, VGG-19, DenseNet121, EfficientB7, and MobileNetV2) were utilized to label both CT scan and chest X-ray images as positive or negative for COVID-19. The experimental results showed the superiority of the proposed method compared to state-of-the-art methods in terms of precision, sensitivity, specificity, F1 score, accuracy, and data access time.
Collapse
Affiliation(s)
- Saleh Almuayqil
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (S.A.); (S.A.E.-G.)
| | - Sameh Abd El-Ghany
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (S.A.); (S.A.E.-G.)
- Department of Information Systems, Mansoura University, Mansoura 35516, Egypt
| | - Abdulaziz Shehab
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (S.A.); (S.A.E.-G.)
- Department of Information Systems, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
139
|
Bhakar S, Sinwar D, Pradhan N, Dhaka VS, Cherrez-Ojeda I, Parveen A, Hassan MU. Computational Intelligence-Based Disease Severity Identification: A Review of Multidisciplinary Domains. Diagnostics (Basel) 2023; 13:diagnostics13071212. [PMID: 37046431 PMCID: PMC10093052 DOI: 10.3390/diagnostics13071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Disease severity identification using computational intelligence-based approaches is gaining popularity nowadays. Artificial intelligence and deep-learning-assisted approaches are proving to be significant in the rapid and accurate diagnosis of several diseases. In addition to disease identification, these approaches have the potential to identify the severity of a disease. The problem of disease severity identification can be considered multi-class classification, where the class labels are the severity levels of the disease. Plenty of computational intelligence-based solutions have been presented by researchers for severity identification. This paper presents a comprehensive review of recent approaches for identifying disease severity levels using computational intelligence-based approaches. We followed the PRISMA guidelines and compiled several works related to the severity identification of multidisciplinary diseases of the last decade from well-known publishers, such as MDPI, Springer, IEEE, Elsevier, etc. This article is devoted toward the severity identification of two main diseases, viz. Parkinson's Disease and Diabetic Retinopathy. However, severity identification of a few other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis, sepsis, sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis, and Alzheimer's disease, was also briefly covered. Each work has been carefully examined against its methodology, dataset used, and the type of disease on several performance metrics, accuracy, specificity, etc. In addition to this, we also presented a few public repositories that can be utilized to conduct research on disease severity identification. We hope that this review not only acts as a compendium but also provides insights to the researchers working on disease severity identification using computational intelligence-based approaches.
Collapse
Affiliation(s)
- Suman Bhakar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Nitesh Pradhan
- Department of Computer Science and Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Ivan Cherrez-Ojeda
- Allergy and Pulmonology, Espíritu Santo University, Samborondón 0901-952, Ecuador
| | - Amna Parveen
- College of Pharmacy, Gachon University, Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Muhammad Umair Hassan
- Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), 6009 Ålesund, Norway
| |
Collapse
|
140
|
Yadav DP, Jalal AS, Goyal A, Mishra A, Uprety K, Guragai N. COVID-19 radiograph prognosis using a deep CResNeXt network. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-27. [PMID: 37362635 PMCID: PMC9993361 DOI: 10.1007/s11042-023-14960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has caused an epidemic in the entire world and it is caused by the novel virus SARS-COV-2. In severe conditions, this virus can cause a critical lung infection or viral pneumonia. To administer the correct treatment to patients, COVID-19 testing is important for diagnosing and determining patients who are infected with COVID-19, as opposed to those infected with other bacterial or viral infections. In this paper, a CResNeXt chest radiograph COVID-19 prediction model is proposed using residual network architecture. The advantage of the proposed model is that it requires lesser free hyper-parameters as compared to other residual networks. In addition, the training time per epochs of the model is very less compared to VGG19, ResNet-50, ResNeXt. The proposed CResNeXt model's binary classification (COVID-19 versus No-Finding) accuracy is observed to be 98.63% and 99.99% and multi-class classification (COVID-19, Pneumonia, and No-Finding) accuracy is observed to be 97.42% and 99.27% on the original and augmented datasets, respectively.
Collapse
Affiliation(s)
- Dhirendra P. Yadav
- Department of Computer Engineering & Applications, G.L.A. University, Mathura, UP India
| | - Anand Singh Jalal
- Department of Computer Engineering & Applications, G.L.A. University, Mathura, UP India
| | - Ayush Goyal
- Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX USA
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX USA
| | - Khem Uprety
- The University of Tennessee Health Science Center, Memphis, TN USA
| | - Nirmal Guragai
- Department of Cardiology, St. Joseph Regional Medical Center, Paterson, NJ USA
| |
Collapse
|
141
|
Robust Classification and Detection of Big Medical Data Using Advanced Parallel K-Means Clustering, YOLOv4, and Logistic Regression. Life (Basel) 2023; 13:life13030691. [PMID: 36983845 PMCID: PMC10056696 DOI: 10.3390/life13030691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Big-medical-data classification and image detection are crucial tasks in the field of healthcare, as they can assist with diagnosis, treatment planning, and disease monitoring. Logistic regression and YOLOv4 are popular algorithms that can be used for these tasks. However, these techniques have limitations and performance issue with big medical data. In this study, we presented a robust approach for big-medical-data classification and image detection using logistic regression and YOLOv4, respectively. To improve the performance of these algorithms, we proposed the use of advanced parallel k-means pre-processing, a clustering technique that identified patterns and structures in the data. Additionally, we leveraged the acceleration capabilities of a neural engine processor to further enhance the speed and efficiency of our approach. We evaluated our approach on several large medical datasets and showed that it could accurately classify large amounts of medical data and detect medical images. Our results demonstrated that the combination of advanced parallel k-means pre-processing, and the neural engine processor resulted in a significant improvement in the performance of logistic regression and YOLOv4, making them more reliable for use in medical applications. This new approach offers a promising solution for medical data classification and image detection and may have significant implications for the field of healthcare.
Collapse
|
142
|
Shukla AK, Seth T, Muhuri PK. Artificial intelligence centric scientific research on COVID-19: an analysis based on scientometrics data. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-33. [PMID: 37362722 PMCID: PMC9978294 DOI: 10.1007/s11042-023-14642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/01/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
With the spread of the deadly coronavirus disease throughout the geographies of the globe, expertise from every field has been sought to fight the impact of the virus. The use of Artificial Intelligence (AI), especially, has been the center of attention due to its capability to produce trustworthy results in a reasonable time. As a result, AI centric based research on coronavirus (or COVID-19) has been receiving growing attention from different domains ranging from medicine, virology, and psychiatry etc. We present this comprehensive study that closely monitors the impact of the pandemic on global research activities related exclusively to AI. In this article, we produce highly informative insights pertaining to publications, such as the best articles, research areas, most productive and influential journals, authors, and institutions. Studies are made on top 50 most cited articles to identify the most influential AI subcategories. We also study the outcome of research from different geographic areas while identifying the research collaborations that have had an impact. This study also compares the outcome of research from the different countries around the globe and produces insights on the same.
Collapse
Affiliation(s)
- Amit K. Shukla
- Faculty of Information Technology, University of Jyväskylä, Box 35 (Agora), Jyväskylä, 40014 Finland
| | - Taniya Seth
- Department of Computer Science, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi 110021 India
| | - Pranab K. Muhuri
- Department of Computer Science, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi 110021 India
| |
Collapse
|
143
|
A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med 2023; 157:106726. [PMID: 36924732 DOI: 10.1016/j.compbiomed.2023.106726] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Deep learning-based methods have become the dominant methodology in medical image processing with the advancement of deep learning in natural image classification, detection, and segmentation. Deep learning-based approaches have proven to be quite effective in single lesion recognition and segmentation. Multiple-lesion recognition is more difficult than single-lesion recognition due to the little variation between lesions or the too wide range of lesions involved. Several studies have recently explored deep learning-based algorithms to solve the multiple-lesion recognition challenge. This paper includes an in-depth overview and analysis of deep learning-based methods for multiple-lesion recognition developed in recent years, including multiple-lesion recognition in diverse body areas and recognition of whole-body multiple diseases. We discuss the challenges that still persist in the multiple-lesion recognition tasks by critically assessing these efforts. Finally, we outline existing problems and potential future research areas, with the hope that this review will help researchers in developing future approaches that will drive additional advances.
Collapse
|
144
|
Al-Zyoud W, Erekat D, Saraiji R. COVID-19 chest X-ray image analysis by threshold-based segmentation. Heliyon 2023; 9:e14453. [PMID: 36919086 PMCID: PMC9998128 DOI: 10.1016/j.heliyon.2023.e14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
COVID-19 is a severe acute respiratory syndrome that has caused a major ongoing pandemic worldwide. Imaging systems such as conventional chest X-ray (CXR) and computed tomography (CT) were proven essential for patients due to the lack of information about the complications that could result from this disease. In this study, the aim was to develop and evaluate a method for automatic diagnosis of COVID-19 using binary segmentation of chest X-ray images. The study used frontal chest X-ray images of 27 infected and 19 uninfected individuals from Kaggle COVID-19 Radiography Database, and applied binary segmentation and quartering in MATLAB to analyze the images. The binary images of the lung were split into four quarters; Q1 = right upper quarter, Q2 = left upper quarter, Q3 = right lower, and Q4 = left lower. The results showed that COVID-19 patients had a higher percentage of attenuation in the lower lobes of the lungs (p-value < 0.00001) compared to healthy individuals, which is likely due to ground-glass opacities and consolidations caused by the infection. The ratios of white pixels in the four quarters of the X-ray images were calculated, and it was found that the left lower quarter had the highest number of white pixels but without a statistical significance compared to right lower quarter (p-value = 0.102792). This supports the theory that COVID-19 primarily affects the lower and lateral fields of the lungs, and suggests that the virus is accumulated mostly in the lower left quarter of the lungs. Overall, this study contributes to the understanding of the impact of COVID-19 on the respiratory system and can help in the development of accurate diagnostic methods.
Collapse
Affiliation(s)
- Walid Al-Zyoud
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, 11180 Amman Jordan
| | - Dana Erekat
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, 11180 Amman Jordan
| | - Rama Saraiji
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, 11180 Amman Jordan
| |
Collapse
|
145
|
Bhosale YH, Patnaik KS. PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates. Biomed Signal Process Control 2023; 81:104445. [PMID: 36466567 PMCID: PMC9708623 DOI: 10.1016/j.bspc.2022.104445] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/10/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
Background and Objective In the current COVID-19 outbreak, efficient testing of COVID-19 individuals has proven vital to limiting and arresting the disease's accelerated spread globally. It has been observed that the severity and mortality ratio of COVID-19 affected patients is at greater risk because of chronic pulmonary diseases. This study looks at radiographic examinations exploiting chest X-ray images (CXI), which have become one of the utmost feasible assessment approaches for pulmonary disorders, including COVID-19. Deep Learning(DL) remains an excellent image classification method and framework; research has been conducted to predict pulmonary diseases with COVID-19 instances by developing DL classifiers with nine class CXI. However, a few claim to have strong prediction results; because of noisy and small data, their recommended DL strategies may suffer from significant deviation and generality failures. Methods Therefore, a unique CNN model(PulDi-COVID) for detecting nine diseases (atelectasis, bacterial-pneumonia, cardiomegaly, covid19, effusion, infiltration, no-finding, pneumothorax, viral-Pneumonia) using CXI has been proposed using the SSE algorithm. Several transfer-learning models: VGG16, ResNet50, VGG19, DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2, DenseNet169 are trained on CXI of chronic lung diseases and COVID-19 instances. Given that the proposed thirteen SSE ensemble models solved DL's constraints by making predictions with different classifiers rather than a single, we present PulDi-COVID, an ensemble DL model that combines DL with ensemble learning. The PulDi-COVID framework is created by incorporating various snapshots of DL models, which have spearheaded chronic lung diseases with COVID-19 cases identification process with a deep neural network produced CXI by applying a suggested SSE method. That is familiar with the idea of various DL perceptions on different classes. Results PulDi-COVID findings were compared to thirteen existing studies for nine-class classification using COVID-19. Test results reveal that PulDi-COVID offers impressive outcomes for chronic diseases with COVID-19 identification with a 99.70% accuracy, 98.68% precision, 98.67% recall, 98.67% F1 score, lowest 12 CXIs zero-one loss, 99.24% AUC-ROC score, and lowest 1.33% error rate. Overall test results are superior to the existing Convolutional Neural Network(CNN). To the best of our knowledge, the observed results for nine-class classification are significantly superior to the state-of-the-art approaches employed for COVID-19 detection. Furthermore, the CXI that we used to assess our algorithm is one of the larger datasets for COVID detection with pulmonary diseases. Conclusion The empirical findings of our suggested approach PulDi-COVID show that it outperforms previously developed methods. The suggested SSE method with PulDi-COVID can effectively fulfill the COVID-19 speedy detection needs with different lung diseases for physicians to minimize patient severity and mortality.
Collapse
Affiliation(s)
- Yogesh H Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - K Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
146
|
Arias-Garzón D, Tabares-Soto R, Bernal-Salcedo J, Ruz GA. Biases associated with database structure for COVID-19 detection in X-ray images. Sci Rep 2023; 13:3477. [PMID: 36859430 PMCID: PMC9975856 DOI: 10.1038/s41598-023-30174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Several artificial intelligence algorithms have been developed for COVID-19-related topics. One that has been common is the COVID-19 diagnosis using chest X-rays, where the eagerness to obtain early results has triggered the construction of a series of datasets where bias management has not been thorough from the point of view of patient information, capture conditions, class imbalance, and careless mixtures of multiple datasets. This paper analyses 19 datasets of COVID-19 chest X-ray images, identifying potential biases. Moreover, computational experiments were conducted using one of the most popular datasets in this domain, which obtains a 96.19% of classification accuracy on the complete dataset. Nevertheless, when evaluated with the ethical tool Aequitas, it fails on all the metrics. Ethical tools enhanced with some distribution and image quality considerations are the keys to developing or choosing a dataset with fewer bias issues. We aim to provide broad research on dataset problems, tools, and suggestions for future dataset developments and COVID-19 applications using chest X-ray images.
Collapse
Affiliation(s)
- Daniel Arias-Garzón
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Colombia
| | - Reinel Tabares-Soto
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Colombia
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Departamento de Sistemas e Informática, Universidad de Caldas, Manizales, 170001, Colombia
| | - Joshua Bernal-Salcedo
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Colombia
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), 8331150, Santiago, Chile.
- Data Observatory Foundation, 7941169, Santiago, Chile.
| |
Collapse
|
147
|
Li D, Zheng C, Zhao J, Liu Y. Diagnosis of heart failure from imbalance datasets using multi-level classification. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
148
|
Mavragani A, Wongsirichot T, Damkliang K, Navasakulpong A. Classifying COVID-19 Patients From Chest X-ray Images Using Hybrid Machine Learning Techniques: Development and Evaluation. JMIR Form Res 2023; 7:e42324. [PMID: 36780315 PMCID: PMC9976774 DOI: 10.2196/42324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has raised global concern, with moderate to severe cases displaying lung inflammation and respiratory failure. Chest x-ray (CXR) imaging is crucial for diagnosis and is usually interpreted by experienced medical specialists. Machine learning has been applied with acceptable accuracy, but computational efficiency has received less attention. OBJECTIVE We introduced a novel hybrid machine learning model to accurately classify COVID-19, non-COVID-19, and healthy patients from CXR images with reduced computational time and promising results. Our proposed model was thoroughly evaluated and compared with existing models. METHODS A retrospective study was conducted to analyze 5 public data sets containing 4200 CXR images using machine learning techniques including decision trees, support vector machines, and neural networks. The images were preprocessed to undergo image segmentation, enhancement, and feature extraction. The best performing machine learning technique was selected and combined into a multilayer hybrid classification model for COVID-19 (MLHC-COVID-19). The model consisted of 2 layers. The first layer was designed to differentiate healthy individuals from infected patients, while the second layer aimed to classify COVID-19 and non-COVID-19 patients. RESULTS The MLHC-COVID-19 model was trained and evaluated on unseen COVID-19 CXR images, achieving reasonably high accuracy and F measures of 0.962 and 0.962, respectively. These results show the effectiveness of the MLHC-COVID-19 in classifying COVID-19 CXR images, with improved accuracy and a reduction in interpretation time. The model was also embedded into a web-based MLHC-COVID-19 computer-aided diagnosis system, which was made publicly available. CONCLUSIONS The study found that the MLHC-COVID-19 model effectively differentiated CXR images of COVID-19 patients from those of healthy and non-COVID-19 individuals. It outperformed other state-of-the-art deep learning techniques and showed promising results. These results suggest that the MLHC-COVID-19 model could have been instrumental in early detection and diagnosis of COVID-19 patients, thus playing a significant role in controlling and managing the pandemic. Although the pandemic has slowed down, this model can be adapted and utilized for future similar situations. The model was also integrated into a publicly accessible web-based computer-aided diagnosis system.
Collapse
Affiliation(s)
| | - Thakerng Wongsirichot
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kasikrit Damkliang
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Asma Navasakulpong
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
149
|
Chen KY, Lee HC, Lin TC, Lee CY, Ho ZP. Deep Learning Algorithms with LIME and Similarity Distance Analysis on COVID-19 Chest X-ray Dataset. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4330. [PMID: 36901338 PMCID: PMC10001452 DOI: 10.3390/ijerph20054330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In the last few years, many types of research have been conducted on the most harmful pandemic, COVID-19. Machine learning approaches have been applied to investigate chest X-rays of COVID-19 patients in many respects. This study focuses on the deep learning algorithm from the standpoint of feature space and similarity analysis. Firstly, we utilized Local Interpretable Model-agnostic Explanations (LIME) to justify the necessity of the region of interest (ROI) process and further prepared ROI via U-Net segmentation that masked out non-lung areas of images to prevent the classifier from being distracted by irrelevant features. The experimental results were promising, with detection performance reaching an overall accuracy of 95.5%, a sensitivity of 98.4%, a precision of 94.7%, and an F1 score of 96.5% on the COVID-19 category. Secondly, we applied similarity analysis to identify outliers and further provided an objective confidence reference specific to the similarity distance to centers or boundaries of clusters while inferring. Finally, the experimental results suggested putting more effort into enhancing the low-accuracy subspace locally, which is identified by the similarity distance to the centers. The experimental results were promising, and based on those perspectives, our approach could be more flexible to deploy dedicated classifiers specific to different subspaces instead of one rigid end-to-end black box model for all feature space.
Collapse
Affiliation(s)
- Kuan-Yung Chen
- Department of Radiology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Hsi-Chieh Lee
- Department of Computer Science and Information Engineering, National Quemoy University, Kinmen County 892, Taiwan
| | - Tsung-Chieh Lin
- Department of Computer Science and Information Engineering, National Quemoy University, Kinmen County 892, Taiwan
| | - Chih-Ying Lee
- College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Zih-Ping Ho
- Department of Business Administration, Chihlee University of Technology, New Taipei City 220, Taiwan
| |
Collapse
|
150
|
Ahmed U, Lin JCW. Robust adversarial uncertainty quantification for deep learning fine-tuning. THE JOURNAL OF SUPERCOMPUTING 2023; 79:11355-11386. [PMID: 37206086 PMCID: PMC9957691 DOI: 10.1007/s11227-023-05087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 05/21/2023]
Abstract
This paper proposes a deep learning model that is robust and capable of handling highly uncertain inputs. The model is divided into three phases: creating a dataset, creating a neural network based on the dataset, and retraining the neural network to handle unpredictable inputs. The model utilizes entropy values and a non-dominant sorting algorithm to identify the candidate with the highest entropy value from the dataset. This is followed by merging the training set with adversarial samples, where a mini-batch of the merged dataset is used to update the dense network parameters. This method can improve the performance of machine learning models, categorization of radiographic images, risk of misdiagnosis in medical imaging, and accuracy of medical diagnoses. To evaluate the efficacy of the proposed model, two datasets, MNIST and COVID, were used with pixel values and without transfer learning. The results showed an increase of accuracy from 0.85 to 0.88 for MNIST and from 0.83 to 0.85 for COVID, which suggests that the model successfully classified images from both datasets without using transfer learning techniques.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
| | - Jerry Chun-Wei Lin
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
| |
Collapse
|