101
|
Tan LTH, Chan KG, Khan TM, Bukhari SI, Saokaew S, Duangjai A, Pusparajah P, Lee LH, Goh BH. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties. Front Pharmacol 2017; 8:276. [PMID: 28567016 PMCID: PMC5434116 DOI: 10.3389/fphar.2017.00276] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography-mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Department of Pharmacy, Abasyn UniversityPeshawar, Pakistan
| | - Sarah Ibrahim Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand.,Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
102
|
Rajer FU, Wu H, Xie Y, Xie S, Raza W, Tahir HAS, Gao X. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology (Reading) 2017; 163:523-530. [DOI: 10.1099/mic.0.000451] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Faheem Uddin Rajer
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yongli Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Shanshan Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Waseem Raza
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Hafiz Abdul Samad Tahir
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| |
Collapse
|
103
|
Zothanpuia, Passari AK, Chandra P, Leo VV, Mishra VK, Kumar B, Singh BP. Production of Potent Antimicrobial Compounds from Streptomyces cyaneofuscatus Associated with Fresh Water Sediment. Front Microbiol 2017; 8:68. [PMID: 28179900 PMCID: PMC5263160 DOI: 10.3389/fmicb.2017.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 11/27/2022] Open
Abstract
The genus Streptomyces under phylum actinobacteria has been recognized as a prolific source for the production of bioactive secondary metabolites. An actinobacterial strain designated as DST103 isolated from a wetland fresh water sediment of Tamdil Lake, Mizoram, Northeast, India was identified as Streptomyces cyaneofuscatus (KY287599) using 16SrRNA gene sequencing which shares 99.87% sequence similarity with Streptomyces cyaneofuscatus NRRL B-2570T. The strain showed broad spectrum antimicrobial activities against Gram negative bacteria (Escherichia coli MTCC 739 and Pseudomonas aeruginosa MTCC 2453), Gram positive bacteria (Micrococcus luteus NCIM 2170 and Staphylococcus aureus MTCC 96) and yeast pathogen Candida albicans MTCC 3017). The methanolic extract of the strain DST103 exhibited highest antimicrobial activity against E. coli (IC50 = 2.10 μg/mL) and minimum activity against S. aureus (IC50 = 43.63 μg/mL). Five antibiotics [trimethoprim (18 μg/g), fluconazole (6 μg/g), ketoconazole (18 μg/g), nalidixic acid (135 μg/g), and rifampicin (56 μg/g)] were detected and quantified using ultra-performance liquid chromatography (UPLC-ESI-MS/MS). Further, biosynthetic potential genes [polyketide synthases type II, non-ribosomal peptide synthetases, and aminodeoxyisochorismate synthase (phzE)] were also detected in strain DST103 which may possibly be responsible for the production of antimicrobial compounds. Additionally, gas chromatography-mass spectrometry analysis showed the presence of four volatile compounds which might be responsible for their diverse biological activity. The present study revealed the presence of bioactive compounds in strain DST103, which may be a promising resource for the discovery of novel bioactive metabolites against wide range of pathogens.
Collapse
Affiliation(s)
- Zothanpuia
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Ajit K Passari
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Preeti Chandra
- CSIR-Central Drug Research Institute, Sophisticated Analytical Instrument Facility Lucknow, India
| | - Vincent V Leo
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Vineet K Mishra
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Brijesh Kumar
- CSIR-Central Drug Research Institute, Sophisticated Analytical Instrument Facility Lucknow, India
| | - Bhim P Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| |
Collapse
|
104
|
Jones SE, Ho L, Rees CA, Hill JE, Nodwell JR, Elliot MA. Streptomyces exploration is triggered by fungal interactions and volatile signals. eLife 2017; 6. [PMID: 28044982 PMCID: PMC5207766 DOI: 10.7554/elife.21738] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.
Collapse
Affiliation(s)
- Stephanie E Jones
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Louis Ho
- Department Biochemistry, University of Toronto, Toronto, Canada
| | - Christiaan A Rees
- Geisel School of Medicine, Dartmouth College, Hanover, United States.,Thayer School of Engineering, Dartmouth College, Hanover, United States
| | - Jane E Hill
- Geisel School of Medicine, Dartmouth College, Hanover, United States.,Thayer School of Engineering, Dartmouth College, Hanover, United States
| | | | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| |
Collapse
|
105
|
Ser HL, Tan LTH, Palanisamy UD, Abd Malek SN, Yin WF, Chan KG, Goh BH, Lee LH. Streptomyces antioxidans sp. nov., a Novel Mangrove Soil Actinobacterium with Antioxidative and Neuroprotective Potentials. Front Microbiol 2016; 7:899. [PMID: 27379040 PMCID: PMC4909769 DOI: 10.3389/fmicb.2016.00899] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022] Open
Abstract
A novel strain, Streptomyces antioxidans MUSC 164T was recovered from mangrove forest soil located at Tanjung Lumpur, Malaysia. The Gram-positive bacterium forms yellowish-white aerial and brilliant greenish yellow substrate mycelium on ISP 2 agar. A polyphasic approach was used to determine the taxonomy status of strain MUSC 164T. The strain showed a spectrum of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8), while the identified polar lipids consisted of aminolipid, diphosphatidylglycerol, glycolipid, hydroxyphosphatidylethanolamine, phospholipid, phosphatidylinositol, phosphatidylethanolamine, phosphatidylglycerol and lipid. The cell wall sugars consist of galactose, glucose and ribose. The predominant cellular fatty acids (>10.0%) were identified as iso-C15:0 (34.8%) and anteiso-C15:0(14.0%). Phylogenetic analysis identified that closely related strains for MUSC 164T as Streptomyces javensis NBRC 100777T (99.6% sequence similarity), Streptomyces yogyakartensis NBRC 100779T (99.6%) and Streptomyces violaceusniger NBRC 13459T (99.6%). The DNA–DNA relatedness values between MUSC 164T and closely related type strains ranged from 23.8 ± 0.3% to 53.1 ± 4.3%. BOX-PCR fingerprints comparison showed that MUSC 164T exhibits a unique DNA profile, with DNA G + C content determined to be 71.6 mol%. Based on the polyphasic study of MUSC 164T, it is concluded that this strain represents a novel species, for which the name Streptomyces antioxidans sp. nov. is proposed. The type strain is MUSC 164T (=DSM 101523T = MCCC 1K01590T). The extract of MUSC 164T showed potent antioxidative and neuroprotective activities against hydrogen peroxide. The chemical analysis of the extract revealed that the strain produces pyrazines and phenolic-related compounds that could explain for the observed bioactivities.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Uma D Palanisamy
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Sri N Abd Malek
- Biochemistry Program, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
106
|
Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH. Streptomyces malaysiense sp. nov.: A novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci Rep 2016; 6:24247. [PMID: 27072394 PMCID: PMC4829849 DOI: 10.1038/srep24247] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
Actinobacteria from the unique intertidal ecosystem of the mangroves are known to produce novel, bioactive secondary metabolites. A novel strain known as MUSC 136T (=DSM 100712T = MCCC 1K01246T) which was isolated from Malaysian mangrove forest soil has proven to be no exception. Assessed by a polyphasic approach, its taxonomy showed a range of phylogenetic and chemotaxonomic properties consistent with the genus of Streptomyces. Phylogenetically, highest similarity was to Streptomyces misionensis NBRC 13063T (99.6%) along with two other strains (>98.9% sequence similarities). The DNA–DNA relatedness between MUSC 136T and these type strains ranged from 22.7 ± 0.5% to 46.5 ± 0.2%. Overall, polyphasic approach studies indicated this strain represents a novel species, for which the name Streptomyces malaysiense sp. nov. is proposed. The potential bioactivities of this strain were explored by means of antioxidant and cytotoxic assays. Intriguingly, MUSC 136T exhibited strong antioxidative activities as evaluated by a panel of antioxidant assays. It was also found to possess high cytotoxic effect against HCT-116 cells, which probably mediated through altering p53 protein and intracellular glutathione levels. Chemical analysis of the extract using GC-MS further affirms that the strain produces chemopreventive related metabolites.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Malaysia.,Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Uma Devi Palanisamy
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Malaysia.,Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Learn-Han Lee
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Malaysia.,Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
107
|
Tyc O, Zweers H, de Boer W, Garbeva P. Volatiles in Inter-Specific Bacterial Interactions. Front Microbiol 2015; 6:1412. [PMID: 26733959 PMCID: PMC4683202 DOI: 10.3389/fmicb.2015.01412] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023] Open
Abstract
The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities.
Collapse
Affiliation(s)
- Olaf Tyc
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Department of Soil Quality, Wageningen University and Research CentreWageningen, Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands; Department of Soil Quality, Wageningen University and Research CentreWageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| |
Collapse
|
108
|
Ser HL, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH. Evaluation of Antioxidative and Cytotoxic Activities of Streptomyces pluripotens MUSC 137 Isolated from Mangrove Soil in Malaysia. Front Microbiol 2015; 6:1398. [PMID: 26733951 PMCID: PMC4679926 DOI: 10.3389/fmicb.2015.01398] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022] Open
Abstract
Streptomyces pluripotens MUSC 137 was isolated from mangrove soil obtained from Tanjung Lumpur, Pahang, Malaysia. We investigated the phylogenetic, genomic, biochemical, and phenotypic characteristics of this strain. Uniquely adapted microorganisms from mangrove habitats have previously yielded compounds of biopharmaceutical interest. In order to examine the bioactivities possessed by the strain, fermentation extract was prepared through solvent extraction method prior to bioactivities screenings. Antioxidant activity was examined via DPPH assay while the cytotoxic effect was assessed by means of examining the activity of the extract against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480, and HT-29), breast cancer cell (MCF-7), lung cancer cell (A549), prostate cancer cell (DU145), and cervical cancer cell (Ca Ski). The results revealed MUSC 137 possesses significant antioxidant activity and demonstrates cytotoxic effect against several cancer cell lines tested. The results indicated MCF-7 cells were most susceptible to the extract with the lowest IC50 (61.33 ± 17.10 μg/mL), followed by HCT-116 and A549. Additionally, selective index (SI) showed that MUSC 137 extract was less toxic against normal cell lines when compared to MCF-7 and HCT-116 cells. The extract was further subjected to chemical analysis using GC–MS and revealed the presence of deferoxamine and pyrrolizidines related compounds which may account for the antioxidant and cytotoxic properties observed.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute-UKM Medical Centre, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
109
|
Lo Cantore P, Giorgio A, Iacobellis NS. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii. Front Microbiol 2015; 6:1082. [PMID: 26500627 PMCID: PMC4594034 DOI: 10.3389/fmicb.2015.01082] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase.
Collapse
Affiliation(s)
- Pietro Lo Cantore
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata Potenza, Italy
| | - Annalisa Giorgio
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata Potenza, Italy
| | - Nicola S Iacobellis
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata Potenza, Italy
| |
Collapse
|
110
|
Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, Lee LH. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol 2015; 6:854. [PMID: 26347733 PMCID: PMC4542459 DOI: 10.3389/fmicb.2015.00854] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023] Open
Abstract
A novel Streptomyces, strain MUSC 149(T) was isolated from mangrove soil. A polyphasic approach was used to study the taxonomy of MUSC 149(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8) and MK9(H6). Phylogenetic analysis indicated that closely related strains include Streptomyces rhizophilus NBRC 108885(T) (99.2% sequence similarity), S. gramineus NBRC 107863(T) (98.7%) and S. graminisoli NBRC 108883(T) (98.5%). The DNA-DNA relatedness values between MUSC 149(T) and closely related type strains ranged from 12.4 ± 3.3% to 27.3 ± 1.9%. The DNA G + C content was determined to be 72.7 mol%. The extract of MUSC 149(T) exhibited strong antioxidant activity and chemical analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-. These data showed that metabolites of MUSC 149(T) shall be useful as preventive agent against free-radical associated diseases. Based on the polyphasic study of MUSC 149(T), the strain merits assignment to a novel species, for which the name S. mangrovisoli sp. nov. is proposed. The type strain is MUSC 149(T) (=MCCC 1K00699(T)=DSM 100438(T)).
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Uma D. Palanisamy
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Sri N. Abd Malek
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
111
|
Huang Y, Ma L, Fang DH, Xi JQ, Zhu ML, Mo MH, Zhang KQ, Ji YP. Isolation and characterisation of rhizosphere bacteria active against Meloidogyne incognita, Phytophthora nicotianae and the root knot-black shank complex in tobacco. PEST MANAGEMENT SCIENCE 2015; 71:415-22. [PMID: 24799254 DOI: 10.1002/ps.3820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The use of dually antagonistic bacteria (DAB) as alternatives to chemicals for biological control of disease complexes has received little attention. In this study targeting the Meloidogyne incognita-Phytophthora nicotianae complex, DAB from the tobacco rhizosphere were identified and screened against the diseases caused by one or both pathogens in tobacco. RESULTS From 450 soil tobacco rhizosphere samples, 26 DAB were identified and had in vitro nematicidal and antifungal efficacies of 37.2-100% and 32.9-73.4% respectively. These DAB were classified into 19 species of 11 genera. In pot experiments, Streptomyces flavofungini SNA26, Pseudomonas putida SNB53 and Serratia marcescens subsp. sakuensis SNB54 effectively suppressed black shank (control effect 72.0-80.2%), root knot (70.0-81.7) and the disease complex (58.7-68.5%) caused by P. nicotianae, M. incognita and both pathogens in tobacco respectively. CONCLUSION Nineteen DAB species were demonstrated to be antagonists against the M. incognita-P. nicotianae complex. Because S. flavofungini SNA26, P. putida SNB53 and S. marcescens subsp. sakuensis SNB54 significantly suppressed the infection of M. incognita and P. nicotianae in tobacco, these species have potential for development as biocontrol agents against the diseases and complex caused by these two pathogens.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory for Conservation and Utilization of Bio-resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. FRONTIERS IN PLANT SCIENCE 2015; 6:151. [PMID: 25821453 PMCID: PMC4358370 DOI: 10.3389/fpls.2015.00151] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 05/02/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial-plants and microbial-microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use.
Collapse
Affiliation(s)
- Chidananda Nagamangala Kanchiswamy
- Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund MachTrento, Italy,
- *Correspondence: Chidananda Nagamangala Kanchiswamy, Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund Mach, Via E.Mach 1, San Michele all'Adige, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund MachTrento, Italy,
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
113
|
Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 2014; 81:821-30. [PMID: 25398872 DOI: 10.1128/aem.02999-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide, Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters. P. infestans was highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. Cyanogenic Pseudomonas strains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediated P. infestans growth inhibition. Supplying pure 1-undecene to P. infestans significantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity of P. infestans to bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.
Collapse
|
114
|
Elkahoui S, Djébali N, Yaich N, Azaiez S, Hammami M, Essid R, Limam F. Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani. World J Microbiol Biotechnol 2014; 31:175-85. [PMID: 25384611 DOI: 10.1007/s11274-014-1772-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
Several volatile organic compounds (VOCs) producing endophyte bacteria were isolated from the leaves of olive trees and tested for their antifungal activity against several pathogenic fungi. An antagonistic strain called P2 showed 97 % of homology with Pseudomonas sp. strains on the basis of its 16S rDNA sequence and biochemical properties. P2 strain drastically inhibited the growth of Rhizoctonia solani mycelia (86 %) at 5 day-post-confrontation (dpc) and strongly reduced fungi infection on potato slices at 10(7) bacteria ml(-1) for 3 and 7 dpc. P2 strain was also positive for protease activity as well as siderophore production. Light microscopy analysis showed that treatment of R. solani mycelia with P2 strain induced thickening of the cell-wall, vesiculation of protoplasm and blockage of fungal hyphae branching. VOCs analysis using GC-MS allowed the detection of two major products with m/z of 93.9910 and 125.9630 corresponding to dimethyl disulfide and dimethyl trisulfide respectively. VOCs-producing P2 strain could be a promising agent in the protection of tuber crops against fungal diseases.
Collapse
Affiliation(s)
- Salem Elkahoui
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cédria, BP-901, 2050, Hammam-Lif, Tunisia
| | | | | | | | | | | | | |
Collapse
|
115
|
A Volatile Relationship: Profiling an Inter-Kingdom Dialogue Between two Plant Pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J Chem Ecol 2014; 40:502-13. [DOI: 10.1007/s10886-014-0432-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/02/2014] [Accepted: 04/22/2014] [Indexed: 11/28/2022]
|
116
|
Jog R, Pandya M, Nareshkumar G, Rajkumar S. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology (Reading) 2014; 160:778-788. [DOI: 10.1099/mic.0.074146-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l−1), phytase (0.68 U ml−1), chitinase (6.2 U ml−1), indole-3-acetic acid (136.5 mg l−1) and siderophore (47.4 mg l−1) production, as well as utilizing all the rhizospheric sugars under test. Malate (50–55 mmol l−1) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes – isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and 1H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33 %) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field applications.
Collapse
Affiliation(s)
- Rahul Jog
- Institute of Science, Nirma University, Ahmedabad – 81, Gujarat, India
| | - Maharshi Pandya
- Institute of Science, Nirma University, Ahmedabad – 81, Gujarat, India
| | - G. Nareshkumar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodra – 02, Gujarat, India
| | - Shalini Rajkumar
- Institute of Science, Nirma University, Ahmedabad – 81, Gujarat, India
| |
Collapse
|
117
|
Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 2013; 97:9621-36. [DOI: 10.1007/s00253-013-5206-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
118
|
Wang Z, Wang C, Li F, Li Z, Chen M, Wang Y, Qiao X, Zhang H. Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon. J Microbiol 2013; 51:477-83. [DOI: 10.1007/s12275-013-2586-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
|
119
|
Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L. Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 2013; 39:892-906. [PMID: 23832658 DOI: 10.1007/s10886-013-0315-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 12/28/2022]
Abstract
Increasing evidence indicates that volatile compounds emitted by bacteria can influence the growth of other organisms. In this study, the volatiles produced by three different strains of Burkholderia ambifaria were analysed and their effects on the growth of plants and fungi, as well as on the antibiotic resistance of target bacteria, were assessed. Burkholderia ambifaria emitted highly bioactive volatiles independently of the strain origin (clinical environment, rhizosphere of pea, roots of maize). These volatile blends induced significant biomass increase in the model plant Arabidopsis thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and Alternaria alternata). In Escherichia coli exposed to the volatiles of B. ambifaria, resistance to the aminoglycoside antibiotics gentamicin and kanamycin was found to be increased. The volatile blends of the three strains were similar, and dimethyl disulfide was the most abundant compound. Sulfur compounds, ketones, and aromatic compounds were major groups in all three volatile profiles. When applied as pure substance, dimethyl disulfide led to increased plant biomass, as did acetophenone and 3-hexanone. Significant fungal growth reduction was observed with high concentrations of dimethyl di- and trisulfide, 4-octanone, S-methyl methanethiosulphonate, 1-phenylpropan-1-one, and 2-undecanone, while dimethyl trisulfide, 1-methylthio-3-pentanone, and o-aminoacetophenone increased resistance of E. coli to aminoglycosides. Comparison of the volatile profile produced by an engineered mutant impaired in quorum-sensing (QS) signalling with the corresponding wild-type led to the conclusion that QS is not involved in the regulation of volatile production in B. ambifaria LMG strain 19182.
Collapse
Affiliation(s)
- Ulrike Groenhagen
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|