101
|
Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus". GENOME ANNOUNCEMENTS 2015; 3:3/3/e00440-15. [PMID: 25977428 PMCID: PMC4432334 DOI: 10.1128/genomea.00440-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genus Caldicellulosiruptor contains extremely thermophilic, cellulolytic bacteria capable of lignocellulose deconstruction. Currently, complete genome sequences for eleven Caldicellulosiruptor species are available. Here, we report genome sequences for three additional Caldicellulosiruptor species: Rt8.B8 DSM 8990 (New Zealand), Wai35.B1 DSM 8977 (New Zealand), and "Thermoanaerobacter cellulolyticus" strain NA10 DSM 8991 (Japan).
Collapse
|
102
|
Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:180-93. [PMID: 25804821 PMCID: PMC4937988 DOI: 10.1016/j.plantsci.2015.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria; Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Department of Molecular Biology and Genetics, Istanbul University, Turkey
| | - Khawar Sohail Siddiqui
- Biology Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.
| |
Collapse
|
103
|
Blumer-Schuette SE, Alahuhta M, Conway JM, Lee LL, Zurawski JV, Giannone RJ, Hettich RL, Lunin VV, Himmel ME, Kelly RM. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. J Biol Chem 2015; 290:10645-56. [PMID: 25720489 DOI: 10.1074/jbc.m115.641480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Indexed: 11/06/2022] Open
Abstract
A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tāpirins," origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.
Collapse
Affiliation(s)
- Sara E Blumer-Schuette
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Markus Alahuhta
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Jonathan M Conway
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Laura L Lee
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Jeffrey V Zurawski
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Richard J Giannone
- the Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Robert L Hettich
- the Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Vladimir V Lunin
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Michael E Himmel
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Robert M Kelly
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905,
| |
Collapse
|
104
|
Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET 138 as a new biocatalyst. Appl Environ Microbiol 2015; 81:1874-83. [PMID: 25556192 DOI: 10.1128/aem.03640-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216(T) and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 10(3) colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals.
Collapse
|
105
|
Meng DD, Ying Y, Zhang KD, Lu M, Li FL. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features. MOLECULAR BIOSYSTEMS 2015; 11:3164-73. [DOI: 10.1039/c5mb00409h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diverse and distinctive encoding sequences of CAZyme in the genome of Caldicellulosiruptor sp. F32 enable the deconstruction of unpretreated lignocellulose.
Collapse
Affiliation(s)
- Dong-Dong Meng
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Yu Ying
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Kun-Di Zhang
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Ming Lu
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Fu-Li Li
- Key Laboratory of Biofuels
- Shandong Provincial Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|
106
|
Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling J. Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:163. [PMID: 26442761 PMCID: PMC4595190 DOI: 10.1186/s13068-015-0346-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND The C. bescii genome does not encode an acetaldehyde/alcohol dehydrogenase or an acetaldehyde dehydrogenase and no ethanol production is detected in this strain. The recent introduction of an NADH-dependent AdhE from C. thermocellum (Fig. 1a) in an ldh mutant of this strain resulted in production of ethanol from un-pretreated switchgrass, but the thermolability of the C. thermocellum AdhE at the optimum growth temperature of C. bescii (78 °C) meant that ethanol was not produced above 65 °C.Fig. 1Proposed scheme for the pyruvate to ethanol pathway in C. thermocellum and T. pseudethanolicus 39E. a The C. thermocellum ethanol pathway. The red colored AdhE (Cthe_0423) is already expressed and tested in C. bescii [26]. b The T. pseudethanolicus 39E ethanol pathway. The green colored AdhE (Teth39_0206) and blue colored AdhB (Teth39_0218) are expressed and tested in C. bescii in this study. RESULTS The adhB and adhE genes from Thermoanaerobacter pseudethanolicus 39E, an anaerobic thermophile that produces ethanol as a major fermentation product at 70 °C, were cloned and expressed in an ldh deletion mutant of C. bescii. The engineered strains produced ethanol at 75 °C, near the ethanol boiling point. The AdhB expressing strain produced ethanol (1.4 mM on Avicel, 0.4 mM on switchgrass) as well as acetate (13.0 mM on Avicel, 15.7 mM on switchgrass). The AdhE expressing strain produced more ethanol (2.3 mM on Avicel, 1.6 mM on switchgrass) and reduced levels of acetate (12.3 mM on Avicel, 15.1 mM on switchgrass). These engineered strains produce cellulosic ethanol at the highest temperature of any microorganism to date. In addition, the addition of 40 mM MOPS to the growth medium increased the maximal growth yield of C. bescii by approximately twofold. CONCLUSIONS The utilization of thermostable enzymes will be critical to achieving high temperature CBP in bacteria such as C. bescii. The ability to produce ethanol at 75 °C, near its boiling point, raises the possibility that process optimization could allow in situ product removal of this end product to mitigate ethanol toxicity.
Collapse
Affiliation(s)
- Daehwan Chung
- />Department of Genetics, University of Georgia, Athens, GA USA
- />The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Minseok Cha
- />Department of Genetics, University of Georgia, Athens, GA USA
- />The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Elise N. Snyder
- />Department of Genetics, University of Georgia, Athens, GA USA
- />The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - James G. Elkins
- />The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Adam M. Guss
- />The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Janet Westpheling
- />Department of Genetics, University of Georgia, Athens, GA USA
- />The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
107
|
Moroz OV, Maranta M, Shaghasi T, Harris PV, Wilson KS, Davies GJ. The three-dimensional structure of the cellobiohydrolase Cel7A from Aspergillus fumigatus at 1.5 Å resolution. Acta Crystallogr F Struct Biol Commun 2015; 71:114-20. [PMID: 25615982 PMCID: PMC4304761 DOI: 10.1107/s2053230x14027307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
The enzymatic degradation of plant cell-wall cellulose is central to many industrial processes, including second-generation biofuel production. Key players in this deconstruction are the fungal cellobiohydrolases (CBHs), notably those from family GH7 of the carbohydrate-active enzymes (CAZY) database, which are generally known as CBHI enzymes. Here, three-dimensional structures are reported of the Aspergillus fumigatus CBHI Cel7A solved in uncomplexed and disaccharide-bound forms at resolutions of 1.8 and 1.5 Å, respectively. The product complex with a disaccharide in the +1 and +2 subsites adds to the growing three-dimensional insight into this family of industrially relevant biocatalysts.
Collapse
Affiliation(s)
- Olga V. Moroz
- Department of Chemistry, University of York, York Structural Biology Laboratory, York YO10 5DD, England
| | | | | | | | - Keith S. Wilson
- Department of Chemistry, University of York, York Structural Biology Laboratory, York YO10 5DD, England
| | - Gideon J. Davies
- Department of Chemistry, University of York, York Structural Biology Laboratory, York YO10 5DD, England
| |
Collapse
|
108
|
Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:20. [PMID: 25763101 PMCID: PMC4355364 DOI: 10.1186/s13068-015-0204-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. RESULTS H2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in ∆hydG∆ech was undetectable, and the ethanol yield nearly doubled to 64% of the maximum theoretical yield. Genomic analysis of ∆hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation was found in ethanol-tolerant C. thermocellum strain E50C, ∆hydG and ∆hydG∆ech are not more ethanol tolerant than the wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. CONCLUSIONS The dramatic increase in ethanol production suggests that targeting protein post-translational modification is a promising new approach for simultaneous inactivation of multiple enzymes.
Collapse
Affiliation(s)
- Ranjita Biswas
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />Current address: Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Tianyong Zheng
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| | - Daniel G Olson
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| | - Lee R Lynd
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| | - Adam M Guss
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />One Bethel Valley Road, Oak Ridge, TN 37831-6038 USA
| |
Collapse
|
109
|
Torto-Alalibo T, Purwantini E, Lomax J, Setubal JC, Mukhopadhyay B, Tyler BM. Genetic resources for advanced biofuel production described with the Gene Ontology. Front Microbiol 2014; 5:528. [PMID: 25346727 PMCID: PMC4193338 DOI: 10.3389/fmicb.2014.00528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.
Collapse
Affiliation(s)
- Trudy Torto-Alalibo
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Jane Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome CampusCambridge, UK
| | - João C. Setubal
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Department of Biological Sciences, Oregon State UniversityCorvallis, OR, USA
| | - Brett M. Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
110
|
Akinosho H, Yee K, Close D, Ragauskas A. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2014; 2:66. [PMID: 25207268 PMCID: PMC4143619 DOI: 10.3389/fchem.2014.00066] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/28/2014] [Indexed: 01/25/2023] Open
Abstract
First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing (CBP) applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes toward the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum's role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum's amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community.
Collapse
Affiliation(s)
- Hannah Akinosho
- School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology Atlanta, GA, USA ; Oak Ridge National Laboratory, BioEnergy Science Center Oak Ridge, TN, USA
| | - Kelsey Yee
- Oak Ridge National Laboratory, BioEnergy Science Center Oak Ridge, TN, USA ; Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Arthur Ragauskas
- Oak Ridge National Laboratory, BioEnergy Science Center Oak Ridge, TN, USA ; Department of Chemical and Biomolecular Engineering and Department of Forestry, Wildlife, and Fisheries, University of Tennessee Knoxville, TN, USA
| |
Collapse
|