102
|
Sudre CH, Bocchetta M, Cash D, Thomas DL, Woollacott I, Dick KM, van Swieten J, Borroni B, Galimberti D, Masellis M, Tartaglia MC, Rowe JB, Graff C, Tagliavini F, Frisoni G, Laforce R, Finger E, de Mendonça A, Sorbi S, Ourselin S, Cardoso MJ, Rohrer JD. White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NEUROIMAGE-CLINICAL 2017; 15:171-180. [PMID: 28529873 PMCID: PMC5429247 DOI: 10.1016/j.nicl.2017.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/18/2017] [Accepted: 04/15/2017] [Indexed: 12/25/2022]
Abstract
Genetic frontotemporal dementia is most commonly caused by mutations in the progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72) genes. Previous small studies have reported the presence of cerebral white matter hyperintensities (WMH) in genetic FTD but this has not been systematically studied across the different mutations. In this study WMH were assessed in 180 participants from the Genetic FTD Initiative (GENFI) with 3D T1- and T2-weighed magnetic resonance images: 43 symptomatic (7 GRN, 13 MAPT and 23 C9orf72), 61 presymptomatic mutation carriers (25 GRN, 8 MAPT and 28 C9orf72) and 76 mutation negative non-carrier family members. An automatic detection and quantification algorithm was developed for determining load, location and appearance of WMH. Significant differences were seen only in the symptomatic GRN group compared with the other groups with no differences in the MAPT or C9orf72 groups: increased global load of WMH was seen, with WMH located in the frontal and occipital lobes more so than the parietal lobes, and nearer to the ventricles rather than juxtacortical. Although no differences were seen in the presymptomatic group as a whole, in the GRN cohort only there was an association of increased WMH volume with expected years from symptom onset. The appearance of the WMH was also different in the GRN group compared with the other groups, with the lesions in the GRN group being more similar to each other. The presence of WMH in those with progranulin deficiency may be related to the known role of progranulin in neuroinflammation, although other roles are also proposed including an effect on blood-brain barrier permeability and the cerebral vasculature. Future studies will be useful to investigate the longitudinal evolution of WMH and their potential use as a biomarker as well as post-mortem studies investigating the histopathological nature of the lesions. In genetic FTD white matter hyperintensities (WMH) are found most prominently in symptomatic patients with GRN mutations. Frontal and occipital lobes are the most affected regions. WMH are more likely to occur close to the ventricles. WMH have a more homogenous appearance possibly suggestive of inflammatory rather than vascular lesions.
Collapse
Affiliation(s)
- Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Centre for Medical Image Computing, University College London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - David Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Centre for Medical Image Computing, University College London, UK
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Centre for Medical Image Computing, University College London, UK
| | - Ione Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Katrina M Dick
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | - Daniela Galimberti
- Dept. of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Masellis
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute; Department of Medicine, University of Toronto, Canada
| | | | | | - Caroline Graff
- Karolinska Institutet, Stockholm, Sweden; Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Sweden; Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | - Sandro Sorbi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy; IRCCS Don Gnocchi, Firenze, Italy
| | - Sébastien Ourselin
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Centre for Medical Image Computing, University College London, UK
| | - M Jorge Cardoso
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Centre for Medical Image Computing, University College London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.
| | | |
Collapse
|
103
|
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, Jorge Cardoso M, Cawley N, Ciccarelli O, Wheeler-Kingshott CAM, Ourselin S, Catanese L, Deshpande H, Maurel P, Commowick O, Barillot C, Tomas-Fernandez X, Warfield SK, Vaidya S, Chunduru A, Muthuganapathy R, Krishnamurthi G, Jesson A, Arbel T, Maier O, Handels H, Iheme LO, Unay D, Jain S, Sima DM, Smeets D, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Bazin PL, Calabresi PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince JL, Pham DL. Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 2017; 148:77-102. [PMID: 28087490 PMCID: PMC5344762 DOI: 10.1016/j.neuroimage.2016.12.064] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Amod Jog
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Magrath
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Button
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James Nguyen
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ferran Prados
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Carole H Sudre
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
| | - Manuel Jorge Cardoso
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Niamh Cawley
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Olga Ciccarelli
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | | | - Sébastien Ourselin
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Laurence Catanese
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | | | - Pierre Maurel
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Olivier Commowick
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Christian Barillot
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Suthirth Vaidya
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Abhijith Chunduru
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ramanathan Muthuganapathy
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ganapathy Krishnamurthi
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Leonardo O Iheme
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | - Devrim Unay
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | | | | | | | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pierre-Louis Bazin
- Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
| | - Peter A Calabresi
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Lotta M Ellingsen
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
| | - Daniel S Reich
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| |
Collapse
|