101
|
Kuruvilla S, Janardhanan R, Antkowiak P, Keeley EC, Adenaw N, Brooks J, Epstein FH, Kramer CM, Salerno M. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging 2015; 8:172-80. [PMID: 25577446 PMCID: PMC4418794 DOI: 10.1016/j.jcmg.2014.09.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The goal of this study was to assess the relationship among extracellular volume (ECV), native T1, and systolic strain in hypertensive patients with left ventricular hypertrophy (HTN LVH), hypertensive patients without LVH (HTN non-LVH), and normotensive controls. BACKGROUND Diffuse myocardial fibrosis in HTN LVH patients, as reflected by increased ECV and native T1, may be an underlying mechanism contributing to increased cardiovascular risk compared with HTN non-LVH subjects and controls. Furthermore, increased diffuse fibrosis in HTN LVH subjects may be associated with reduced peak systolic and early diastolic strain rate compared with the other 2 groups. METHODS T1 mapping was performed in 20 HTN LVH (mean age, 55 ± 11 years), 23 HTN non-LVH (mean age, 61 ± 12 years), and 22 control subjects (mean age, 54 ± 7 years) on a Siemens 1.5-T Avanto (Siemens Healthcare, Erlangen, Germany) using a previously validated modified look-locker inversion-recovery pulse sequence. T1 was measured pre-contrast and 10, 15, and 20 min after injection of 0.15 mmol/kg gadopentetate dimeglumine, and the mean ECV and native T1 were determined for each subject. Measurement of circumferential strain parameters were performed using cine displacement encoding with stimulated echoes. RESULTS HTN LVH subjects had higher native T1 compared with controls (p < 0.05). HTN LVH subjects had higher ECV compared with HTN non-LVH subjects and controls (p < 0.05). Peak systolic circumferential strain and early diastolic strain rates were reduced in HTN LVH subjects compared with HTN non-LVH subjects and controls (p < 0.05). Increased levels of ECV and native T1 were associated with reduced peak systolic and early diastolic circumferential strain rate across all subjects. CONCLUSIONS HTN LVH patients had higher ECV, longer native T1 and associated reduction in peak systolic circumferential strain, and early diastolic strain rate compared with HTN non-LVH and control subjects. Measurement of ECV and native T1 provide a noninvasive assessment of diffuse fibrosis in hypertensive heart disease.
Collapse
Affiliation(s)
- Sujith Kuruvilla
- Department of Medicine (Cardiology), Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Rajesh Janardhanan
- Department of Medicine (Cardiology), Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Patrick Antkowiak
- Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Ellen C Keeley
- Department of Medicine (Cardiology), Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Nebiyu Adenaw
- Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Jeremy Brooks
- Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Frederick H Epstein
- Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia; Department of Biomedical Engineering, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Christopher M Kramer
- Department of Medicine (Cardiology), Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia; Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Michael Salerno
- Department of Medicine (Cardiology), Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia; Department of Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia; Department of Biomedical Engineering, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
102
|
Wehner GJ, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Grabau JD, Mojsejenko WD, Zhong X, Epstein FH, Fornwalt BK. Validation of in vivo 2D displacements from spiral cine DENSE at 3T. J Cardiovasc Magn Reson 2015; 17:5. [PMID: 25634468 PMCID: PMC4311418 DOI: 10.1186/s12968-015-0119-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. METHODS Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. RESULTS The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. CONCLUSIONS The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and torsion with HARP is also comparable at both field strengths. Future studies with spiral cine DENSE may take advantage of the additional SNR at 3T.
Collapse
Affiliation(s)
- Gregory J Wehner
- />Department of Biomedical Engineering, University of Kentucky, 741 S Limestone, BBSRB B353, Lexington, KY 40509 USA
| | | | | | - Linyuan Jing
- />Department of Pediatrics, University of Kentucky, Lexington, USA
| | - David K Powell
- />Department of Biomedical Engineering, University of Kentucky, 741 S Limestone, BBSRB B353, Lexington, KY 40509 USA
| | - Sean M Hamlet
- />Department of Electrical Engineering, University of Kentucky, Lexington, USA
| | | | | | - Xiaodong Zhong
- />MR R&D Collaborations, Siemens Healthcare, Atlanta, GA USA
| | - Frederick H Epstein
- />Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Brandon K Fornwalt
- />Department of Biomedical Engineering, University of Kentucky, 741 S Limestone, BBSRB B353, Lexington, KY 40509 USA
- />Department of Pediatrics, University of Kentucky, Lexington, USA
- />Departments of Physiology and Medicine, University of Kentucky, Lexington, USA
| |
Collapse
|
103
|
Ramachandran R, Chen X, Kramer CM, Epstein FH, Bilchick KC. Singular Value Decomposition Applied to Cardiac Strain from MR Imaging for Selection of Optimal Cardiac Resynchronization Therapy Candidates. Radiology 2015; 275:413-20. [PMID: 25581423 DOI: 10.1148/radiol.14141578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To use singular value decomposition (SVD) in heart failure (HF) to reveal primary spatiotemporal strain patterns in the left ventricle (LV), then develop and test a time-independent metric of cardiac dyssynchrony on the basis of the circumferential uniformity ratio estimate (CURE) computed with SVD (CURE-SVD) in both a canine model of HF with or without left bundle branch block (LBBB) and a clinical cohort referred for cardiac resynchronization therapy (CRT). MATERIALS AND METHODS The research was approved by the institutional review board and conformed with HIPAA requirements. All subjects provided informed consent. In both the canine model (n = 13) and the clinical cohort (80 CRT candidates; mean age, 65.2 years; range, 18.5-86.9 years), regional strains were derived by using cardiac magnetic resonance (MR) displacement encoding with stimulated echoes. CURE-SVD was compared with the standard CURE (averaged over systolic phases). Statistical methods included the Wilcoxon rank-sum test, Hodges-Lehmann estimator, Bland-Altman test, multivariable logistic regression, and receiver operating characteristic analysis. RESULTS In the canine model, the median difference in CURE-SVD (range, 0-1) for LBBB-HF group versus narrow-QRS-HF group (-0.40; 95% confidence interval [CI]: -0.79, -0.31) was similar to that for CURE (-0.43; 95% CI: -0.72, -0.34]). In 80 CRT candidates, CURE-SVD and CURE were highly correlated (r = 0.90; P < .0001). The multivariable model for CRT response with CURE-SVD demonstrated excellent performance without the need for time averaging over cardiac phases (area under the receiver operating characteristic curve = 0.96, P < .0001). CONCLUSION SVD of circumferential strain in HF identifies primary LV spatiotemporal contraction patterns with minimal user input, while the time-independent CURE-SVD parameter has excellent performance in a canine model of dyssynchrony and is strongly associated with CRT response in patients with HF.
Collapse
Affiliation(s)
- Raghav Ramachandran
- From the Department of Biomedical Engineering (R.R., X.C., F.H.E.), Department of Medicine, Cardiovascular Division (C.M.K., K.C.B.), and Department of Radiology and Medical Imaging (C.M.K., F.H.E.), University of Virginia Health System, PO Box 800158, Charlottesville, VA 22908
| | | | | | | | | |
Collapse
|
104
|
Suever JD, Wehner GJ, Haggerty CM, Jing L, Hamlet SM, Binkley CM, Kramer SP, Mattingly AC, Powell DK, Bilchick KC, Epstein FH, Fornwalt BK. Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics. J Cardiovasc Magn Reson 2014; 16:94. [PMID: 25430079 PMCID: PMC4246464 DOI: 10.1186/s12968-014-0094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance using displacement encoding with stimulated echoes (DENSE) is capable of assessing advanced measures of cardiac mechanics such as strain and torsion. A potential hurdle to widespread clinical adoption of DENSE is the time required to manually segment the myocardium during post-processing of the images. To overcome this hurdle, we proposed a radical approach in which only three contours per image slice are required for post-processing (instead of the typical 30-40 contours per image slice). We hypothesized that peak left ventricular circumferential, longitudinal and radial strains and torsion could be accurately quantified using this simplified analysis. METHODS AND RESULTS We tested our hypothesis on a large multi-institutional dataset consisting of 541 DENSE image slices from 135 mice and 234 DENSE image slices from 62 humans. We compared measures of cardiac mechanics derived from the simplified post-processing to those derived from original post-processing utilizing the full set of 30-40 manually-defined contours per image slice. Accuracy was assessed with Bland-Altman limits of agreement and summarized with a modified coefficient of variation. The simplified technique showed high accuracy with all coefficients of variation less than 10% in humans and 6% in mice. The accuracy of the simplified technique was also superior to two previously published semi-automated analysis techniques for DENSE post-processing. CONCLUSIONS Accurate measures of cardiac mechanics can be derived from DENSE cardiac magnetic resonance in both humans and mice using a simplified technique to reduce post-processing time by approximately 94%. These findings demonstrate that quantifying cardiac mechanics from DENSE data is simple enough to be integrated into the clinical workflow.
Collapse
Affiliation(s)
- Jonathan D Suever
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Gregory J Wehner
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
- />Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Christopher M Haggerty
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Linyuan Jing
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Sean M Hamlet
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
- />Department of Electrical Engineering, University of Kentucky, Lexington, KY USA
| | - Cassi M Binkley
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Sage P Kramer
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Andrea C Mattingly
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - David K Powell
- />Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Kenneth C Bilchick
- />Department of Medicine, University of Virginia, Charlottesville, VA USA
| | - Frederick H Epstein
- />Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Brandon K Fornwalt
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
- />Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| |
Collapse
|
105
|
Barnhill E, Kennedy P, Johnson CL, Mada M, Roberts N. Real-time 4D phase unwrapping applied to magnetic resonance elastography. Magn Reson Med 2014; 73:2321-31. [PMID: 24942537 DOI: 10.1002/mrm.25332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE Phase amplitude is a source of signal in magnetic resonance elastography (MRE) experiments but its exploitation in experimental design has been limited due to the challenges of phase wrap. This study addressed this aspect of MRE through new developments in algorithms, heuristic strategy, and user interface. METHODS A test dataset with systematic variation of three parameters-nested wrap, gradient, and noise level-was developed to choose phase-unwrapping algorithms and to analyze their performance. A new application, PhaseTools, was developed that implemented three phase-unwrapping algorithms that adhere to a "real-time" criterion of less than 3 min for a four-dimensional MRE acquisition. Two of the algorithms extend previously published algorithms and one was newly developed. The algorithms were then applied to five datasets from MRE, two typical cases and three edge cases that were particularly challenging in one of the three parameters. RESULTS The performance of the PhaseTools algorithms on the test dataset was comparable to two widely cited algorithms that take hours or days to complete. Guidelines for the optimal use of each algorithm are established. CONCLUSION PhaseTools enables the substantial increase of signal-to-noise in MRE experiments at negligible additional computational cost. PhaseTools is freely released with this study, making robust real-time phase unwrapping available to any group using phase-based imaging.
Collapse
Affiliation(s)
- Eric Barnhill
- Clinical Research Imaging Centre, School of Clinical Sciences and Community Health, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paul Kennedy
- Clinical Research Imaging Centre, School of Clinical Sciences and Community Health, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Curtis L Johnson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marius Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurociences, The University of Cambridge, Cambridge, UK
| | - Neil Roberts
- Clinical Research Imaging Centre, School of Clinical Sciences and Community Health, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
106
|
Gomez AD, Merchant SS, Hsu EW. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1350-62. [PMID: 24771572 PMCID: PMC4163496 DOI: 10.1109/tmi.2014.2311755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.
Collapse
Affiliation(s)
- Arnold D. Gomez
- Bioengineering Department, University of Utah, Salt Lake City, UT 84102 USA, and also with the Cardiothoracic Surgery Division, School of Medicine, University of Utah, UT 84102 USA
| | - Samer S. Merchant
- Bioengineering Department at the University of Utah, Salt Lake City, UT 84102 USA
| | - Edward W. Hsu
- Bioengineering Department at the University of Utah, Salt Lake City, UT 84102 USA
| |
Collapse
|
107
|
Fillmer A, Kirchner T, Cameron D, Henning A. Constrained image-based B0 shimming accounting for "local minimum traps" in the optimization and field inhomogeneities outside the region of interest. Magn Reson Med 2014; 73:1370-80. [PMID: 24715495 DOI: 10.1002/mrm.25248] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE To improve B0 shimming for applications in high- and ultrahigh-field magnetic resonance imaging and magnetic resonance spectroscopy. METHODS An existing image-based constrained B0 shimming algorithm was enhanced using two techniques: (1) A region of less interest was introduced to control B0 field inhomogeneities in the vicinity of the region of interest; (2) multiple sets of starting values were used for the fitting routine, to avoid "getting trapped" in a local minimum of the optimization function. The influence of constraints during the fitting procedure, due to hardware limitations, on the B0 shim result was investigated. The performance of this algorithm was compared to other B0 shim algorithms for typical shim problems in head and body applications at 3T and 7T. RESULTS Utilization of a weighted region of less interest lead to a significant gain in B0 homogeneity adjacent to the region of interest. The loss of B0 quality due to the enlarged total shim volume within the region of interest remained minimal, allowing for improved artifact reduction in magnetic resonance spectroscopic imaging. Multiple sets of starting values and consideration of shim field constraints led to an additional gain in B0 shim quality. CONCLUSION The proposed algorithm allows for more flexible control of B0 inhomogeneities and, hence, enables gains in image and spectral quality for MR applications. RO1AR050597
Collapse
Affiliation(s)
- Ariane Fillmer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
108
|
Bilchick KC, Kuruvilla S, Hamirani YS, Ramachandran R, Clarke SA, Parker KM, Stukenborg GJ, Mason P, Ferguson JD, Moorman JR, Malhotra R, Mangrum JM, Darby AE, Dimarco J, Holmes JW, Salerno M, Kramer CM, Epstein FH. Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes. J Am Coll Cardiol 2014; 63:1657-66. [PMID: 24583155 DOI: 10.1016/j.jacc.2014.02.533] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/02/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Using cardiac magnetic resonance (CMR), we sought to evaluate the relative influences of mechanical, electrical, and scar properties at the left ventricular lead position (LVLP) on cardiac resynchronization therapy (CRT) response and clinical events. BACKGROUND CMR cine displacement encoding with stimulated echoes (DENSE) provides high-quality strain for overall dyssynchrony (circumferential uniformity ratio estimate [CURE] 0 to 1) and timing of onset of circumferential contraction at the LVLP. CMR DENSE, late gadolinium enhancement, and electrical timing together could improve upon other imaging modalities for evaluating the optimal LVLP. METHODS Patients had complete CMR studies and echocardiography before CRT. CRT response was defined as a 15% reduction in left ventricular end-systolic volume. Electrical activation was assessed as the time from QRS onset to LVLP electrogram (QLV). Patients were then followed for clinical events. RESULTS In 75 patients, multivariable logistic modeling accurately identified the 40 patients (53%) with CRT response (area under the curve: 0.95 [p < 0.0001]) based on CURE (odds ratio [OR]: 2.59/0.1 decrease), delayed circumferential contraction onset at LVLP (OR: 6.55), absent LVLP scar (OR: 14.9), and QLV (OR: 1.31/10 ms increase). The 33% of patients with CURE <0.70, absence of LVLP scar, and delayed LVLP contraction onset had a 100% response rate, whereas those with CURE ≥0.70 had a 0% CRT response rate and a 12-fold increased risk of death; the remaining patients had a mixed response profile. CONCLUSIONS Mechanical, electrical, and scar properties at the LVLP together with CMR mechanical dyssynchrony are strongly associated with echocardiographic CRT response and clinical events after CRT. Modeling these findings holds promise for improving CRT outcomes.
Collapse
Affiliation(s)
- Kenneth C Bilchick
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.
| | - Sujith Kuruvilla
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - Yasmin S Hamirani
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - Raghav Ramachandran
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Samantha A Clarke
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Katherine M Parker
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - George J Stukenborg
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia
| | - Pamela Mason
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - John D Ferguson
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - J Randall Moorman
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - Rohit Malhotra
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - J Michael Mangrum
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - Andrew E Darby
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - John Dimarco
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia
| | - Jeffrey W Holmes
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia; Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Michael Salerno
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia; Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
109
|
Kar J, Knutsen AK, Cupps BP, Zhong X, Pasque MK. Three-dimensional regional strain computation method with displacement encoding with stimulated echoes (DENSE) in non-ischemic, non-valvular dilated cardiomyopathy patients and healthy subjects validated by tagged MRI. J Magn Reson Imaging 2014; 41:386-96. [PMID: 24753028 DOI: 10.1002/jmri.24576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/03/2014] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Fast cine displacement encoding with stimulated echoes (DENSE) MR has higher spatial resolution and enables rapid postprocessing. Thus we compared the accuracy of regional strains computation by DENSE with tagged MR in healthy and non-ischemic, non-valvular dilated cardiomyopathy (DCM) subjects. MATERIALS AND METHODS Validation of three-dimensional regional strains computed with DENSE was conducted in reference to standard tagged MRI (TMRI) in healthy subjects and patients with DCM. Additional repeatability studies in healthy subjects were conducted to increase confidence in DENSE. A meshfree multiquadrics radial point interpolation method (RPIM) was used for computing Lagrange strains in sixteen left ventricular segments. Bland-Altman analysis and Student's t-tests were conducted to observe similarities in regional strains between sequences and in DENSE repeatability studies. RESULTS Regional circumferential strains ranged from -0.21 ± 0.07 (Lateral-Apex) to -0.11 ± 0.05 (Posterorseptal-Base) in healthy subjects and -0.15 ± 0.04 (Anterior-Apex) to -0.02 ± 0.08 (Posterorseptal-Base) in DCM patients. Computed mean differences in regional circumferential strain from the DENSE-TMRI comparison study was 0.01 ± 0.03 (95% limits of agreement) in normal subjects, -0.01 ± 0.06 in DCM patients and 0.0 ± 0.02 in repeatability studies, with similar agreements in longitudinal and radial strains. CONCLUSION We found agreement between DENSE and tagged MR in patients and volunteers in terms of evaluation of regional strains.
Collapse
Affiliation(s)
- Julia Kar
- Department of Surgery School of Medicine, Washington University, St Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
110
|
Auger DA, Zhong X, Epstein FH, Meintjes EM, Spottiswoode BS. Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:8. [PMID: 24423129 PMCID: PMC3903450 DOI: 10.1186/1532-429x-16-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most time consuming and limiting step in three dimensional (3D) cine displacement encoding with stimulated echoes (DENSE) MR image analysis is the demarcation of the left ventricle (LV) from its surrounding anatomical structures. The aim of this study is to implement a semi-automated segmentation algorithm for 3D cine DENSE CMR using a guide point model approach. METHODS A 3D mathematical model is fitted to guide points which were interactively placed along the LV borders at a single time frame. An algorithm is presented to robustly propagate LV epicardial and endocardial surfaces of the model using the displacement information encoded in the phase images of DENSE data. The accuracy, precision and efficiency of the algorithm are tested. RESULTS The model-defined contours show good accuracy when compared to the corresponding manually defined contours as similarity coefficients Dice and Jaccard consist of values above 0.7, while false positive and false negative measures show low percentage values. This is based on a measure of segmentation error on intra- and inter-observer spatial overlap variability. The segmentation algorithm offers a 10-fold reduction in the time required to identify LV epicardial and endocardial borders for a single 3D DENSE data set. CONCLUSION A semi-automated segmentation method has been developed for 3D cine DENSE CMR. The algorithm allows for contouring of the first cardiac frame where blood-myocardium contrast is almost nonexistent and reduces the time required to segment a 3D DENSE data set significantly.
Collapse
Affiliation(s)
- Daniel A Auger
- MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Medical Solutions, Atlanta, GA, USA
| | - Frederick H Epstein
- Departments of Radiology and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
111
|
Zhang Y, Wang S, Ji G, Dong Z. AN IMPROVED QUALITY GUIDED PHASE UNWRAPPING METHOD AND ITS APPLICATIONS TO MRI. ACTA ACUST UNITED AC 2014. [DOI: 10.2528/pier14021005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
112
|
Kramer SP, Powell DK, Haggerty CM, Binkley CM, Mattingly AC, Cassis LA, Epstein FH, Fornwalt BK. Obesity reduces left ventricular strains, torsion, and synchrony in mouse models: a cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2013; 15:109. [PMID: 24380567 PMCID: PMC3882783 DOI: 10.1186/1532-429x-15-109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity affects a third of adults in the US and results in an increased risk of cardiovascular mortality. While the mechanisms underlying this increased risk are not well understood, animal models of obesity have shown direct effects on the heart such as steatosis and fibrosis, which may affect cardiac function. However, the effect of obesity on cardiac function in animal models is not well-defined. We hypothesized that diet-induced obesity in mice reduces strain, torsion, and synchrony in the left ventricle (LV). METHODS Ten 12-week-old C57BL/6 J mice were randomized to a high-fat or low-fat diet. After 5 months on the diet, mice were imaged with a 7 T ClinScan using a cine DENSE protocol. Three short-axis and two long-axis slices were acquired for quantification of strains, torsion and synchrony in the left ventricle. RESULTS Left ventricular mass was increased by 15% (p = 0.032) with no change in volumes or ejection fraction. Subepicardial strain was lower in the obese mice with a 40% reduction in circumferential strain (p = 0.008) a 53% reduction in radial strain (p = 0.032) and a trend towards a 19% reduction in longitudinal strain (p = 0.056). By contrast, subendocardial strain was modestly reduced in the obese mice in the circumferential direction by 12% (p = 0.028), and no different in the radial (p = 0.690) or longitudinal (p = 0.602) directions. Peak torsion was reduced by 34% (p = 0.028). Synchrony of contraction was also reduced (p = 0.032) with a time delay in the septal-to-lateral direction. CONCLUSIONS Diet-induced obesity reduces left ventricular strains and torsion in mice. Reductions in cardiac strain are mostly limited to the subepicardium, with relative preservation of function in the subendocardium. Diet-induced obesity also leads to reduced synchrony of contraction and hypertrophy in mouse models.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Diet, High-Fat
- Disease Models, Animal
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Magnetic Resonance Imaging, Cine
- Mice
- Mice, Inbred C57BL
- Myocardial Contraction
- Obesity/complications
- Obesity/diagnosis
- Obesity/physiopathology
- Predictive Value of Tests
- Stress, Mechanical
- Stroke Volume
- Time Factors
- Torsion, Mechanical
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Sage P Kramer
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - David K Powell
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Christopher M Haggerty
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Cassi M Binkley
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Andrea C Mattingly
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Lisa A Cassis
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY, USA
| | - Frederick H Epstein
- Departments of Biomedical Engineering and Radiology, University of Virginia, Charlottesville, VA, USA
| | - Brandon K Fornwalt
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
- Graduate Center for Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
113
|
Li N, Wang WT, Sati P, Pham DL, Butman JA. Quantitative assessment of susceptibility-weighted imaging processing methods. J Magn Reson Imaging 2013; 40:1463-73. [PMID: 24923594 DOI: 10.1002/jmri.24501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/03/2013] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To evaluate different susceptibility-weighted imaging (SWI) phase processing methods and parameter selection, thereby improving understanding of potential artifacts, as well as facilitating choice of methodology in clinical settings. MATERIALS AND METHODS Two major phase processing methods, homodyne-filtering and phase unwrapping-high pass (HP) filtering, were investigated with various phase unwrapping approaches, filter sizes, and filter types. Magnitude and phase images were acquired from a healthy subject and brain injury patients on a 3T clinical Siemens MRI system. The results were evaluated based on image contrast-to-noise ratio and presence of processing artifacts. RESULTS When using a relatively small filter size (32 pixels for the matrix size 512 × 512 pixels), all homodyne-filtering methods were subject to phase errors leading to 2% to 3% masked brain area in lower and middle axial slices. All phase unwrapping-filtering/smoothing approaches demonstrated fewer phase errors and artifacts compared to the homodyne-filtering approaches. For performing phase unwrapping, Fourier-based methods, although less accurate, were 2-4 orders of magnitude faster than the PRELUDE, Goldstein, and Quality-guide methods. CONCLUSION Although homodyne-filtering approaches are faster and more straightforward, phase unwrapping followed by HP filtering approaches perform more accurately in a wider variety of acquisition scenarios.
Collapse
Affiliation(s)
- Ningzhi Li
- Image Processing Core, Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
114
|
Kar J, Knutsen AK, Cupps BP, Pasque MK. A validation of two-dimensional in vivo regional strain computed from displacement encoding with stimulated echoes (DENSE), in reference to tagged magnetic resonance imaging and studies in repeatability. Ann Biomed Eng 2013; 42:541-54. [PMID: 24150239 DOI: 10.1007/s10439-013-0931-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023]
Abstract
Fast cine displacement encoding with stimulated echoes (DENSE) has comparative advantages over tagged MRI (TMRI) including higher spatial resolution and faster post-processing. This study computed regional radial and circumferential myocardial strains with DENSE displacements and validated it in reference to TMRI, according to American Heart Association (AHA) guidelines for standardized segmentation of regions in the left ventricle (LV). This study was therefore novel in examining agreement between the modalities in 16 AHA recommended LV segments. DENSE displacements were obtained with spatiotemporal phase unwrapping and TMRI displacements obtained with a conventional tag-finding algorithm. A validation study with a rotating phantom established similar shear strain between modalities prior to in vivo studies. A novel meshfree nearest node finite element method (NNFEM) was used for rapid computation of Lagrange strain in both phantom and in vivo studies in both modalities. Also novel was conducting in vivo repeatability studies for observing recurring strain patterns in DENSE and increase confidence in it. Comprehensive regional strain agreements via Bland-Altman analysis between the modalities were obtained. Results from the phantom study showed similar radial-circumferential shear strains from the two modalities. Mean differences in regional in vivo circumferential strains were -0.01 ± 0.09 (95% limits of agreement) from comparing the modalities and -0.01 ± 0.07 from repeatability studies. Differences and means from comparison and repeatability studies were uncorrelated (p > 0.05) indicating no increases in differences with increased strain magnitudes. Bland-Altman analysis and similarities in regional strain distribution within the myocardium showed good agreements between DENSE and TMRI and show their interchangeability. NNFEM was also established as a common framework for computing strain in both modalities.
Collapse
Affiliation(s)
- Julia Kar
- Department of Surgery, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., St Louis, MO, 63110, USA,
| | | | | | | |
Collapse
|
115
|
Moyer CB, Helm PA, Clarke CJ, Budge LP, Kramer CM, Ferguson JD, Norton PT, Holmes JW. Wall-motion based analysis of global and regional left atrial mechanics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1765-1776. [PMID: 23708788 PMCID: PMC4427253 DOI: 10.1109/tmi.2013.2264062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Atrial fibrillation is an increasingly prevalent cardiovascular disease; changes in atrial structure and function induced by atrial fibrillation and its treatments are often spatially heterogeneous. However, spatial heterogeneity of function is difficult to assess with standard imaging techniques. This paper describes a method to assess global and regional mechanical function by combining cardiac magnetic resonance imaging and finite-element surface fitting. We used this fitted surface to derive measures of left atrial volume, regional motion, and spatial heterogeneity of motion in 23 subjects, including healthy volunteers and atrial fibrillation patients. We fit the surfaces using a Newton optimization scheme in under 1 min on a standard laptop, with a root mean square error of 2.3 ± 0.5 mm, less than 9% of the mean fitted radius, and an inter-operator variability of less than 10%. Fitted surfaces showed clear definition of the phases of left atrial motion (filling, passive emptying, active contraction) in both volume-time and regional radius-time curves. Averaged surfaces of healthy volunteers and atrial fibrillation patients provided evidence of substantial regional variation in both amount and timing of regional motion, indicating spatial heterogeneity of function, even in healthy adults.
Collapse
|
116
|
Haggerty CM, Kramer SP, Binkley CM, Powell DK, Mattingly AC, Charnigo R, Epstein FH, Fornwalt BK. Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice. J Cardiovasc Magn Reson 2013; 15:71. [PMID: 23981339 PMCID: PMC3765995 DOI: 10.1186/1532-429x-15-71] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/06/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. METHODS Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. RESULTS LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate). CONCLUSIONS Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion.
Collapse
Affiliation(s)
- Christopher M Haggerty
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA
| | - Sage P Kramer
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA
| | - Cassi M Binkley
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA
| | - David K Powell
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Andrea C Mattingly
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA
| | - Richard Charnigo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Frederick H Epstein
- Departments of Biomedical Engineering and Radiology, University of Virginia, Charlottesville, VA, USA
| | - Brandon K Fornwalt
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
117
|
Feng Y, Clayton EH, Chang Y, Okamoto RJ, Bayly PV. Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J Biomech 2013; 46:863-70. [PMID: 23352648 DOI: 10.1016/j.jbiomech.2012.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 11/16/2022]
Abstract
Characterization of the dynamic mechanical behavior of brain tissue is essential for understanding and simulating the mechanisms of traumatic brain injury (TBI). Changes in mechanical properties may also reflect changes in the brain due to aging or disease. In this study, we used magnetic resonance elastography (MRE) to measure the viscoelastic properties of ferret brain tissue in vivo. Three-dimensional (3D) displacement fields were acquired during wave propagation in the brain induced by harmonic excitation of the skull at 400 Hz, 600 Hz and 800 Hz. Shear waves with wavelengths in the order of millimeters were clearly visible in the displacement field, in strain fields, and in the curl of displacement field (which contains no contributions from longitudinal waves). Viscoelastic parameters (storage and loss moduli) governing dynamic shear deformation were estimated in gray and white matter for these excitation frequencies. To characterize the reproducibility of measurements, two ferrets were studied on three different dates each. Estimated viscoelastic properties of white matter in the ferret brain were generally similar to those of gray matter and consistent between animals and scan dates. In both tissue types G' increased from approximately 3 kPa at 400 Hz to 7 kPa at 800 Hz and G″ increased from approximately 1 kPa at 400 Hz to 2 kPa at 800 Hz. These measurements of shear wave propagation in the ferret brain can be used to both parameterize and validate finite element models of brain biomechanics.
Collapse
Affiliation(s)
- Y Feng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
118
|
Punithakumar K, Ben Ayed I, Islam A, Goela A, Ross IG, Chong J, Li S. Regional heart motion abnormality detection: an information theoretic approach. Med Image Anal 2013; 17:311-24. [PMID: 23375719 DOI: 10.1016/j.media.2012.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/11/2012] [Accepted: 11/30/2012] [Indexed: 02/04/2023]
Abstract
Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is proposed in this study to estimate the myocardial points. Due to the similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem. We use the Shannon's differential entropy of the distributions of potential classifier features to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed from the Shannon's differential entropy of different features to automatically detect abnormal functional regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58 subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison with ground truth classifications by radiologists over 928 myocardial segments. The proposed method performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base), 89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore, standard kappa statistic comparisons between the proposed method and visual wall motion scoring by radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.
Collapse
Affiliation(s)
- Kumaradevan Punithakumar
- Servier Virtual Cardiac Centre, Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | | | |
Collapse
|
119
|
Gilliam AD, Epstein FH. Automated motion estimation for 2-D cine DENSE MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1669-81. [PMID: 22575669 PMCID: PMC3968545 DOI: 10.1109/tmi.2012.2195194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this paper, we present the first fully automated solution for the estimation of tissue motion and strain from 2-D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method.
Collapse
Affiliation(s)
| | - Frederick H. Epstein
- Departments of Biomedical Engineering and Radiology, University of Virginia, Charlottesville, VA 22904 USA ()
| |
Collapse
|
120
|
Ernande L, Thibault H, Bergerot C, Moulin P, Wen H, Derumeaux G, Croisille P. Systolic myocardial dysfunction in patients with type 2 diabetes mellitus: identification at MR imaging with cine displacement encoding with stimulated echoes. Radiology 2012; 265:402-9. [PMID: 22929334 DOI: 10.1148/radiol.12112571] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To determine if cine displacement encoding with stimulated echoes (DENSE) can help to identify and determine the patterns of subclinical myocardial systolic dysfunction in patients with type 2 diabetes mellitus (DM) when compared with cine DENSE in control patients. MATERIALS AND METHODS After obtaining approval from the institutional ethics committee and written informed consent from the patients, 37 patients with type 2 DM without overt heart disease and 23 age-matched control patients were prospectively included in the study. The patients underwent standard cine magnetic resonance (MR) imaging with two-dimensional cine DENSE acquisitions. Circumferential (Ecc) and radial (Err) systolic strains were measured on short-axis views at basal, mid, and apical left ventricular levels. Longitudinal strain (Ell) was measured on four- and two-chamber views. Statistical testing included the intraclass correlation coefficient and multiple linear regression analysis. RESULTS The intraobserver intraclass correlation coefficient values were 0.85, 0.95, and 0.90, and the interobserver intraclass correlation coefficient values were 0.79, 0.91 and 0.80 for Ecc, Err, and Ell, respectively. The left ventricular ejection fraction was in the reference range and similar between the groups, and the patients with DM showed a decrease in Ecc (-14.4%±1.6 vs -17.0%±1.6, P<.001), Err (36.2%±10.9 vs 44.4%±9.9, P=.006) and Ell (-12.9%±2.1 vs -15.5%±1.6, P<.001) compared with the control patients. Finally, DM was independently associated with Ecc (P<.001), Err (P=.05) and Ell (P=.01) after adjustment for age, sex, hypertension, body mass index, and left ventricular mass. CONCLUSION Cine DENSE, a motion-encoding MR imaging technique for myocardial strain assessment with high spatial resolution, appears to be useful in the identification of subclinical myocardial dysfunction in patients with DM.
Collapse
Affiliation(s)
- Laura Ernande
- Service des Explorations Fonctionnelles Cardiovasculaires, Department of Endocrinology, Louis Pradel Hospital, CarMeN INSERM Unit 1060, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Feng W, Neelavalli J, Haacke EM. Catalytic multiecho phase unwrapping scheme (CAMPUS) in multiecho gradient echo imaging: Removing phase wraps on a voxel-by-voxel basis. Magn Reson Med 2012; 70:117-26. [DOI: 10.1002/mrm.24457] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 07/04/2012] [Accepted: 07/17/2012] [Indexed: 12/22/2022]
|
122
|
Budge LP, Helms AS, Salerno M, Kramer CM, Epstein FH, Bilchick KC. MR cine DENSE dyssynchrony parameters for the evaluation of heart failure: comparison with myocardial tissue tagging. JACC Cardiovasc Imaging 2012; 5:789-97. [PMID: 22897992 PMCID: PMC3680367 DOI: 10.1016/j.jcmg.2011.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/16/2011] [Accepted: 12/13/2011] [Indexed: 10/28/2022]
Abstract
OBJECTIVES We sought to assess the effectiveness of automated mechanical dyssynchrony (MD) parameters based on regional heterogeneity of strain (circumferential [CURE], longitudinal [LURE], and radial uniformity ratio estimates) relative to parameters based on regional time to peak contraction with cardiac magnetic resonance (CMR) cine DENSE (Displacement Encoding with Stimulated Echoes) validated with myocardial tissue tagging (MTT) strain data. BACKGROUND Dyssynchrony measures based on the Fourier transformation (FT) of regional strain, such as CURE (previously evaluated in cardiac resynchronization therapy candidates), directly assess MD and yield straightforward global dyssynchrony indexes; however, performance relative to the 12-segment standard deviation of time to peak strain (SD12) or maximal regional delay in time to peak strain is unknown. METHODS Cine DENSE and MTT were obtained with CMR (1.5-T Siemens Avanto, Siemens, Erlangen, Germany) in 13 canines: 3 normal control subjects, 5 with tachycardia pacing-induced heart failure (HF) and left bundle branch ablation (LBBB-HF), and 5 with HF and narrow QRS (NQRS-HF). Strain and dyssynchrony parameters were determined with both CMR methods. RESULTS Both HF groups had reduced peak strains and left ventricular ejection fraction compared with normal cases. There was strong agreement between cine DENSE and MTT on the basis of intraclass correlation coefficients (CURE: 0.99, 95% CI: 0.96 to 1.00; LURE: 0.92, 95% CI: 0.77 to 0.98; circumferential strain [E(CC)]: 0.95, 95% CI: 0.72 to 0.99; longitudinal strain [E(LL)]: 0.82, 95% CI: 0.42 to 0.97). The FT-based metrics (scale 0 to 1), in particular CURE, discriminated highly between LBBB-HF and NQRS-HF groups (median difference): CURE: 0.60, 95% CI: 0.43 to 0.76; LURE: 0.39, 95% CI: 0.19 to 0.58; radial uniformity ratio estimate: 0.22, 95% CI: 0.04 to 0.40). In contrast, relative confidence intervals for group differences in time-to-peak parameters were wide, indicating less consistent discrimination (median difference): SD12-E(CC): 52.5, 95% CI: -4.0 to 109.2; SD12-E(LL): 40.9, 95% CI: -5.3 to 87.1; SD12-radial strain: 42.0, 95% CI: 0.4 to 83.6). Correlations between FT-based and time-to-peak parameters were significant (CURE/SD12-E(CC): r = -0.62, p = 0.03; LURE/SD12-E(LL): r = -0.76, p = 0.005) but not as tight as correlations between time-to-peak parameters. CONCLUSIONS Automated FT-based circumferential, radial, and longitudinal dyssynchrony measures compare favorably with time-to-peak parameters. Cine DENSE was effective for this application and validated with MTT. Further clinical evaluation in cardiac resynchronization therapy candidates with CMR or other imaging modalities is warranted.
Collapse
Affiliation(s)
- Loren P Budge
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
123
|
Simpson RM, Keegan J, Firmin DN. MR assessment of regional myocardial mechanics. J Magn Reson Imaging 2012; 37:576-99. [PMID: 22826177 DOI: 10.1002/jmri.23756] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/15/2012] [Indexed: 12/30/2022] Open
Abstract
Regional myocardial function can be measured by several MR techniques including tissue tagging, phase velocity mapping, and more recently, displacement encoding with stimulated echoes (DENSE) and strain encoding (SENC). Each of these techniques was developed separately and has undergone significant change since its original implementation. As a result, in the current literature, the common features and the differences between the techniques and what they measure are often unclear and confusing. This review article delivers an extensively referenced introductory text which clarifies the current methodology from the starting point of the Bloch equations. By doing this in a consistent way for each method, the similarities and differences between them are highlighted. In addition, their capabilities and limitations are discussed, together with their relative advantages and disadvantages. While the focus is on sequence design and development, the principal parameters measured by each technique are also summarized, together with brief results, with the reader being directed to the extensive literature on data processing and clinical applications for more detail.
Collapse
Affiliation(s)
- Robin M Simpson
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Hospital Trust, London, United Kingdom.
| | | | | |
Collapse
|
124
|
Naresh NK, Xu Y, Klibanov AL, Vandsburger MH, Meyer CH, Leor J, Kramer CM, French BA, Epstein FH. Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes. Radiology 2012; 264:428-35. [PMID: 22723500 DOI: 10.1148/radiol.12111863] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To test the hypothesis that magnetic resonance (MR) imaging R1 (R1 = 1/T1) mapping after selectively labeling monocytes with a T1-shortening contrast agent in vivo would enable the quantitative measurement of their spatiotemporal kinetics in the setting of infarct healing. MATERIALS AND METHODS All procedures were performed in mice and were approved by the institutional committee on animal research. One hundred microliters of dual-labeled liposomes (DLLs) containing gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA)-bis(stearylamide) and DiI dye were used to label monocytes 2 days before myocardial infarction (MI). MI was induced by occlusion of the left anterior descending coronary artery for 1 hour, followed by reperfusion. MR imaging R1 mapping of mouse hearts was performed at baseline on day -3, on day 0 before MI, and on days 1, 4, and 7 after MI. Mice without labeling were used as controls. ΔR1 was calculated as the difference in R1 between mice with labeling and those without labeling. CD68 immunohistochemistry and DiI fluorescence microscopy were used to confirm that labeled monocytes and/or macrophages infiltrated the postinfarct myocardium. Statistical analysis was performed by using two-way analysis of variance and the unpaired two-sample t test. RESULTS Infarct zone ΔR1 was slightly but nonsignificantly increased on day 1, maximum on day 4 (P < .05 vs all other days), and started to decrease by day 7 (P < .05 vs days -3, 0, and 1) after MI, closely reflecting the time course of monocyte and/or macrophage infiltration of the infarcted myocardium shown by prior histologic studies. Histologic results confirmed the presence and location of DLL-labeled monocytes and/or macrophages in the infarct zone on day 4 after MI. CONCLUSION R1 mapping after labeling monocytes with T1-shortening DLLs enables the measurement of post-MI monocyte and/or macrophage spatiotemporal kinetics.
Collapse
Affiliation(s)
- Nivedita K Naresh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Chiang P, Cai Y, Mak KH, Zheng J. A B-spline approach to phase unwrapping in tagged cardiac MRI for motion tracking. Magn Reson Med 2012; 69:1297-309. [DOI: 10.1002/mrm.24359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 11/06/2022]
|
126
|
Wang H, Amini AA. Cardiac motion and deformation recovery from MRI: a review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:487-503. [PMID: 21997253 DOI: 10.1109/tmi.2011.2171706] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) is a highly advanced and sophisticated imaging modality for cardiac motion tracking and analysis, capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR image sequences. Many approaches have been proposed for tracking cardiac motion and for computing deformation parameters and mechanical properties of the heart from a variety of cardiac MR imaging techniques. In this paper, an updated and critical review of cardiac motion tracking methods including major references and those proposed in the past ten years is provided. The MR imaging and analysis techniques surveyed are based on cine MRI, tagged MRI, phase contrast MRI, DENSE, and SENC. This paper can serve as a tutorial for new researchers entering the field.
Collapse
Affiliation(s)
- Hui Wang
- Department of Electrical and Computer Engineering,University of Louisville, Louisville, KY 40292 USA.
| | | |
Collapse
|
127
|
Auger DA, Zhong X, Epstein FH, Spottiswoode BS. Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:4. [PMID: 22236389 PMCID: PMC3311142 DOI: 10.1186/1532-429x-14-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/11/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The mechanics of the right ventricle (RV) are not well understood as studies of the RV have been limited. This is, in part, due to the RV's thin wall, asymmetric geometry and irregular motion. However, the RV plays an important role in cardiovascular function. This study aims to describe the complex mechanics of the healthy RV using three dimensional (3D) cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance (CMR). METHODS Whole heart 3D cine DENSE data were acquired from five healthy volunteers. Tailored post-processing algorithms for RV mid-wall tissue tracking and strain estimation are presented. A method for sub-dividing the RV into four regions according to anatomical land marks is proposed, and the temporal evolution of strain was assessed in these regions. RESULTS The 3D cine DENSE tissue tracking methods successfully capture the motion and deformation of the RV at a high spatial resolution in all volunteers. The regional Lagrangian peak surface strain and time to peak values correspond with previous studies using myocardial tagging, DENSE and strain encoded CMR. The inflow region consistently displays lower peak strains than the apical and outflow regions, and the time to peak strains suggest RV mechanical activation in the following order: inflow, outflow, mid, then apex. CONCLUSIONS Model-free techniques have been developed to study the myocardial mechanics of the RV at a high spatial resolution using 3D cine DENSE CMR. The consistency of the regional RV strain patterns across healthy subjects is encouraging and the techniques may have clinical utility in assessing disrupted RV mechanics in the diseased heart.
Collapse
Affiliation(s)
- Daniel A Auger
- MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA
| | - Frederick H Epstein
- Departments of Radiology and Biomedical Engineering, University of Virginia, Charlottesville VA, USA
| | - Bruce S Spottiswoode
- MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Division of Radiology, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
128
|
Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech 2012; 45:647-52. [PMID: 22236527 DOI: 10.1016/j.jbiomech.2011.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.
Collapse
Affiliation(s)
- Niccolo M Fiorentino
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
129
|
Oubel E, De Craene M, Hero AO, Pourmorteza A, Huguet M, Avegliano G, Bijnens BH, Frangi AF. Cardiac motion estimation by joint alignment of tagged MRI sequences. Med Image Anal 2012; 16:339-50. [PMID: 22000567 PMCID: PMC4401871 DOI: 10.1016/j.media.2011.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022]
Abstract
Image registration has been proposed as an automatic method for recovering cardiac displacement fields from tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the α-entropy (H(α)) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p<0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presents an interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging.
Collapse
Affiliation(s)
- E Oubel
- Center for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Information and Communication Technologies Department, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Zhong X, Gibberman LB, Spottiswoode BS, Gilliam AD, Meyer CH, French BA, Epstein FH. Comprehensive cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE. J Cardiovasc Magn Reson 2011; 13:83. [PMID: 22208954 PMCID: PMC3278394 DOI: 10.1186/1532-429x-13-83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/30/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. METHODS A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. RESULTS Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for E(rr), E(cc), and E(ll), respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for E(rc), E(rl), and E(cl), respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. CONCLUSIONS Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour.
Collapse
Affiliation(s)
| | | | - Bruce S Spottiswoode
- MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, South Africa
| | | | - Craig H Meyer
- Radiology Department, University of Virginia, Charlottesville, USA
- Biomedical Engineering Department, University of Virginia, Charlottesville, USA
| | - Brent A French
- Biomedical Engineering Department, University of Virginia, Charlottesville, USA
| | - Frederick H Epstein
- Radiology Department, University of Virginia, Charlottesville, USA
- Biomedical Engineering Department, University of Virginia, Charlottesville, USA
| |
Collapse
|
131
|
Auger DA, Zhong X, Meintjes EM, Epstein FH, Spottiswoode BS. Quantifying right ventricular motion and strain using 3D cine DENSE MRI. J Cardiovasc Magn Reson 2011. [PMCID: PMC3106615 DOI: 10.1186/1532-429x-13-s1-m3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
132
|
Vandsburger MH, French BA, Kramer CM, Zhong X, Epstein FH. Displacement-encoded and manganese-enhanced cardiac MRI reveal that nNOS, not eNOS, plays a dominant role in modulating contraction and calcium influx in the mammalian heart. Am J Physiol Heart Circ Physiol 2011; 302:H412-9. [PMID: 22058155 DOI: 10.1152/ajpheart.00705.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within cardiomyocytes, endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) are thought to modulate L-type calcium channel (LTCC) function and sarcoplasmic reticulum calcium cycling, respectively. However, divergent results from mostly invasive prior studies suggest more complex roles. To elucidate the roles of nNOS and eNOS in vivo, we applied noninvasive cardiac MRI to study wild-type (WT), eNOS(-/-), and nNOS(-/-) mice. An in vivo index of LTCC flux (LTCCI) was measured at baseline (Bsl), dobutamine (Dob), and dobutamine + carbacholamine (Dob + CCh) using manganese-enhanced MRI. Displacement-encoded MRI assessed contractile function by measuring circumferential strain (E(cc)) and systolic (dE(cc)/dt) and diastolic (dE(cc)/dt(diastolic)) strain rates at Bsl, Dob, and Dob + CCh. Bsl LTCCI was highest in nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)) and increased only in WT and eNOS(-/-) mice with Dob (P < 0.05 vs. Bsl). LTCCI decreased significantly from Dob levels with Dob + CCh in all mice. Contractile function, as assessed by E(cc), was similar in all mice at Bsl. With Dob, E(cc) increased significantly in WT and eNOS(-/-) but not nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)). With Dob + CCh, E(cc) returned to baseline levels in all mice. Systolic blood pressure, measured via tail plethysmography, was highest in eNOS(-/-) mice (P < 0.05 vs. WT and nNOS(-/-)). Mice deficient in nNOS demonstrate increased Bsl LTCC function and an attenuated contractile reserve to Dob, whereas eNOS(-/-) mice demonstrate normal LTCC and contractile function under all conditions. These results suggest that nNOS, not eNOS, plays the dominant role in modulating Ca(2+) cycling in the heart.
Collapse
Affiliation(s)
- Moriel H Vandsburger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
133
|
Aljallad MH, Yuan J, Pilatou MC, McDannold NJ, Panych LP. Multiresolution MRI temperature monitoring in a reduced field of view. Magn Reson Imaging 2011; 29:1205-14. [PMID: 21908128 PMCID: PMC3199290 DOI: 10.1016/j.mri.2011.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/13/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose was to develop a new magnetic resonance imaging technique for fast temperature monitoring with extended volume coverage. MATERIALS AND METHODS The Multiple Resolutions Along Phase-Encode and Slice-Select Dimensions (MURPS) method was implemented in both a two-dimensional (2D) spoiled gradient echo (SPGR) sequence and a multishot echo-planar imaging (EPI) sequence. Both modified sequences were used to acquire image data from three slices with variable phase-encode resolution and slice thickness. In the SPGR sequence, a 2D resonant frequency pulse was also implemented to enable imaging within a reduced field of view, and this was used to monitor (at 1.5 T) the temperature changes in a live rabbit and in gel phantoms heated by focused ultrasound. A modified EPI sequence was tested during heating of a phantom undergoing motion. RESULTS The in vivo experiments demonstrated that temperature changes in unexpected locations away from the focal plane, such as near bone structures, could be detected due to the extra volume coverage afforded by the MURPS method. Temperature changes in a moving phantom were resolved using the MURPS EPI sequence with an acquisition rate of three slices every 300 ms. CONCLUSION The MURPS method enables temperature monitoring over multiple slices without loss of temporal resolution compared with single-slice imaging and, if combined with multishot EPI, enables volume temperature monitoring in moving organs.
Collapse
Affiliation(s)
- Mohammed H. Aljallad
- Department of Physics, University of Massachusetts Lowell, Lowell, MA
- Department of Radiology, Wilford Hall Medical Center, US Air Force
| | - Jing Yuan
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Magdalini C. Pilatou
- Department of Radiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Nathan J. McDannold
- Department of Radiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Lawrence P. Panych
- Department of Radiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
134
|
Yu H, Li Z, Bao Z. Residues cluster-based segmentation and outlier-detection method for large-scale phase unwrapping. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2011; 20:2865-2875. [PMID: 21926006 DOI: 10.1109/tip.2011.2138148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
2-D phase unwrapping is an important technique in many applications. However, with the growth of image scale, how to tile and splice the image effectively has become a new challenge. In this paper, the phase unwrapping problem is abstracted as solving a large-scale system of inconsistent linear equations. With the difficulties of large-scale phase unwrapping analyzed, L(0)-norm criterion is found to have potentials in efficient image tiling and splicing. Making use of the clustering characteristic of residue distribution, a tiling strategy is proposed for L(0)-norm criterion. Unfortunately, L(0)-norm is an NP-hard problem, which is very difficult to find an exact solution in a polynomial time. In order to effectively solve this problem, equations corresponding to branch cuts of L(0)-norm in the inconsistent equation system mentioned earlier are considered as outliers, and then an outlier-detection-based phase unwrapping method is proposed. Through this method, a highly accurate approximate solution to this NP-hard problem is achieved. A set of experimental results shows that the proposed approach can avoid the inconsistency between local and global phase unwrapping solutions caused by image tiling.
Collapse
Affiliation(s)
- Hanwen Yu
- National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China.
| | | | | |
Collapse
|
135
|
Young AA, Li B, Kirton RS, Cowan BR. Generalized spatiotemporal myocardial strain analysis for DENSE and SPAMM imaging. Magn Reson Med 2011; 67:1590-9. [PMID: 22135133 DOI: 10.1002/mrm.23142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Alistair A Young
- Auckland MRI Research Group, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
136
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
137
|
Venkatesh BA, Schiros CG, Gupta H, Lloyd SG, Dell'Italia L, Denney TS. Three-dimensional plus time biventricular strain from tagged MR images by phase-unwrapped harmonic phase. J Magn Reson Imaging 2011; 34:799-810. [PMID: 21769965 DOI: 10.1002/jmri.22665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/02/2011] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To validate a method called bi-ventricular strain unwrapped phase (BiSUP) for reconstructing three-dimensional plus time (3D+t) biventricular strain maps from phase-unwrapped harmonic phase (HARP) images derived from tagged cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS A set of 30 human subjects were imaged with tagged MRI. In each study, HARP phase was computed and unwrapped in each short-axis and long-axis image. Inconsistencies in unwrapped phase were resolved using branch cuts manually placed with a graphical user interface. The 3D strain maps were computed independently in each imaged time frame through systole and mid diastole in each study. The BiSUP strain and displacements were compared with those estimated by a 3D feature-based (FB) technique and a 2D+t HARP technique. RESULTS The standard deviation of the difference between strains measured by the FB and the BiSUP methods was less than 4% of the average of the strains from the two methods. The correlation between peak minimum principal strain measured using the BiSUP and HARP techniques was over 83%. CONCLUSION The BiSUP technique can reconstruct full 3D+t strain maps from tagged MR images through the cardiac cycle in a reasonable amount of time and user interaction compared with other 3D analysis methods.
Collapse
Affiliation(s)
- Bharath Ambale Venkatesh
- Electrical and Computer Engineering Department, Auburn University, Auburn, Alabama 36849-5201, USA
| | | | | | | | | | | |
Collapse
|
138
|
Montet-Abou K, Viallon M, Hyacinthe JN, Delattre B, Vallee JP, Didier D, Croisille P, Montet X. The role of imaging and molecular imaging in the early detection of metabolic and cardiovascular dysfunctions. Int J Obes (Lond) 2011; 34 Suppl 2:S67-81. [PMID: 21151150 DOI: 10.1038/ijo.2010.242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite intense effort, obesity is still rising throughout the world. Links between obesity and cardiovascular diseases are now well established. Most of the cardiovascular changes related to obesity can be followed by magnetic resonance imaging (MRI) or by magnetic resonance spectroscopy (MRS). In particular, we will see in this review that MRI/MRS is extremely well suited to depict (1) changes in cardiac mass and function, (2) changes in stroke volume, (3) accumulation of fat inside the mediastinum or even inside the cardiomyocytes, (4) cell viability and (5) molecular changes during early cardiovascular diseases.
Collapse
Affiliation(s)
- K Montet-Abou
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Zhong X, Spottiswoode BS, Meyer CH, Kramer CM, Epstein FH. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn Reson Med 2011; 64:1089-97. [PMID: 20574967 DOI: 10.1002/mrm.22503] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously described 2D postprocessing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in five healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 min, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm(3), and temporal resolution of 32 msec were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, -0.17 ± 0.02, and -0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging.
Collapse
Affiliation(s)
- Xiaodong Zhong
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
140
|
Venkatesh BA, Gupta H, Lloyd SG, Dell 'Italia L, Denney TS. 3D left ventricular strain from unwrapped harmonic phase measurements. J Magn Reson Imaging 2010; 31:854-62. [PMID: 20373429 DOI: 10.1002/jmri.22099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To validate a method for measuring 3D left ventricular (LV) strain from phase-unwrapped harmonic phase (HARP) images derived from tagged cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS A set of 40 human subjects were imaged with tagged MRI. In each study the HARP phase was computed and unwrapped in each short-axis and long-axis image. Inconsistencies in unwrapped phase were resolved using branch cuts manually placed with a graphical user interface. 3D strain maps were computed for all imaged timeframes in each study. The strain from unwrapped phase (SUP) and displacements were compared to those estimated by a feature-based (FB) technique and a HARP technique. RESULTS 3D strain was computed in each timeframe through systole and mid-diastole in approximately 30 minutes per study. The standard deviation of the difference between strains measured by the FB and the SUP methods was less than 5% of the average of the strains from the two methods. The correlation between peak circumferential strain measured using the SUP and HARP techniques was over 83%. CONCLUSION The SUP technique can reconstruct full 3D strain maps from tagged MR images through the cardiac cycle in a reasonable amount of time and user interaction compared to other 3D analysis methods.
Collapse
Affiliation(s)
- Bharath Ambale Venkatesh
- Electrical and Computer Engineering Department, Auburn University, Auburn, Alabama 36849-5201, USA
| | | | | | | | | |
Collapse
|
141
|
Zhong J, Yu X. Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn Reson Med 2010; 64:1315-22. [PMID: 20740659 DOI: 10.1002/mrm.22530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/08/2022]
Abstract
In this study, a 2D multiphase magnetic resonance displacement encoding with stimulated echoes (DENSE) imaging and analysis method was developed for direct quantification of Lagrangian strain in the mouse heart. Using the proposed method, <10 ms temporal resolution and 0.56 mm in-plane resolution were achieved. A validation study that compared strain calculation by displacement encoding with stimulated echoes and by magnetic resonance tagging showed high correlation between the two methods (R(2) > 0.80). Regional ventricular wall strain and twist were characterized in mouse hearts at baseline and under dobutamine stimulation. Dobutamine stimulation induced significant increase in radial and circumferential strains and torsion at peak systole. A rapid untwisting was also observed during early diastole. This work demonstrates the capability of characterizing cardiac functional response to dobutamine stimulation in the mouse heart using 2D multiphase magnetic resonance displacement encoding with stimulated echoes.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
142
|
Punithakumar K, Ben Ayed I, Islam A, Ross IG, Shuo Li. Tracking Endocardial Motion Via Multiple Model Filtering. IEEE Trans Biomed Eng 2010; 57:2001-10. [DOI: 10.1109/tbme.2010.2048752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
143
|
Liu X, Prince JL. Shortest path refinement for motion estimation from tagged MR images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:1560-72. [PMID: 20304720 PMCID: PMC3766638 DOI: 10.1109/tmi.2010.2045509] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Magnetic resonance tagging makes it possible to measure the motion of tissues such as muscles in the heart and tongue. The harmonic phase (HARP) method largely automates the process of tracking points within tagged MR images, permitting many motion properties to be computed. However, HARP tracking can yield erroneous motion estimates due to 1) large deformations between image frames, 2) through-plane motion, and 3) tissue boundaries. Methods that incorporate the spatial continuity of motion--so-called refinement or flood-filling methods--have previously been reported to reduce tracking errors. This paper presents a new refinement method based on shortest path computations. The method uses a graph representation of the image and seeks an optimal tracking order from a specified seed to each point in the image by solving a single source shortest path problem. This minimizes the potential errors for those path dependent solutions that are found in other refinement methods. In addition to this, tracking in the presence of through-plane motion is improved by introducing synthetic tags at the reference time (when the tissue is not deformed). Experimental results on both tongue and cardiac images show that the proposed method can track the whole tissue more robustly and is also computationally efficient.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
144
|
Johnson KM, Markl M. Improved SNR in phase contrast velocimetry with five-point balanced flow encoding. Magn Reson Med 2010; 63:349-55. [PMID: 20099326 DOI: 10.1002/mrm.22202] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phase contrast velocimetry can be utilized to measure complex flow for both quantitative and qualitative assessment of vascular hemodynamics. However, phase contrast requires that a maximum measurable velocity be set that balances noise and phase aliasing. To efficiently reduce noise in phase contrast images, several investigators have proposed extended velocity encoding schemes that use extra encodings to unwrap phase aliasing; however, existing techniques can lead to significant increases in echo and scan time, limiting their clinical benefits. In this work, we have developed a novel five-point velocity encoding scheme that efficiently reduces noise with minimal increases in scan and echo time. Investigations were performed in phantoms, demonstrating a 63% increase in velocity-to-noise ratio compared to standard four-point encoding schemes. Aortic velocity measurements were performed in healthy volunteers, showing similar velocity-to-noise ratio improvements. In those volunteers, it was also demonstrated that, without sacrificing accuracy, low-resolution images can be used for the fifth encoding point, reducing the scan time penalty from 25% down to less than 1%.
Collapse
Affiliation(s)
- Kevin M Johnson
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705-2275, USA.
| | | |
Collapse
|
145
|
A new methodology for multiscale myocardial deformation and strain analysis based on tagging MRI. Int J Biomed Imaging 2010; 2010:341242. [PMID: 20204157 PMCID: PMC2829745 DOI: 10.1155/2010/341242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/20/2009] [Indexed: 11/17/2022] Open
Abstract
Myocardial deformation and strain can be investigated using suitably encoded
cine MRI that admits disambiguation of material motion. Practical limitations
currently restrict the analysis to in-plane motion in cross-sections of the heart
(2D + time), but the proposed method readily generalizes to 3D + time. We propose
a new, promising methodology, which departs from a multiscale algorithm that
exploits local scale selection so as to obtain a robust estimate for the velocity
gradient tensor field. Time evolution of the deformation tensor is governed by a
first-order ordinary differential equation, which is completely determined by this
velocity gradient tensor field. We solve this matrix-ODE analytically and present
results obtained from healthy volunteers as well as from patient data. The proposed
method requires only off-the-shelf algorithms and is readily applicable to planar or
volumetric tagging MRI sampled on arbitrary coordinate grids.
Collapse
|
146
|
Regional heart motion abnormality detection via information measures and unscented Kalman filtering. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2010; 13:409-17. [PMID: 20879257 DOI: 10.1007/978-3-642-15705-9_50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study investigates regional heart motion abnormality detection using various classifier features with Shannon's Differential Entropy (SDE). Rather than relying on elementary measurements or a fixed set of moments, the SDE measures global distribution information and, as such, has more discriminative power in classifying distributions. Based on functional images, which are subject to noise and segmentation inaccuracies, heart wall motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance the accuracy. Given noisy data and nonlinear dynamic model to describe the myocardial motion, unscented Kalman filter, a recursive nonlinear Bayesian filter, is devised in this study so as to estimate LV cavity points. Subsequently, a naive Bayes classifier algorithm is constructed from the SDEs of different features in order to automatically detect abnormal functional regions of the myocardium. Using 90 x 20 segmented LV cavities of short-axis magnetic resonance images obtained from 30 subjects, the experimental analysis carried over 480 myocardial segments demonstrates that the proposed method perform significantly better than other recent methods, and can lead to a promising diagnostic support tool to assist clinicians.
Collapse
|
147
|
Feng L, Donnino R, Babb J, Axel L, Kim D. Numerical and in vivo validation of fast cine displacement-encoded with stimulated echoes (DENSE) MRI for quantification of regional cardiac function. Magn Reson Med 2009; 62:682-90. [PMID: 19585609 DOI: 10.1002/mrm.22045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Quantitative assessment of regional cardiac function can improve the accuracy of detecting wall motion abnormalities due to heart disease. While recently developed fast cine displacement-encoded with stimulated echoes (DENSE) MRI is a promising modality for the quantification of regional myocardial function, it has not been validated for clinical applications. The purpose of this study, therefore, was to validate the accuracy of fast cine DENSE MRI with numerical simulation and in vivo experiments. A numerical phantom was generated to model physiologically relevant deformation of the heart, and the accuracy of fast cine DENSE was evaluated against the numerical reference. For in vivo validation, 12 controls and 13 heart-disease patients were imaged using both fast cine DENSE and myocardial tagged MRI. Numerical simulation demonstrated that the echo-combination DENSE reconstruction method is relatively insensitive to clinically relevant resonance frequency offsets. The strain measurements by fast cine DENSE and the numerical reference were strongly correlated and in excellent agreement (mean difference = 0.00; 95% limits of agreement were 0.01 and -0.02). The strain measurements by fast cine DENSE and myocardial tagged MRI were strongly correlated (correlation coefficient = 0.92) and in good agreement (mean difference = 0.01; 95% limits of agreement were 0.07 and -0.04).
Collapse
Affiliation(s)
- Li Feng
- Department of Biomedical Engineering, Polytechnic Institute of New York University, Brooklyn, New York 10016, USA
| | | | | | | | | |
Collapse
|
148
|
Zhong X, Meyer CH, Schlesinger DJ, Sheehan JP, Epstein FH, Larner JM, Benedict SH, Read PW, Sheng K, Cai J. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI. Med Phys 2009; 36:3413-9. [PMID: 19746774 DOI: 10.1118/1.3157109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal/spatial resolution and sensitivity.
Collapse
Affiliation(s)
- Xiaodong Zhong
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Hess AT, Zhong X, Spottiswoode BS, Epstein FH, Meintjes EM. Myocardial 3D strain calculation by combining cine displacement encoding with stimulated echoes (DENSE) and cine strain encoding (SENC) imaging. Magn Reson Med 2009; 62:77-84. [PMID: 19322795 DOI: 10.1002/mrm.21984] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) strain maps of the myocardium provide a coordinate-system-independent quantification of myocardial deformation and kinematics. We combine two MRI techniques, displacement encoding with stimulated echoes (DENSE) and strain encoding (SENC), to fully formulate a 3D strain map in a single slice of myocardium. The method utilizes 2D DENSE in-plane displacement measurements in two adjacent slices in conjunction with a single SENC through-plane strain measure to calculate the 3D strain tensor. Six volunteers were imaged and the technique demonstrated 3D strain measures in all volunteers that are consistent with those reported in the literature from 3D tagging. The mean peak strain (+/- standard deviation [SD]) for six healthy volunteers for the first, second, and third principal strains are 0.42 +/-0.11, -0.10 +/-0.03, and -0.21 +/-0.02, respectively. These results show that this technique is capable of reliably quantifying 3D cardiac strain.
Collapse
Affiliation(s)
- Aaron T Hess
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
150
|
Feng W, Nagaraj H, Gupta H, Lloyd SG, Aban I, Perry GJ, Calhoun DA, Dell'Italia LJ, Denney TS. A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR. J Cardiovasc Magn Reson 2009; 11:30. [PMID: 19674481 PMCID: PMC2736165 DOI: 10.1186/1532-429x-11-30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 08/13/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although cardiovascular magnetic resonance (CMR) is frequently performed to measure accurate LV volumes and ejection fractions, LV volume-time curves (VTC) derived ejection and filling rates are not routinely calculated due to lack of robust LV segmentation techniques. VTC derived peak filling rates can be used to accurately assess LV diastolic function, an important clinical parameter. We developed a novel geometry-independent dual-contour propagation technique, making use of LV endocardial contours manually drawn at end systole and end diastole, to compute VTC and measured LV ejection and filling rates in hypertensive patients and normal volunteers. METHODS 39 normal volunteers and 49 hypertensive patients underwent CMR. LV contours were manually drawn on all time frames in 18 normal volunteers. The dual-contour propagation algorithm was used to propagate contours throughout the cardiac cycle. The results were compared to those obtained with single-contour propagation (using either end-diastolic or end-systolic contours) and commercially available software. We then used the dual-contour propagation technique to measure peak ejection rate (PER) and peak early diastolic and late diastolic filling rates (ePFR and aPFR) in all normal volunteers and hypertensive patients. RESULTS Compared to single-contour propagation methods and the commercial method, VTC by dual-contour propagation showed significantly better agreement with manually-derived VTC. Ejection and filling rates by dual-contour propagation agreed with manual (dual-contour - manual PER: -0.12 +/- 0.08; ePFR: -0.07 +/- 0.07; aPFR: 0.06 +/- 0.03 EDV/s, all P = NS). However, the time for the manual method was approximately 4 hours per study versus approximately 7 minutes for dual-contour propagation. LV systolic function measured by LVEF and PER did not differ between normal volunteers and hypertensive patients. However, ePFR was lower in hypertensive patients vs. normal volunteers, while aPFR was higher, indicative of altered diastolic filling rates in hypertensive patients. CONCLUSION Dual-propagated contours can accurately measure both systolic and diastolic volumetric indices that can be applied in a routine clinical CMR environment. With dual-contour propagation, the user interaction that is routinely performed to measure LVEF is leveraged to obtain additional clinically relevant parameters.
Collapse
Affiliation(s)
- Wei Feng
- Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA
| | - Hosakote Nagaraj
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Himanshu Gupta
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven G Lloyd
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gilbert J Perry
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Calhoun
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas S Denney
- Electrical and Computer Engineering Department, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|