101
|
Demirel OB, Yaman B, Moeller S, Weingartner S, Akcakaya M. Signal-Intensity Informed Multi-Coil MRI Encoding Operator for Improved Physics-Guided Deep Learning Reconstruction of Dynamic Contrast-Enhanced MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1472-1476. [PMID: 36086262 DOI: 10.1109/embc48229.2022.9871668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic contrast enhanced (DCE) MRI acquires a series of images following the administration of a contrast agent, and plays an important clinical role in diagnosing various diseases. DCE MRI typically necessitates rapid imaging to provide sufficient spatio-temporal resolution and coverage. Conventional MRI acceleration techniques exhibit limited image quality at such high acceleration rates. Recently, deep learning (DL) methods have gained interest for improving highly-accelerated MRI. However, DCE MRI series show substantial variations in SNR and contrast across images. This hinders the quality and generalizability of DL methods, when applied across time frames. In this study, we propose signal intensity informed multi-coil MRI encoding operator for improved DL reconstruction of DCE MRI. The output of the corresponding inverse problem for this forward operator leads to more uniform contrast across time frames, since the proposed operator captures signal intensity variations across time frames while not altering the coil sensitivities. Our results in perfusion cardiac MRI show that high-quality images are reconstructed at very high acceleration rates, with substantial improvement over existing methods.
Collapse
|
102
|
Yaqub M, Jinchao F, Arshid K, Ahmed S, Zhang W, Nawaz MZ, Mahmood T. Deep Learning-Based Image Reconstruction for Different Medical Imaging Modalities. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8750648. [PMID: 35756423 PMCID: PMC9225884 DOI: 10.1155/2022/8750648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/08/2023]
Abstract
Image reconstruction in magnetic resonance imaging (MRI) and computed tomography (CT) is a mathematical process that generates images at many different angles around the patient. Image reconstruction has a fundamental impact on image quality. In recent years, the literature has focused on deep learning and its applications in medical imaging, particularly image reconstruction. Due to the performance of deep learning models in a wide variety of vision applications, a considerable amount of work has recently been carried out using image reconstruction in medical images. MRI and CT appear as the ultimate scientifically appropriate imaging mode for identifying and diagnosing different diseases in this ascension age of technology. This study demonstrates a number of deep learning image reconstruction approaches and a comprehensive review of the most widely used different databases. We also give the challenges and promising future directions for medical image reconstruction.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Feng Jinchao
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Kaleem Arshid
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Shahzad Ahmed
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Wenqian Zhang
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Muhammad Zubair Nawaz
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 24105 Songjiang District, Shanghai, China
| | - Tariq Mahmood
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
103
|
Parallel MR image reconstruction based on triple cycle optimization. Sci Rep 2022; 12:7783. [PMID: 35546615 PMCID: PMC9095676 DOI: 10.1038/s41598-022-11935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The self-calibration parallel imaging (SC-SENSE) method reconstructs the image by estimating the coil sensitivity matrix. In order to obtain the sensitivity matrix, it is necessary to take a small amount of automatic calibration signal lines (ACSL) in the center of k-space. This method uses the data of the central region to obtain the sensitivity matrix, and then the reconstructed image is obtained. This paper proposed the triple cycle optimization (TCO) method to continuously optimize reconstructed images. The proposed TCO method takes the sensitivity matrix obtained by ACSL and substituted the reconstructed image as the initial data generation into the loop, and estimates the k-space data repeatedly. A new sensitivity matrix is obtained by using k-space data and the reconstructed image, and a stable triple cycle is obtained. In the cycle, all data are optimized to a certain extent, including the reconstructed image. Experimental results show that under the same sampling density, images reconstructed by using the triple cycle optimization method have lower noise and artifacts than those of the traditional method. When combined with the variable density sampling method, the effect is remarkable with a much low sampling rate.
Collapse
|
104
|
|
105
|
Zhao R, Yaman B, Zhang Y, Stewart R, Dixon A, Knoll F, Huang Z, Lui YW, Hansen MS, Lungren MP. fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data. Sci Data 2022; 9:152. [PMID: 35383186 PMCID: PMC8983757 DOI: 10.1038/s41597-022-01255-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Improving speed and image quality of Magnetic Resonance Imaging (MRI) using deep learning reconstruction is an active area of research. The fastMRI dataset contains large volumes of raw MRI data, which has enabled significant advances in this field. While the impact of the fastMRI dataset is unquestioned, the dataset currently lacks clinical expert pathology annotations, critical to addressing clinically relevant reconstruction frameworks and exploring important questions regarding rendering of specific pathology using such novel approaches. This work introduces fastMRI+, which consists of 16154 subspecialist expert bounding box annotations and 13 study-level labels for 22 different pathology categories on the fastMRI knee dataset, and 7570 subspecialist expert bounding box annotations and 643 study-level labels for 30 different pathology categories for the fastMRI brain dataset. The fastMRI+ dataset is open access and aims to support further research and advancement of medical imaging in MRI reconstruction and beyond.
Collapse
Affiliation(s)
- Ruiyang Zhao
- Microsoft Research, Redmond, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, USA
- University of Wisconsin-Madison, Department of Medical Physics, Madison, USA
| | - Burhaneddin Yaman
- Microsoft Research, Redmond, USA
- University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis, USA
| | - Yuxin Zhang
- Microsoft Research, Redmond, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, USA
- University of Wisconsin-Madison, Department of Medical Physics, Madison, USA
| | - Russell Stewart
- Microsoft Research, Redmond, USA
- Stanford University, School of Medicine, Stanford, USA
| | - Austin Dixon
- Microsoft Research, Redmond, USA
- Duke University, School of Medicine, Durham, USA
| | - Florian Knoll
- New York University, School of Medicine, New York, USA
| | | | - Yvonne W Lui
- New York University, School of Medicine, New York, USA
| | | | - Matthew P Lungren
- Microsoft Research, Redmond, USA
- Stanford University, School of Medicine, Stanford, USA
| |
Collapse
|
106
|
Park M, Le TA, Yoon J. Offline Programming Guidance for Swarm Steering of Micro-/Nano Magnetic Particles in a Dynamic Multichannel Vascular Model. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3148789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
107
|
Pham N, Ju C, Kong T, Mukherji SK. Artificial Intelligence in Head and Neck Imaging. Semin Ultrasound CT MR 2022; 43:170-175. [PMID: 35339257 DOI: 10.1053/j.sult.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Artificial intelligence (AI) can be applied to head and neck imaging to augment image quality and various clinical tasks including segmentation of tumor volumes, tumor characterization, tumor prognostication and treatment response, and prediction of metastatic lymph node disease. Head and neck oncology care is well positioned for the application of AI since treatment is guided by a wealth of information derived from CT, MRI, and PET imaging data. AI-based methods can integrate complex imaging, histologic, molecular, and clinical data to model tumor biology and behavior, and potentially identify associations, far beyond what conventional qualitative imaging can provide alone.
Collapse
Affiliation(s)
- Nancy Pham
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA; Neuroradiology, Radiology Department, University of Illinois.
| | - Connie Ju
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| | - Tracie Kong
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| | - Suresh K Mukherji
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
108
|
Shimron E, Tamir JI, Wang K, Lustig M. Implicit data crimes: Machine learning bias arising from misuse of public data. Proc Natl Acad Sci U S A 2022; 119:e2117203119. [PMID: 35312366 PMCID: PMC9060447 DOI: 10.1073/pnas.2117203119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
SignificancePublic databases are an important resource for machine learning research, but their growing availability sometimes leads to "off-label" usage, where data published for one task are used for another. This work reveals that such off-label usage could lead to biased, overly optimistic results of machine-learning algorithms. The underlying cause is that public data are processed with hidden processing pipelines that alter the data features. Here we study three well-known algorithms developed for image reconstruction from magnetic resonance imaging measurements and show they could produce biased results with up to 48% artificial improvement when applied to public databases. We relate to the publication of such results as implicit "data crimes" to raise community awareness of this growing big data problem.
Collapse
Affiliation(s)
- Efrat Shimron
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | - Jonathan I. Tamir
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712
| | - Ke Wang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
109
|
Zibetti MVW, Sharafi A, Regatte RR. Optimization of spin-lock times in T 1ρ mapping of knee cartilage: Cramér-Rao bounds versus matched sampling-fitting. Magn Reson Med 2022; 87:1418-1434. [PMID: 34738252 PMCID: PMC8822470 DOI: 10.1002/mrm.29063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To compare different optimization approaches for choosing the spin-lock times (TSLs), in spin-lattice relaxation time in the rotating frame (T1ρ ) mapping. METHODS Optimization criteria for TSLs based on Cramér-Rao lower bounds (CRLB) are compared with matched sampling-fitting (MSF) approaches for T1ρ mapping on synthetic data, model phantoms, and knee cartilage. The MSF approaches are optimized using robust methods for noisy cost functions. The MSF approaches assume that optimal TSLs depend on the chosen fitting method. An iterative non-linear least squares (NLS) and artificial neural networks (ANN) are tested as two possible T1ρ fitting methods for MSF approaches. RESULTS All optimized criteria were better than non-optimized ones. However, we observe that a modified CRLB and an MSF based on the mean of the normalized absolute error (MNAE) were more robust optimization approaches, performing well in all tested cases. The optimized TSLs obtained the best performance with synthetic data (3.5-8.0% error), model phantoms (1.5-2.8% error), and healthy volunteers (7.7-21.1% error), showing stable and improved quality results, comparing to non-optimized approaches (4.2-13.3% error on synthetic data, 2.1-6.2% error on model phantoms, 9.8-27.8% error on healthy volunteers). CONCLUSION A modified CRLB and the MSF based on MNAE are robust optimization approaches for choosing TSLs in T1ρ mapping. All optimized criteria allowed good results even using rapid scans with two TSLs when a complex-valued fitting is done with iterative NLS or ANN.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Azadeh Sharafi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
110
|
Akçakaya M, Yaman B, Chung H, Ye JC. Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement: An overview from a signal processing perspective. IEEE SIGNAL PROCESSING MAGAZINE 2022; 39:28-44. [PMID: 36186087 PMCID: PMC9523517 DOI: 10.1109/msp.2021.3119273] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, deep learning approaches have become the main research frontier for biological image reconstruction and enhancement problems thanks to their high performance, along with their ultra-fast inference times. However, due to the difficulty of obtaining matched reference data for supervised learning, there has been increasing interest in unsupervised learning approaches that do not need paired reference data. In particular, self-supervised learning and generative models have been successfully used for various biological imaging applications. In this paper, we overview these approaches from a coherent perspective in the context of classical inverse problems, and discuss their applications to biological imaging, including electron, fluorescence and deconvolution microscopy, optical diffraction tomography and functional neuroimaging.
Collapse
Affiliation(s)
- Mehmet Akçakaya
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Hyungjin Chung
- Department of Bio and Brain Engineering, Korea Advanced Inst. of Science and Technology (KAIST), Korea
| | - Jong Chul Ye
- Department of Bio and Brain Engineering, Korea Advanced Inst. of Science and Technology (KAIST), Korea
| |
Collapse
|
111
|
Lobos RA, Haldar JP. On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids. Magn Reson Med 2022; 87:2989-2996. [PMID: 35212009 DOI: 10.1002/mrm.29189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Many MRI reconstruction methods (including GRAPPA, SPIRiT, ESPIRiT, LORAKS, and convolutional neural network [CNN] methods) involve shift-invariant convolution models. Rectangular convolution kernel shapes are often chosen by default, although ellipsoidal kernel shapes have potentially appealing theoretical characteristics. In this work, we systematically investigate the differences between different kernel shape choices in several contexts. THEORY It is well-understood that a rectangular region of k-space is associated with anisotropic spatial resolution, while ellipsoidal regions can be associated with more isotropic resolution. Further, for a fixed spatial resolution, ellipsoidal kernels are associated with substantially fewer parameters than rectangular kernels. These characteristics suggest that ellipsoidal kernels may have certain advantages over rectangular kernels. METHODS We used real retrospectively undersampled k-space data to empirically study the characteristics of rectangular and ellipsoidal kernels in the context of seven methods (GRAPPA, SPIRiT, ESPIRiT, SAKE, LORAKS, AC-LORAKS, and CNN-based reconstructions). RESULTS Empirical results suggest that both kernel shapes can produce reconstructed images with similar error metrics, although the ellipsoidal shape can often achieve this with reduced computation time and memory usage and/or fewer model parameters. CONCLUSION Ellipsoidal kernel shapes may offer advantages over rectangular kernel shapes in various MRI applications.
Collapse
Affiliation(s)
- Rodrigo A Lobos
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Justin P Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
112
|
Narnhofer D, Effland A, Kobler E, Hammernik K, Knoll F, Pock T. Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:279-291. [PMID: 34506279 PMCID: PMC8941176 DOI: 10.1109/tmi.2021.3112040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent deep learning approaches focus on improving quantitative scores of dedicated benchmarks, and therefore only reduce the observation-related (aleatoric) uncertainty. However, the model-immanent (epistemic) uncertainty is less frequently systematically analyzed. In this work, we introduce a Bayesian variational framework to quantify the epistemic uncertainty. To this end, we solve the linear inverse problem of undersampled MRI reconstruction in a variational setting. The associated energy functional is composed of a data fidelity term and the total deep variation (TDV) as a learned parametric regularizer. To estimate the epistemic uncertainty we draw the parameters of the TDV regularizer from a multivariate Gaussian distribution, whose mean and covariance matrix are learned in a stochastic optimal control problem. In several numerical experiments, we demonstrate that our approach yields competitive results for undersampled MRI reconstruction. Moreover, we can accurately quantify the pixelwise epistemic uncertainty, which can serve radiologists as an additional resource to visualize reconstruction reliability.
Collapse
|
113
|
Byanju R, Klein S, Cristobal-Huerta A, Hernandez-Tamames JA, Poot DH. Time efficiency analysis for undersampled quantitative MRI acquisitions. Med Image Anal 2022; 78:102390. [DOI: 10.1016/j.media.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
114
|
An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities. Magn Reson Imaging 2022; 89:1-11. [DOI: 10.1016/j.mri.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/09/2021] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
|
115
|
Arefeen Y, Beker O, Cho J, Yu H, Adalsteinsson E, Bilgic B. Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI. Magn Reson Med 2022; 87:764-780. [PMID: 34601751 PMCID: PMC8627503 DOI: 10.1002/mrm.29036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. METHODS Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. RESULTS SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. CONCLUSION SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
Collapse
Affiliation(s)
- Yamin Arefeen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Onur Beker
- Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Heng Yu
- Department of Automation, Tsinghua University, Beijing, China
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
116
|
Lei K, Syed AB, Zhu X, Pauly JM, Vasanawala SS. Artifact- and content-specific quality assessment for MRI with image rulers. Med Image Anal 2022; 77:102344. [PMID: 35091278 PMCID: PMC8901552 DOI: 10.1016/j.media.2021.102344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022]
Abstract
In clinical practice MR images are often first seen by radiologists long after the scan. If image quality is inadequate either patients have to return for an additional scan, or a suboptimal interpretation is rendered. An automatic image quality assessment (IQA) would enable real-time remediation. Existing IQA works for MRI give only a general quality score, agnostic to the cause of and solution to low-quality scans. Furthermore, radiologists' image quality requirements vary with the scan type and diagnostic task. Therefore, the same score may have different implications for different scans. We propose a framework with multi-task CNN model trained with calibrated labels and inferenced with image rulers. Labels calibrated by human inputs follow a well-defined and efficient labeling task. Image rulers address varying quality standards and provide a concrete way of interpreting raw scores from the CNN. The model supports assessments of two of the most common artifacts in MRI: noise and motion. It achieves accuracies of around 90%, 6% better than the best previous method examined, and 3% better than human experts on noise assessment. Our experiments show that label calibration, image rulers, and multi-task training improve the model's performance and generalizability.
Collapse
|
117
|
Dai C, Wang S, Mo Y, Angelini E, Guo Y, Bai W. Suggestive Annotation of Brain MR Images with Gradient-guided Sampling. Med Image Anal 2022; 77:102373. [DOI: 10.1016/j.media.2022.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
118
|
Zibetti MVW, Knoll F, Regatte RR. Alternating Learning Approach for Variational Networks and Undersampling Pattern in Parallel MRI Applications. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2022; 8:449-461. [PMID: 35795003 PMCID: PMC9252023 DOI: 10.1109/tci.2022.3176129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This work proposes an alternating learning approach to learn the sampling pattern (SP) and the parameters of variational networks (VN) in accelerated parallel magnetic resonance imaging (MRI). We investigate four variations of the learning approach, that alternates between improving the SP, using bias-accelerated subset selection, and improving parameters of the VN, using ADAM. The variations include the use of monotone or non-monotone alternating steps and systematic reduction of learning rates. The algorithms learn an effective pair to be used in future scans, including an SP that captures fewer k-space samples in which the generated undersampling artifacts are removed by the VN reconstruction. The quality of the VNs and SPs obtained by the proposed approaches is compared against different methods, including other kinds of joint learning methods and state-of-art reconstructions, on two different datasets at various acceleration factors (AF). We observed improvements visually and in three different figures of merit commonly used in deep learning (RMSE, SSIM, and HFEN) on AFs from 2 to 20 with brain and knee joint datasets when compared to the other approaches. The improvements ranged from 1% to 62% over the next best approach tested with VNs. The proposed approach has shown stable performance, obtaining similar learned SPs under different initial training conditions. We observe that the improvement is not only due to the learned sampling density, it is also due to the learned position of samples in k-space. The proposed approach was able to learn effective pairs of SPs and reconstruction VNs, improving 3D Cartesian accelerated parallel MRI applications.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Department of Radiology of the New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Florian Knoll
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany
| | - Ravinder R Regatte
- Department of Radiology of the New York University Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
119
|
Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction. Magn Reson Imaging 2021; 87:38-46. [PMID: 34968699 DOI: 10.1016/j.mri.2021.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Recently, deep learning approaches with various network architectures have drawn significant attention from the magnetic resonance imaging (MRI) community because of their great potential for image reconstruction from undersampled k-space data in fast MRI. However, the robustness of a trained network when applied to test data deviated from training data is still an important open question. In this work, we focus on quantitatively evaluating the influence of image contrast, human anatomy, sampling pattern, undersampling factor, and noise level on the generalization of a trained network composed by a cascade of several CNNs and a data consistency layer, called a deep cascade of convolutional neural network (DC-CNN). The DC-CNN is trained from datasets with different image contrast, human anatomy, sampling pattern, undersampling factor, and noise level, and then applied to test datasets consistent or inconsistent with the training datasets to assess the generalizability of the learned DC-CNN network. The results of our experiments show that reconstruction quality from the DC-CNN network is highly sensitive to sampling pattern, undersampling factor, and noise level, which are closely related to signal-to-noise ratio (SNR), and is relatively less sensitive to the image contrast. We also show that a deviation of human anatomy between training and test data leads to a substantial reduction of image quality for the brain dataset, whereas comparable performance for the chest and knee dataset having fewer anatomy details than brain images. This work further provides some empirical understanding of the generalizability of trained networks when there are deviations between training and test data. It also demonstrates the potential of transfer learning for image reconstruction from datasets different from those used in training the network.
Collapse
|
120
|
Chang Y, Saritac M. Group feature selection for enhancing information gain in MRI reconstruction. Phys Med Biol 2021; 67. [PMID: 34933300 DOI: 10.1088/1361-6560/ac4561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Magnetic resonance imaging (MRI) has revolutionized the radiology. As a leading medical imaging modality, MRI not only visualizes the structures inside body, but also produces functional imaging. However, due to the slow imaging speed constrained by the MR physics, MRI cost is expensive, and patient may feel not comfortable in a scanner for a long time. Parallel MRI has accelerated the imaging speed through the sub-Nyquist sampling strategy and the missing data are interpolated by the multiple coil data acquired. Kernel learning has been used in the parallel MRI reconstruction to learn the interpolation weights and re-construct the undersampled data. However, noise and aliasing artifacts still exist in the reconstructed image and a large number of auto-calibration signal lines are needed. To further improve the kernel learning-based MRI reconstruction and accelerate the speed, this paper proposes a group feature selection strategy to improve the learning performance and enhance the reconstruction quality. An explicit kernel mapping is used for selecting a subset of features which contribute most to estimate the missing k-space data. The experimental results show that the learning behaviours can be better predicted and therefore the reconstructed image quality is improved.
Collapse
Affiliation(s)
- Yuchou Chang
- Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, 02747, UNITED STATES
| | - Mert Saritac
- Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, Dartmouth, Massachusetts, 02747, UNITED STATES
| |
Collapse
|
121
|
Demirel OB, Yaman B, Dowdle L, Moeller S, Vizioli L, Yacoub E, Strupp J, Olman CA, Ugurbil K, Akcakaya M. 20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep Learning Reconstruction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3765-3769. [PMID: 34892055 PMCID: PMC8923746 DOI: 10.1109/embc46164.2021.9631107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High spatial and temporal resolution across the whole brain is essential to accurately resolve neural activities in fMRI. Therefore, accelerated imaging techniques target improved coverage with high spatio-temporal resolution. Simultaneous multi-slice (SMS) imaging combined with in-plane acceleration are used in large studies that involve ultrahigh field fMRI, such as the Human Connectome Project. However, for even higher acceleration rates, these methods cannot be reliably utilized due to aliasing and noise artifacts. Deep learning (DL) reconstruction techniques have recently gained substantial interest for improving highly-accelerated MRI. Supervised learning of DL reconstructions generally requires fully-sampled training datasets, which is not available for high-resolution fMRI studies. To tackle this challenge, self-supervised learning has been proposed for training of DL reconstruction with only undersampled datasets, showing similar performance to supervised learning. In this study, we utilize a self-supervised physics-guided DL reconstruction on a 5-fold SMS and 4-fold in-plane accelerated 7T fMRI data. Our results show that our self-supervised DL reconstruction produce high-quality images at this 20-fold acceleration, substantially improving on existing methods, while showing similar functional precision and temporal effects in the subsequent analysis compared to a standard 10-fold accelerated acquisition.
Collapse
|
122
|
Gu H, Yaman B, Ugurbil K, Moeller S, Akcakaya M. Compressed Sensing MRI with ℓ 1-Wavelet Reconstruction Revisited Using Modern Data Science Tools. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3596-3600. [PMID: 34892016 PMCID: PMC8918052 DOI: 10.1109/embc46164.2021.9630985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep learning (DL) has emerged as a powerful tool for improving the reconstruction quality of accelerated MRI. These methods usually show enhanced performance compared to conventional methods, such as compressed sensing (CS) and parallel imaging. However, in most scenarios, CS is implemented with two or three empirically-tuned hyperparameters, while a plethora of advanced data science tools are used in DL. In this work, we revisit ℓ1 -wavelet CS for accelerated MRI using modern data science tools. By using tools like algorithm unrolling and end-to-end training with stochastic gradient descent over large databases that DL algorithms utilize, and combining these with conventional concepts like wavelet sub-band processing and reweighted ℓ1 minimization, we show that ℓ1-wavelet CS can be fine-tuned to a level comparable to DL methods. While DL uses hundreds of thousands of parameters, the proposed optimized ℓ1-wavelet CS with sub-band training and reweighting uses only 128 parameters, and employs a fully-explainable convex reconstruction model.
Collapse
|
123
|
Zochowski KC, Tan ET, Argentieri EC, Lin B, Burge AJ, Queler SC, Lebel RM, Sneag DB. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm. Magn Reson Imaging 2021; 85:186-192. [PMID: 34715288 DOI: 10.1016/j.mri.2021.10.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess a new deep learning-based MR reconstruction method, "DLRecon," for clinical evaluation of peripheral nerves. METHODS Sixty peripheral nerves were prospectively evaluated in 29 patients (mean age: 49 ± 16 years, 17 female) undergoing standard-of-care (SOC) MR neurography for clinically suspected neuropathy. SOC-MRIs and DLRecon-MRIs were obtained through conventional and DLRecon reconstruction methods, respectively. Two radiologists randomly evaluated blinded images for outer epineurium conspicuity, fascicular architecture visualization, pulsation artifact, ghosting artifact, and bulk motion. RESULTS DLRecon-MRIs were likely to score better than SOC-MRIs for outer epineurium conspicuity (OR = 1.9, p = 0.007) and visualization of fascicular architecture (OR = 1.8, p < 0.001) and were likely to score worse for ghosting (OR = 2.8, p = 0.004) and pulsation artifacts (OR = 1.6, p = 0.004). There was substantial to almost-perfect inter-reconstruction method agreement (AC = 0.73-1.00) and fair to almost-perfect interrater agreement (AC = 0.34-0.86) for all features evaluated. DLRecon-MRI had improved interrater agreement for outer epineurium conspicuity (AC = 0.71, substantial agreement) compared to SOC-MRIs (AC = 0.34, fair agreement). In >80% of images, the radiologist correctly identified an image as SOC- or DLRecon-MRI. DISCUSSION Outer epineurium and fascicular architecture conspicuity, two key morphological features critical to evaluating a nerve injury, were improved in DLRecon-MRIs compared to SOC-MRIs. Although pulsation and ghosting artifacts increased in DLRecon images, image interpretation was unaffected.
Collapse
Affiliation(s)
- Kelly C Zochowski
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America
| | - Erin C Argentieri
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America
| | - Bin Lin
- Department of Biostatistics, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America
| | - Alissa J Burge
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America
| | - Sophie C Queler
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America
| | | | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America.
| |
Collapse
|
124
|
Wang F, Zhang H, Dai F, Chen W, Wang C, Wang H. MAGnitude-Image-to-Complex K-space (MAGIC-K) Net: A Data Augmentation Network for Image Reconstruction. Diagnostics (Basel) 2021; 11:1935. [PMID: 34679632 PMCID: PMC8534839 DOI: 10.3390/diagnostics11101935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Deep learning has demonstrated superior performance in image reconstruction compared to most conventional iterative algorithms. However, their effectiveness and generalization capability are highly dependent on the sample size and diversity of the training data. Deep learning-based reconstruction requires multi-coil raw k-space data, which are not collected by routine scans. On the other hand, large amounts of magnitude images are readily available in hospitals. Hence, we proposed the MAGnitude Images to Complex K-space (MAGIC-K) Net to generate multi-coil k-space data from existing magnitude images and a limited number of required raw k-space data to facilitate the reconstruction. Compared to some basic data augmentation methods applying global intensity and displacement transformations to the source images, the MAGIC-K Net can generate more realistic intensity variations and displacements from pairs of anatomical Digital Imaging and Communications in Medicine (DICOM) images. The reconstruction performance was validated in 30 healthy volunteers and 6 patients with different types of tumors. The experimental results demonstrated that the high-resolution Diffusion Weighted Image (DWI) reconstruction benefited from the proposed augmentation method. The MAGIC-K Net enabled the deep learning network to reconstruct images with superior performance in both healthy and tumor patients, qualitatively and quantitatively.
Collapse
Affiliation(s)
- Fanwen Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; (F.W.); (H.Z.); (F.D.)
| | - Hui Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; (F.W.); (H.Z.); (F.D.)
| | - Fei Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; (F.W.); (H.Z.); (F.D.)
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China;
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; (F.W.); (H.Z.); (F.D.)
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
125
|
Xiao L, Liu Y, Yi Z, Zhao Y, Xie L, Cao P, Leong ATL, Wu EX. Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks. Magn Reson Med 2021; 87:999-1014. [PMID: 34611904 DOI: 10.1002/mrm.29033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To provide a complex-valued deep learning approach for partial Fourier (PF) reconstruction of complex MR images. METHODS Conventional PF reconstruction methods, such as projection onto convex sets (POCS), uses low-resolution image phase information from the central symmetrically sampled k-space for image reconstruction. However, this smooth phase constraint undermines the phase estimation accuracy in presence of rapid local phase variations, causing image artifacts and limiting the extent of PF reconstruction. Using both magnitude and phase characteristics in big complex image datasets, we propose a complex-valued deep learning approach with an unrolled network architecture for PF reconstruction that iteratively reconstructs PF sampled data and enforces data consistency. We evaluate our approach for reconstructing both spin-echo and gradient-echo data. RESULTS The proposed method outperformed the iterative POCS PF reconstruction method. It produced better artifact suppression and recovery of both image magnitude and phase details in presence of local phase changes. No noise amplification was observed even for highly PF reconstruction. Moreover, the network trained on axial brain data could reconstruct sagittal and coronal brain and knee data. This method could be extended to 2D PF reconstruction and joint multi-slice PF reconstruction. CONCLUSION Our proposed method can effectively reconstruct MR data even at low PF fractions, yielding high-fidelity magnitude and phase images. It presents a valuable alternative to conventional PF reconstruction, especially for phase-sensitive 2D or 3D MRI applications.
Collapse
Affiliation(s)
- Linfang Xiao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zheyuan Yi
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yujiao Zhao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Linshan Xie
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Peibei Cao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
126
|
Zibetti MVW, Herman GT, Regatte RR. Fast data-driven learning of parallel MRI sampling patterns for large scale problems. Sci Rep 2021; 11:19312. [PMID: 34588478 PMCID: PMC8481566 DOI: 10.1038/s41598-021-97995-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, a fast data-driven optimization approach, named bias-accelerated subset selection (BASS), is proposed for learning efficacious sampling patterns (SPs) with the purpose of reducing scan time in large-dimensional parallel MRI. BASS is applicable when Cartesian fully-sampled k-space measurements of specific anatomy are available for training and the reconstruction method for undersampled measurements is specified; such information is used to define the efficacy of any SP for recovering the values at the non-sampled k-space points. BASS produces a sequence of SPs with the aim of finding one of a specified size with (near) optimal efficacy. BASS was tested with five reconstruction methods for parallel MRI based on low-rankness and sparsity that allow a free choice of the SP. Three datasets were used for testing, two of high-resolution brain images ([Formula: see text]-weighted images and, respectively, [Formula: see text]-weighted images) and another of knee images for quantitative mapping of the cartilage. The proposed approach has low computational cost and fast convergence; in the tested cases it obtained SPs up to 50 times faster than the currently best greedy approach. Reconstruction quality increased by up to 45% over that provided by variable density and Poisson disk SPs, for the same scan time. Optionally, the scan time can be nearly halved without loss of reconstruction quality. Quantitative MRI and prospective accelerated MRI results show improvements. Compared with greedy approaches, BASS rapidly learns effective SPs for various reconstruction methods, using larger SPs and larger datasets; enabling better selection of sampling-reconstruction pairs for specific MRI problems.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Gabor T Herman
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Computer Science, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
127
|
Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2306-2317. [PMID: 33929957 PMCID: PMC8428775 DOI: 10.1109/tmi.2021.3075856] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community.
Collapse
|
128
|
Herrmann J, Koerzdoerfer G, Nickel D, Mostapha M, Nadar M, Gassenmaier S, Kuestner T, Othman AE. Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging. Diagnostics (Basel) 2021; 11:diagnostics11081484. [PMID: 34441418 PMCID: PMC8394583 DOI: 10.3390/diagnostics11081484] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/15/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) of the musculoskeletal system is one of the most common examinations in clinical routine. The application of Deep Learning (DL) reconstruction for MRI is increasingly gaining attention due to its potential to improve the image quality and reduce the acquisition time simultaneously. However, the technology has not yet been implemented in clinical routine for turbo spin echo (TSE) sequences in musculoskeletal imaging. The aim of this study was therefore to assess the technical feasibility and evaluate the image quality. Sixty examinations of knee, hip, ankle, shoulder, hand, and lumbar spine in healthy volunteers at 3 T were included in this prospective, internal-review-board-approved study. Conventional (TSES) and DL-based TSE sequences (TSEDL) were compared regarding image quality, anatomical structures, and diagnostic confidence. Overall image quality was rated to be excellent, with a significant improvement in edge sharpness and reduced noise compared to TSES (p < 0.001). No difference was found concerning the extent of artifacts, the delineation of anatomical structures, and the diagnostic confidence comparing TSES and TSEDL (p > 0.05). Therefore, DL image reconstruction for TSE sequences in MSK imaging is feasible, enabling a remarkable time saving (up to 75%), whilst maintaining excellent image quality and diagnostic confidence.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany; (J.H.); (S.G.); (T.K.)
| | - Gregor Koerzdoerfer
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany; (G.K.); (D.N.)
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany; (G.K.); (D.N.)
| | - Mahmoud Mostapha
- Digital Technology & Innovation, Siemens Medical Solutions USA, Inc., Princeton, NJ 08540, USA; (M.M.); (M.N.)
| | - Mariappan Nadar
- Digital Technology & Innovation, Siemens Medical Solutions USA, Inc., Princeton, NJ 08540, USA; (M.M.); (M.N.)
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany; (J.H.); (S.G.); (T.K.)
| | - Thomas Kuestner
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany; (J.H.); (S.G.); (T.K.)
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany; (J.H.); (S.G.); (T.K.)
- Department of Neuroradiology, University Medical Center, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-7071-29-86676; Fax: +49-7071-29-5845
| |
Collapse
|
129
|
Ghodrati V, Bydder M, Bedayat A, Prosper A, Yoshida T, Nguyen KL, Finn JP, Hu P. Temporally aware volumetric generative adversarial network-based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI. Magn Reson Med 2021; 86:2666-2683. [PMID: 34254363 PMCID: PMC10172149 DOI: 10.1002/mrm.28912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Develop a novel three-dimensional (3D) generative adversarial network (GAN)-based technique for simultaneous image reconstruction and respiratory motion compensation of 4D MRI. Our goal was to enable high-acceleration factors 10.7X-15.8X, while maintaining robust and diagnostic image quality superior to state-of-the-art self-gating (SG) compressed sensing wavelet (CS-WV) reconstruction at lower acceleration factors 3.5X-7.9X. METHODS Our GAN was trained based on pixel-wise content loss functions, adversarial loss function, and a novel data-driven temporal aware loss function to maintain anatomical accuracy and temporal coherence. Besides image reconstruction, our network also performs respiratory motion compensation for free-breathing scans. A novel progressive growing-based strategy was adapted to make the training process possible for the proposed GAN-based structure. The proposed method was developed and thoroughly evaluated qualitatively and quantitatively based on 3D cardiac cine data from 42 patients. RESULTS Our proposed method achieved significantly better scores in general image quality and image artifacts at 10.7X-15.8X acceleration than the SG CS-WV approach at 3.5X-7.9X acceleration (4.53 ± 0.540 vs. 3.13 ± 0.681 for general image quality, 4.12 ± 0.429 vs. 2.97 ± 0.434 for image artifacts, P < .05 for both). No spurious anatomical structures were observed in our images. The proposed method enabled similar cardiac-function quantification as conventional SG CS-WV. The proposed method achieved faster central processing unit-based image reconstruction (6 s/cardiac phase) than the SG CS-WV (312 s/cardiac phase). CONCLUSION The proposed method showed promising potential for high-resolution (1 mm3 ) free-breathing 4D MR data acquisition with simultaneous respiratory motion compensation and fast reconstruction time.
Collapse
Affiliation(s)
- Vahid Ghodrati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Mark Bydder
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Arash Bedayat
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ashley Prosper
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA.,Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - J Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
130
|
Qin C, Duan J, Hammernik K, Schlemper J, Küstner T, Botnar R, Prieto C, Price AN, Hajnal JV, Rueckert D. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction. Magn Reson Med 2021; 86:3274-3291. [PMID: 34254355 DOI: 10.1002/mrm.28917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To introduce a novel deep learning-based approach for fast and high-quality dynamic multicoil MR reconstruction by learning a complementary time-frequency domain network that exploits spatiotemporal correlations simultaneously from complementary domains. THEORY AND METHODS Dynamic parallel MR image reconstruction is formulated as a multivariable minimization problem, where the data are regularized in combined temporal Fourier and spatial (x-f) domain as well as in spatiotemporal image (x-t) domain. An iterative algorithm based on variable splitting technique is derived, which alternates among signal de-aliasing steps in x-f and x-t spaces, a closed-form point-wise data consistency step and a weighted coupling step. The iterative model is embedded into a deep recurrent neural network which learns to recover the image via exploiting spatiotemporal redundancies in complementary domains. RESULTS Experiments were performed on two datasets of highly undersampled multicoil short-axis cardiac cine MRI scans. Results demonstrate that our proposed method outperforms the current state-of-the-art approaches both quantitatively and qualitatively. The proposed model can also generalize well to data acquired from a different scanner and data with pathologies that were not seen in the training set. CONCLUSION The work shows the benefit of reconstructing dynamic parallel MRI in complementary time-frequency domains with deep neural networks. The method can effectively and robustly reconstruct high-quality images from highly undersampled dynamic multicoil data ( 16 × and 24 × yielding 15 s and 10 s scan times respectively) with fast reconstruction speed (2.8 seconds). This could potentially facilitate achieving fast single-breath-hold clinical 2D cardiac cine imaging.
Collapse
Affiliation(s)
- Chen Qin
- Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, UK.,Department of Computing, Imperial College London, London, UK
| | - Jinming Duan
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Kerstin Hammernik
- Department of Computing, Imperial College London, London, UK.,Institute for AI and Informatics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jo Schlemper
- Department of Computing, Imperial College London, London, UK.,Hyperfine Research Inc., Guilford, CT, USA
| | - Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Department of Diagnostic and Interventional Radiology, Medical Image and Data Analysis, University Hospital of Tuebingen, Tuebingen, Germany
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anthony N Price
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK.,Institute for AI and Informatics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
131
|
Chandra SS, Bran Lorenzana M, Liu X, Liu S, Bollmann S, Crozier S. Deep learning in magnetic resonance image reconstruction. J Med Imaging Radiat Oncol 2021; 65:564-577. [PMID: 34254448 DOI: 10.1111/1754-9485.13276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
Magnetic resonance (MR) imaging visualises soft tissue contrast in exquisite detail without harmful ionising radiation. In this work, we provide a state-of-the-art review on the use of deep learning in MR image reconstruction from different image acquisition types involving compressed sensing techniques, parallel image acquisition and multi-contrast imaging. Publications with deep learning-based image reconstruction for MR imaging were identified from the literature (PubMed and Google Scholar), and a comprehensive description of each of the works was provided. A detailed comparison that highlights the differences, the data used and the performance of each of these works were also made. A discussion of the potential use cases for each of these methods is provided. The sparse image reconstruction methods were found to be most popular in using deep learning for improved performance, accelerating acquisitions by around 4-8 times. Multi-contrast image reconstruction methods rely on at least one pre-acquired image, but can achieve 16-fold, and even up to 32- to 50-fold acceleration depending on the set-up. Parallel imaging provides frameworks to be integrated in many of these methods for additional speed-up potential. The successful use of compressed sensing techniques and multi-contrast imaging with deep learning and parallel acquisition methods could yield significant MR acquisition speed-ups within clinical routines in the near future.
Collapse
Affiliation(s)
- Shekhar S Chandra
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Marlon Bran Lorenzana
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Xinwen Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Siyu Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
132
|
Hammernik K, Schlemper J, Qin C, Duan J, Summers RM, Rueckert D. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination. Magn Reson Med 2021; 86:1859-1872. [PMID: 34110037 DOI: 10.1002/mrm.28827] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To systematically investigate the influence of various data consistency layers and regularization networks with respect to variations in the training and test data domain, for sensitivity-encoded accelerated parallel MR image reconstruction. THEORY AND METHODS Magnetic resonance (MR) image reconstruction is formulated as a learned unrolled optimization scheme with a down-up network as regularization and varying data consistency layers. The proposed networks are compared to other state-of-the-art approaches on the publicly available fastMRI knee and neuro dataset and tested for stability across different training configurations regarding anatomy and number of training samples. RESULTS Data consistency layers and expressive regularization networks, such as the proposed down-up networks, form the cornerstone for robust MR image reconstruction. Physics-based reconstruction networks outperform post-processing methods substantially for R = 4 in all cases and for R = 8 when the training and test data are aligned. At R = 8, aligning training and test data is more important than architectural choices. CONCLUSION In this work, we study how dataset sizes affect single-anatomy and cross-anatomy training of neural networks for MRI reconstruction. The study provides insights into the robustness, properties, and acceleration limits of state-of-the-art networks, and our proposed down-up networks. These key insights provide essential aspects to successfully translate learning-based MRI reconstruction to clinical practice, where we are confronted with limited datasets and various imaged anatomies.
Collapse
Affiliation(s)
- Kerstin Hammernik
- Department of Computing, Imperial College London, London, United Kingdom.,Chair for AI in Healthcare and Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Chen Qin
- Department of Computing, Imperial College London, London, United Kingdom.,Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Jinming Duan
- Department of Computing, Imperial College London, London, United Kingdom.,School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | | | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom.,Chair for AI in Healthcare and Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
133
|
Chan CC, Haldar JP. Local perturbation responses and checkerboard tests: Characterization tools for nonlinear MRI methods. Magn Reson Med 2021; 86:1873-1887. [PMID: 34080720 DOI: 10.1002/mrm.28828] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Modern methods for MR image reconstruction, denoising, and parameter mapping are becoming increasingly nonlinear, black-box, and at risk of "hallucination." These trends mean that traditional tools for judging confidence in an image (visual quality assessment, point-spread functions (PSFs), g-factor maps, etc.) are less helpful than before. This paper describes and evaluates an approach that can help with assessing confidence in images produced by arbitrary nonlinear methods. THEORY AND METHODS We propose to characterize nonlinear methods by examining the images they produce before and after applying controlled perturbations to the measured data. This results in functions known as local perturbation responses (LPRs) that can provide useful insight into sensitivity, spatial resolution, and aliasing characteristics. LPRs can be viewed as generalizations of classical PSFs, and are are very flexible-they can be applied to arbitary nonlinear methods and arbitrary datasets across a range of different reconstruction, denoising, and parameter mapping applications. Importantly, LPRs do not require a ground truth image. RESULTS Impulse-based and checkerboard-pattern LPRs are demonstrated in image reconstruction and denoising scenarios. We observe that these LPRs provide insights into spatial resolution, signal leakage, and aliasing that are not available with other methods. We also observe that popular reference-based image quality metrics (eg, mean-squared error and structural similarity) do not always correlate with good LPR characteristics. CONCLUSIONS LPRs are a useful tool that can be used to characterize and assess confidence in nonlinear MR methods, and provide insights that are distinct from and complementary to existing quality assessments.
Collapse
Affiliation(s)
- Chin-Cheng Chan
- Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.,Signal and Image Processing Institute, University of Southern California, Los Angeles, California, USA
| | - Justin P Haldar
- Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.,Signal and Image Processing Institute, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
134
|
Guo P, Wang P, Zhou J, Jiang S, Patel VM. Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning. PROCEEDINGS. IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2021; 2021:2423-2432. [PMID: 35444379 DOI: 10.1109/cvpr46437.2021.00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep learning-based methods have been shown to produce superior performance on MR image reconstruction. However, these methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations. In order to overcome this challenge, we propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy. However, the generalizability of models trained with the FL setting can still be suboptimal due to domain shift, which results from the data collected at multiple institutions with different sensors, disease types, and acquisition protocols, etc. With the motivation of circumventing this challenge, we propose a cross-site modeling for MR image reconstruction in which the learned intermediate latent features among different source sites are aligned with the distribution of the latent features at the target site. Extensive experiments are conducted to provide various insights about FL for MR image reconstruction. Experimental results demonstrate that the proposed framework is a promising direction to utilize multi-institutional data without compromising patients' privacy for achieving improved MR image reconstruction. Our code is available at https://github.com/guopengf/FL-MRCM.
Collapse
|
135
|
Du T, Zhang H, Li Y, Pickup S, Rosen M, Zhou R, Song HK, Fan Y. Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation. Med Image Anal 2021; 72:102098. [PMID: 34091426 DOI: 10.1016/j.media.2021.102098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/11/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Deep learning in k-space has demonstrated great potential for image reconstruction from undersampled k-space data in fast magnetic resonance imaging (MRI). However, existing deep learning-based image reconstruction methods typically apply weight-sharing convolutional neural networks (CNNs) to k-space data without taking into consideration the k-space data's spatial frequency properties, leading to ineffective learning of the image reconstruction models. Moreover, complementary information of spatially adjacent slices is often ignored in existing deep learning methods. To overcome such limitations, we have developed a deep learning algorithm, referred to as adaptive convolutional neural networks for k-space data interpolation (ACNN-k-Space), which adopts a residual Encoder-Decoder network architecture to interpolate the undersampled k-space data by integrating spatially contiguous slices as multi-channel input, along with k-space data from multiple coils if available. The network is enhanced by self-attention layers to adaptively focus on k-space data at different spatial frequencies and channels. We have evaluated our method on two public datasets and compared it with state-of-the-art existing methods. Ablation studies and experimental results demonstrate that our method effectively reconstructs images from undersampled k-space data and achieves significantly better image reconstruction performance than current state-of-the-art techniques. Source code of the method is available at https://gitlab.com/qgpmztmf/acnn-k-space.
Collapse
Affiliation(s)
- Tianming Du
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Honggang Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yuemeng Li
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Pickup
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Rosen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Zhou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
136
|
Shanbhogue K, Tong A, Smereka P, Nickel D, Arberet S, Anthopolos R, Chandarana H. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence. Eur Radiol 2021; 31:8447-8457. [PMID: 33961086 DOI: 10.1007/s00330-021-08008-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the image quality of an accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) with conventional T2-weighted FS sequence (conventional T2 FS) at 1.5 T. METHODS One hundred consecutive patients who underwent clinical MRI of the liver at 1.5 T including the conventional T2-weighted fat-suppressed sequence (T2 FS) and accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) were included. Images were reviewed independently by three blinded observers who used a 5-point confidence scale for multiple measures regarding the artifacts and image quality. Descriptive statistics and McNemar's test were used to compare image quality scores and percentage of lesions detected by each sequence, respectively. Intra-class correlation coefficient (ICC) was used to assess consistency in reader scores. RESULTS Acquisition time for DL HASTE-FS was 51.23 +/ 10.1 s, significantly (p < 0.001) shorter than conventional T2-FS (178.9 ± 85.3 s). DL HASTE-FS received significantly higher scores than conventional T2-FS for strength and homogeneity of fat suppression; sharpness of liver margin; sharpness of intra-hepatic vessel margin; in-plane and through-plane respiratory motion; other ghosting artefacts; liver-fat contrast; and overall image quality (all, p < 0.0001). DL HASTE-FS also received higher scores for lesion conspicuity and sharpness of lesion margin (all, p < .001), without significant difference for liver lesion contrast (p > 0.05). CONCLUSIONS Accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction showed superior image quality compared to the conventional T2-weighted fat-suppressed sequence despite a 4-fold reduction in acquisition time. KEY POINTS • Conventional fat-suppressed T2-weighted sequence (conventional T2 FS) can take unacceptably long to acquire and is the most commonly repeated sequence in liver MRI due to motion. • DL HASTE-FS demonstrated superior image quality, improved respiratory motion and other ghosting artefacts, and increased lesion conspicuity with comparable liver-to-lesion contrast compared to conventional T2FS sequence. • DL HASTE- FS has the potential to replace conventional T2 FS sequence in routine clinical MRI of the liver, reducing the scan time, and improving the image quality.
Collapse
Affiliation(s)
- Krishna Shanbhogue
- Department of Radiology, NYU Langone Health, 660 1st Avenue, 3rd Floor, New York, NY, 10016, USA.
| | - Angela Tong
- Department of Radiology, NYU Langone Health, 660 1st Avenue, 3rd Floor, New York, NY, 10016, USA
| | - Paul Smereka
- Department of Radiology, NYU Langone Health, 660 1st Avenue, 3rd Floor, New York, NY, 10016, USA
| | - Dominik Nickel
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Simon Arberet
- Digital Technology & Innovation, Siemens Medical Solutions USA, Inc., Princeton, NJ, USA
| | - Rebecca Anthopolos
- Department of Biostatistics, NYU Langone School of Medicine, New York, NY, 10016, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Langone Health, 660 1st Avenue, 3rd Floor, New York, NY, 10016, USA
| |
Collapse
|
137
|
Sheng J, Shi Y, Zhang Q. Improved parallel magnetic resonance imaging reconstruction with multiple variable density sampling. Sci Rep 2021; 11:9005. [PMID: 33903702 PMCID: PMC8076203 DOI: 10.1038/s41598-021-88567-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
Generalized auto-calibrating partially parallel acquisitions (GRAPPA) and other parallel Magnetic Resonance Imaging (pMRI) methods restore the unacquired data in k-space by linearly calculating the undersampled data around the missing points. In order to obtain the weight of the linear calculation, a small number of auto-calibration signal (ACS) lines need to be sampled at the center of the k-space. Therefore, the sampling pattern used in this type of method is to full sample data in the middle area and undersample in the outer k-space with nominal reduction factors. In this paper, we propose a novel reconstruction method with a multiple variable density sampling (MVDS) that is different from traditional sampling patterns. Our method can significantly improve the image quality using multiple reduction factors with fewer ACS lines. Specifically, the traditional sampling pattern only uses a single reduction factor to uniformly undersample data in the region outside the ACS, but we use multiple reduction factors. When sampling the k-space data, we keep the ACS lines unchanged, use a smaller reduction factor for undersampling data near the ACS lines and a larger reduction factor for the outermost part of k-space. The error is lower after reconstruction of this region by undersampled data with a smaller reduction factor. The experimental results show that with the same amount of data sampled, using NL-GRAPPA to reconstruct the k-space data sampled by our method can result in lower noise and fewer artifacts than traditional methods. In particular, our method is extremely effective when the number of ACS lines is small.
Collapse
Affiliation(s)
- Jinhua Sheng
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, 310018, Zhejiang, China.
| | - Yuchen Shi
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, 310018, Zhejiang, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China
| |
Collapse
|
138
|
Kofler A, Haltmeier M, Schaeffter T, Kolbitsch C. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction. Med Phys 2021; 48:2412-2425. [PMID: 33651398 DOI: 10.1002/mp.14809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Iterative convolutional neural networks (CNNs) which resemble unrolled learned iterative schemes have shown to consistently deliver state-of-the-art results for image reconstruction problems across different imaging modalities. However, because these methods include the forward model in the architecture, their applicability is often restricted to either relatively small reconstruction problems or to problems with operators which are computationally cheap to compute. As a consequence, they have not been applied to dynamic non-Cartesian multi-coil reconstruction problems so far. METHODS In this work, we propose a CNN architecture for image reconstruction of accelerated 2D radial cine MRI with multiple receiver coils. The network is based on a computationally light CNN component and a subsequent conjugate gradient (CG) method which can be jointly trained end-to-end using an efficient training strategy. We investigate the proposed training strategy and compare our method with other well-known reconstruction techniques with learned and non-learned regularization methods. RESULTS Our proposed method outperforms all other methods based on non-learned regularization. Further, it performs similar or better than a CNN-based method employing a 3D U-Net and a method using adaptive dictionary learning. In addition, we empirically demonstrate that even by training the network with only iteration, it is possible to increase the length of the network at test time and further improve the results. CONCLUSIONS End-to-end training allows to highly reduce the number of trainable parameters of and stabilize the reconstruction network. Further, because it is possible to change the length of the network at the test time, the need to find a compromise between the complexity of the CNN-block and the number of iterations in each CG-block becomes irrelevant.
Collapse
Affiliation(s)
- Andreas Kofler
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, 10587, Germany
| | - Markus Haltmeier
- Department of Mathematics, University of Innsbruck, Innsbruck, 6020, Austria
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, 10587, Germany.,School of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.,Department of Biomedical Engineering, Technical University of Berlin, Berlin, 10623, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, 10587, Germany.,School of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK
| |
Collapse
|
139
|
Xiao Z, Du N, Liu J, Zhang W. SR-Net: A sequence offset fusion net and refine net for undersampled multislice MR image reconstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 202:105997. [PMID: 33621943 DOI: 10.1016/j.cmpb.2021.105997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The study of deep learning-based fast magnetic resonance imaging (MRI) reconstruction methods has become popular in recent years. However, there is still a challenge when MRI results undersample large acceleration factors. The objective of this study was to improve the reconstruction quality of undersampled MR images by exploring data redundancy among slices. METHODS There are two aspects of redundancy in multislice MR images including correlations inside a single slice and correlations among slices. Thus, we built two subnets for the two kinds of redundancy. For correlations among slices, we built a bidirectional recurrent convolutional neural network, named Sequence Offset Fusion Net (S-Net). In S-Net, we used a deformable convolution module to construct a neighbor slice feature extractor. For the correlation inside a single slice, we built a Refine Net (R-Net), which has 5 layers of 2D convolutions. In addition, we used a data consistency (DC) operation to maintain data fidelity in k-space. Finally, we treated the reconstruction task as a dealiasing problem in the image domain, and S-Net and R-Net are applied alternately and iteratively to generate the final reconstructions. RESULTS The proposed algorithm was evaluated using two online public MRI datasets. Compared with several state-of-the-art methods, the proposed method achieved better reconstruction results in terms of dealiasing and restoring tissue structure. Moreover, with over 14 slices per second reconstruction speed on 256x256 pixel images, the proposed method can meet the need for real-time processing. CONCLUSION With spatial correlation among slices as additional prior information, the proposed method dramatically improves the reconstruction quality of undersampled MR images.
Collapse
Affiliation(s)
- Zhiyong Xiao
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Nianmao Du
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Jianjun Liu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Weidong Zhang
- Department of Automation, Shanghai JiaoTong University, Shanghai 200240, China.
| |
Collapse
|
140
|
Francavilla MA, Lefkimmiatis S, Villena JF, G Polimeridis A. Maxwell parallel imaging. Magn Reson Med 2021; 86:1573-1585. [PMID: 33733495 DOI: 10.1002/mrm.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a general framework for parallel imaging (PI) with the use of Maxwell regularization for the estimation of the sensitivity maps (SMs) and constrained optimization for the parameter-free image reconstruction. THEORY AND METHODS Certain characteristics of both the SMs and the images are routinely used to regularize the otherwise ill-posed optimization-based joint reconstruction from highly accelerated PI data. In this paper, we rely on a fundamental property of SMs-they are solutions of Maxwell equations-we construct the subspace of all possible SM distributions supported in a given field-of-view, and we promote solutions of SMs that belong in this subspace. In addition, we propose a constrained optimization scheme for the image reconstruction, as a second step, once an accurate estimation of the SMs is available. The resulting method, dubbed Maxwell parallel imaging (MPI), works for both 2D and 3D, with Cartesian and radial trajectories, and minimal calibration signals. RESULTS The effectiveness of MPI is illustrated for various undersampling schemes, including radial, variable-density Poisson-disc, and Cartesian, and is compared against the state-of-the-art PI methods. Finally, we include some numerical experiments that demonstrate the memory footprint reduction of the constructed Maxwell basis with the help of tensor decomposition, thus allowing the use of MPI for full 3D image reconstructions. CONCLUSION The MPI framework provides a physics-inspired optimization method for the accurate and efficient image reconstruction from arbitrary accelerated scans.
Collapse
|
141
|
Hu Y, Xu Y, Tian Q, Chen F, Shi X, Moran CJ, Daniel BL, Hargreaves BA. RUN-UP: Accelerated multishot diffusion-weighted MRI reconstruction using an unrolled network with U-Net as priors. Magn Reson Med 2021; 85:709-720. [PMID: 32783339 PMCID: PMC8095163 DOI: 10.1002/mrm.28446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To accelerate and improve multishot diffusion-weighted MRI reconstruction using deep learning. METHODS An unrolled pipeline containing recurrences of model-based gradient updates and neural networks was introduced for accelerating multishot DWI reconstruction with shot-to-shot phase correction. The network was trained to predict results of jointly reconstructed multidirection data using single-direction data as input. In vivo brain and breast experiments were performed for evaluation. RESULTS The proposed method achieves a reconstruction time of 0.1 second per image, over 100-fold faster than a shot locally low-rank reconstruction. The resultant image quality is comparable to the target from the joint reconstruction with a peak signal-to-noise ratio of 35.3 dB, a normalized root-mean-square error of 0.0177, and a structural similarity index of 0.944. The proposed method also improves upon the locally low-rank reconstruction (2.9 dB higher peak signal-to-noise ratio, 29% lower normalized root-mean-square error, and 0.037 higher structural similarity index). With training data from the brain, this method also generalizes well to breast diffusion-weighted imaging, and fine-tuning further reduces aliasing artifacts. CONCLUSION A proposed data-driven approach enables almost real-time reconstruction with improved image quality, which improves the feasibility of multishot DWI in a wide range of clinical and neuroscientific studies.
Collapse
Affiliation(s)
- Yuxin Hu
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Yunyingying Xu
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Feiyu Chen
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xinwei Shi
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - Bruce L. Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
142
|
Li G, Lv J, Tong X, Wang C, Yang G. High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial Network With Attention and Cyclic Loss. IEEE ACCESS 2021; 9:105951-105964. [DOI: 10.1109/access.2021.3099695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
143
|
Nencka AS, Arpinar VE, Bhave S, Yang B, Banerjee S, McCrea M, Mickevicius NJ, Muftuler LT, Koch KM. Split-slice training and hyperparameter tuning of RAKI networks for simultaneous multi-slice reconstruction. Magn Reson Med 2020; 85:3272-3280. [PMID: 33331002 DOI: 10.1002/mrm.28634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Simultaneous multi-slice acquisitions are essential for modern neuroimaging research, enabling high temporal resolution functional and high-resolution q-space sampling diffusion acquisitions. Recently, deep learning reconstruction techniques have been introduced for unaliasing these accelerated acquisitions, and robust artificial-neural-networks for k-space interpolation (RAKI) have shown promising capabilities. This study systematically examines the impacts of hyperparameter selections for RAKI networks, and introduces a novel technique for training data generation which is analogous to the split-slice formalism used in slice-GRAPPA. METHODS RAKI networks were developed with variable hyperparameters and with and without split-slice training data generation. Each network was trained and applied to five different datasets including acquisitions harmonized with Human Connectome Project lifespan protocol. Unaliasing performance was assessed through L1 errors computed between unaliased and calibration frequency-space data. RESULTS Split-slice training significantly improved network performance in nearly all hyperparameter configurations. Best unaliasing results were achieved with three layer RAKI networks using at least 64 convolutional filters with receptive fields of 7 voxels, 128 single-voxel filters in the penultimate RAKI layer, batch normalization, and no training dropout with the split-slice augmented training dataset. Networks trained without the split-slice technique showed symptoms of network over-fitting. CONCLUSIONS Split-slice training for simultaneous multi-slice RAKI networks positively impacts network performance. Hyperparameter tuning of such reconstruction networks can lead to further improvements in unaliasing performance.
Collapse
Affiliation(s)
- Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Volkan E Arpinar
- Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - L Tugan Muftuler
- Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
144
|
Burgos N, Bottani S, Faouzi J, Thibeau-Sutre E, Colliot O. Deep learning for brain disorders: from data processing to disease treatment. Brief Bioinform 2020; 22:1560-1576. [PMID: 33316030 DOI: 10.1093/bib/bbaa310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
In order to reach precision medicine and improve patients' quality of life, machine learning is increasingly used in medicine. Brain disorders are often complex and heterogeneous, and several modalities such as demographic, clinical, imaging, genetics and environmental data have been studied to improve their understanding. Deep learning, a subpart of machine learning, provides complex algorithms that can learn from such various data. It has become state of the art in numerous fields, including computer vision and natural language processing, and is also growingly applied in medicine. In this article, we review the use of deep learning for brain disorders. More specifically, we identify the main applications, the concerned disorders and the types of architectures and data used. Finally, we provide guidelines to bridge the gap between research studies and clinical routine.
Collapse
|
145
|
Ke Z, Cheng J, Ying L, Zheng H, Zhu Y, Liang D. An unsupervised deep learning method for multi-coil cine MRI. ACTA ACUST UNITED AC 2020; 65:235041. [DOI: 10.1088/1361-6560/abaffa] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
146
|
Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn Reson Med 2020; 84:3172-3191. [PMID: 32614100 PMCID: PMC7811359 DOI: 10.1002/mrm.28378] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a strategy for training a physics-guided MRI reconstruction neural network without a database of fully sampled data sets. METHODS Self-supervised learning via data undersampling (SSDU) for physics-guided deep learning reconstruction partitions available measurements into two disjoint sets, one of which is used in the data consistency (DC) units in the unrolled network and the other is used to define the loss for training. The proposed training without fully sampled data is compared with fully supervised training with ground-truth data, as well as conventional compressed-sensing and parallel imaging methods using the publicly available fastMRI knee database. The same physics-guided neural network is used for both proposed SSDU and supervised training. The SSDU training is also applied to prospectively two-fold accelerated high-resolution brain data sets at different acceleration rates, and compared with parallel imaging. RESULTS Results on five different knee sequences at an acceleration rate of 4 shows that the proposed self-supervised approach performs closely with supervised learning, while significantly outperforming conventional compressed-sensing and parallel imaging, as characterized by quantitative metrics and a clinical reader study. The results on prospectively subsampled brain data sets, in which supervised learning cannot be used due to lack of ground-truth reference, show that the proposed self-supervised approach successfully performs reconstruction at high acceleration rates (4, 6, and 8). Image readings indicate improved visual reconstruction quality with the proposed approach compared with parallel imaging at acquisition acceleration. CONCLUSION The proposed SSDU approach allows training of physics-guided deep learning MRI reconstruction without fully sampled data, while achieving comparable results with supervised deep learning MRI trained on fully sampled data.
Collapse
Affiliation(s)
- Burhaneddin Yaman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Seyed Amir Hossein Hosseini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
147
|
Li Z, Bao Q, Yang C, Chen F, Wu G, Sun L, Zhang Z, Liu C. Triple-D network for efficient undersampled magnetic resonance images reconstruction. Magn Reson Imaging 2020; 77:44-56. [PMID: 33242592 DOI: 10.1016/j.mri.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Compressed sensing (CS) theory can help accelerate magnetic resonance imaging (MRI) by sampling partial k-space measurements. However, conventional optimization-based CS-MRI methods are often time-consuming and are based on fixed transform or shallow image dictionaries, which limits modeling capabilities. Recently, deep learning models have been used to solve the CS-MRI problem. However, recent researches have focused on modeling in image domain, and the potential of k-space modeling capability has not been utilized seriously. In this paper, we propose a deep model called Dual Domain Dense network (Triple-D network), which consisted of some k-space and image domain sub-network. These sub-networks are connected with dense connections, which can utilize feature maps at different levels to enhance performance. To further promote model capabilities, we use two strategies: multi-supervision strategies, which can avoid loss of supervision information; channel-wise attention layer (CA layer), which can adaptively adjust the weight of the feature map. Experimental results show that the proposed Triple-D network provides promising performance in CS-MRI, and it can effectively work on different sampling trajectories and noisy settings.
Collapse
Affiliation(s)
- Zhao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences. Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingjia Bao
- Wuhan United Imaging Healthcare Co., Ltd, Wuhan, China; Weizmann Institute of Science, Tel Aviv-Yafo, , Israel
| | - Chunsheng Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences. Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences. Wuhan, China
| | - Guangyao Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Liyan Sun
- Fujian Key Laboratory of Sensing and Computing for Smart City, Xiamen University. Xiamen, China
| | - Zhi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences. Wuhan, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences. Wuhan, China.
| |
Collapse
|
148
|
Zibetti MVW, Johnson PM, Sharafi A, Hammernik K, Knoll F, Regatte RR. Rapid mono and biexponential 3D-T 1ρ mapping of knee cartilage using variational networks. Sci Rep 2020; 10:19144. [PMID: 33154515 PMCID: PMC7645759 DOI: 10.1038/s41598-020-76126-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022] Open
Abstract
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA.
| | - Patricia M Johnson
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| | - Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| | | | - Florian Knoll
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA
| |
Collapse
|
149
|
Hosseini SAH, Yaman B, Moeller S, Hong M, Akçakaya M. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2020; 14:1280-1291. [PMID: 33747334 PMCID: PMC7978039 DOI: 10.1109/jstsp.2020.3003170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inverse problems for accelerated MRI typically incorporate domain-specific knowledge about the forward encoding operator in a regularized reconstruction framework. Recently physics-driven deep learning (DL) methods have been proposed to use neural networks for data-driven regularization. These methods unroll iterative optimization algorithms to solve the inverse problem objective function, by alternating between domain-specific data consistency and data-driven regularization via neural networks. The whole unrolled network is then trained end-to-end to learn the parameters of the network. Due to simplicity of data consistency updates with gradient descent steps, proximal gradient descent (PGD) is a common approach to unroll physics-driven DL reconstruction methods. However, PGD methods have slow convergence rates, necessitating a higher number of unrolled iterations, leading to memory issues in training and slower reconstruction times in testing. Inspired by efficient variants of PGD methods that use a history of the previous iterates, we propose a history-cognizant unrolling of the optimization algorithm with dense connections across iterations for improved performance. In our approach, the gradient descent steps are calculated at a trainable combination of the outputs of all the previous regularization units. We also apply this idea to unrolling variable splitting methods with quadratic relaxation. Our results in reconstruction of the fastMRI knee dataset show that the proposed history-cognizant approach reduces residual aliasing artifacts compared to its conventional unrolled counterpart without requiring extra computational power or increasing reconstruction time.
Collapse
Affiliation(s)
- Seyed Amir Hossein Hosseini
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Mingyi Hong
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
150
|
|