101
|
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends? Gene 2014; 556:68-73. [PMID: 25261847 DOI: 10.1016/j.gene.2014.09.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/01/2023]
Abstract
Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.
Collapse
|
102
|
Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa. Parasitology 2014; 142 Suppl 1:S57-70. [PMID: 25257746 PMCID: PMC4413850 DOI: 10.1017/s0031182014001528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host–parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species.
Collapse
|
103
|
Alano P. The sound of sexual commitment breaks the silencing of malaria parasites. Trends Parasitol 2014; 30:509-10. [PMID: 25261923 DOI: 10.1016/j.pt.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
A fundamental binary decision is made by malaria parasites at every asexual cycle in the blood between further proliferation and differentiation into gametocytes, the mosquito transmissible stages. Recent studies on Plasmodium epigenetic regulation, transcriptional control and genetic basis of gametocyte production are merging today to unveil players and propose molecular mechanisms of this key branch point in the malaria parasite life cycle.
Collapse
Affiliation(s)
- Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|
104
|
Fratus ASB, Cabral FJ, Fotoran WL, Medeiros MM, Carlos BC, Martha RD, da Silva LHP, Lopes SCP, Costa FTM, Wunderlich G. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon. Mem Inst Oswaldo Cruz 2014; 109:598-601. [PMID: 25099336 PMCID: PMC4156453 DOI: 10.1590/0074-0276140027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022] Open
Abstract
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Collapse
Affiliation(s)
| | - Fernanda Janku Cabral
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Wesley Luzetti Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Márcia Melo Medeiros
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Bianca Cechetto Carlos
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Stefanie Costa Pinto Lopes
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia,
Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Fabio Trindade Maranhão Costa
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia,
Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
105
|
Vembar SS, Scherf A, Siegel TN. Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression. Curr Opin Microbiol 2014; 20:153-61. [PMID: 25022240 PMCID: PMC4157322 DOI: 10.1016/j.mib.2014.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/15/2014] [Accepted: 06/20/2014] [Indexed: 11/15/2022]
Abstract
The eukaryotic unicellular pathogen Plasmodium falciparum tightly regulates gene expression, both during development and in adaptation to dynamic host environments. This regulation is evident in the mutually exclusive expression of members of clonally variant virulence multigene families. While epigenetic regulators have been selectively identified at active or repressed virulence genes, their specific recruitment remains a mystery. In recent years, noncoding RNAs (ncRNAs) have emerged as lynchpins of eukaryotic gene regulation; by binding to epigenetic regulators, they provide target specificity to otherwise non-specific enzyme complexes. Not surprisingly, there is great interest in understanding the role of ncRNA in P. falciparum, in particular, their contribution to the mutually exclusive expression of virulence genes. The current repertoire of P. falciparum ncRNAs includes, but is not limited to, subtelomeric ncRNAs, virulence gene-associated ncRNAs and natural antisense RNA transcripts. Continued improvement in high-throughput sequencing methods is sure to expand this repertoire. Here, we summarize recent advances in P. falciparum ncRNA biology, with an emphasis on ncRNA-mediated epigenetic modes of gene regulation.
Collapse
Affiliation(s)
- Shruthi S Vembar
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France; CNRS URA2581, Paris, France
| | - Artur Scherf
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France; CNRS URA2581, Paris, France
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, University of Wuerzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Wuerzburg, Germany.
| |
Collapse
|
106
|
Brancucci NMB, Witmer K, Schmid C, Voss TS. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum. PLoS One 2014; 9:e100183. [PMID: 24937593 PMCID: PMC4061111 DOI: 10.1371/journal.pone.0100183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/23/2014] [Indexed: 01/14/2023] Open
Abstract
Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is encoded by the multicopy var gene family and only a single variant is expressed in individual parasites, a concept known as mutual exclusion or singular gene choice. var gene activation occurs in situ and is achieved through the escape of one locus from epigenetic silencing. Singular gene choice is controlled at the level of transcription initiation and var 5' upstream (ups) sequences harbour regulatory information essential for mutually exclusive transcription as well as for the trans-generational inheritance of the var activity profile. An additional level of control has recently been identified for the var2csa gene, where an mRNA element in the 5' untranslated region (5' UTR) is involved in the reversible inhibition of translation of var2csa transcripts. Here, we extend the knowledge on post-transcriptional var gene regulation to the common upsC type. We identified a 5' UTR sequence that inhibits translation of upsC-derived mRNAs. Importantly, this 5' UTR element efficiently inhibits translation even in the context of a heterologous upstream region. Further, we found var 5' UTRs to be significantly enriched in uAUGs which are known to impair the efficiency of protein translation in other eukaryotes. Our findings suggest that regulation at the post-transcriptional level is a common feature in the control of PfEMP1 expression in P. falciparum.
Collapse
Affiliation(s)
- Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kathrin Witmer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Schmid
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
107
|
Batram C, Jones NG, Janzen CJ, Markert SM, Engstler M. Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei. eLife 2014; 3:e02324. [PMID: 24844706 PMCID: PMC4027811 DOI: 10.7554/elife.02324] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness. DOI:http://dx.doi.org/10.7554/eLife.02324.001 African sleeping sickness is a potentially lethal disease that is caused by a parasite called T. brucei and spread by tsetse flies. Like many of the parasites that cause tropical diseases, T. brucei employs genetic trickery to evade the immune systems of humans and other mammals. This involves changing the variant surface glycoprotein (VSG) coat that surrounds the parasite on a regular basis in order to remain one step ahead of the immune system of its host: while the immune system looks for invaders wearing a particular coat, the parasites are spreading through the host in a completely different coat. To infect other hosts, the parasite must undergo changes that allow it to re-infect the tsetse fly. Therefore, besides the ‘antigenic variation’ that allows it to change its surface coat when it is in the blood of its host, T. brucei must undergo a more fundamental metamorphosis before it is capable of colonizing the tsetse fly. However, many details of the changes that allow the parasites to re-infect flies are not understood. T. brucei has several hundred VSG genes clustered in about 15 regions known as expression sites, but only a single expression site is active at any given time. Each expression site also contains a number of other genes known as expression site-associated genes (ESAGs). Antigenic variation can occur as a result of different VSG genes within the same expression site being expressed as proteins, or when the active expression site is silenced and another expression site is activated. This is another process that is not fully understood. Batram et al. now reveal that the expression of VSG genes, antigenic variation and the changes that allow the parasites to re-infect flies are all related to each other. This suggests that the expression site could provide a new point of attack in the fight against African sleeping sickness. DOI:http://dx.doi.org/10.7554/eLife.02324.002
Collapse
Affiliation(s)
- Christopher Batram
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Christian J Janzen
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Sebastian M Markert
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
108
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
109
|
Naka I, Patarapotikul J, Hananantachai H, Imai H, Ohashi J. Association of the endothelial protein C receptor (PROCR) rs867186-G allele with protection from severe malaria. Malar J 2014; 13:105. [PMID: 24635948 PMCID: PMC4004250 DOI: 10.1186/1475-2875-13-105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cytoadhesion of Plasmodium falciparum-infected erythrocytes to endothelial cells in microvessels is a remarkable characteristic of severe malaria. The endothelial protein C receptor (EPCR), encoded by the endothelial protein C receptor gene (PROCR), has recently been identified as an endothelial receptor for specific P. falciparum erythrocyte membrane protein 1 (PfEMP1) subtypes containing domain cassettes (DCs) 8 and 13. The PROCR rs867186-G allele (serine-to-glycine substitution at position 219 of EPCR; 219Gly) has been shown to be associated with higher levels of plasma soluble EPCR (sEPCR). In this study, the association of PROCR rs867186 with severe malaria is examined in Thai population. Methods A total of 707 Thai patients with P. falciparum malaria (341 with severe malaria and 336 with mild malaria) were genotyped for rs867186. To assess the association of PROCR rs867186 with severe malaria, three models (dominant, recessive and allelic) were evaluated. The rates of non-synonymous and synonymous substitutions were estimated for the coding sequence of the PROCR gene. Results The rs867186-GG genotype was significantly associated with protection from severe malaria (P-value = 0.026; odds ratio = 0.33; 95% confidence interval = 0.12–0.90). Evolutionary analysis provided no evidence of strong positive selection acting on the PROCR gene. Conclusion The rs867186-GG genotype showed significant association with protection from severe malaria. The present results suggest that PfEMP1–EPCR interaction, which can mediate cytoadhesion and/or reduce cytoprotective and anti-inflammatory effects, is crucial to the pathogenesis of severe malaria.
Collapse
Affiliation(s)
| | | | | | | | - Jun Ohashi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
110
|
Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, Williams AE, Drought LG, Kwiatkowski DP, Baker DA, Cortés A, Llinás M. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 2014; 507:248-52. [PMID: 24572369 PMCID: PMC4040541 DOI: 10.1038/nature12920] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
Abstract
The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.
Collapse
Affiliation(s)
- Björn F C Kafsack
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| | - Núria Rovira-Graells
- 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain
| | - Taane G Clark
- 1] Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK [2] Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Cristina Bancells
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain
| | - Valerie M Crowley
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| | - Susana G Campino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - April E Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Dominic P Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Wellcome Trust Sanger Centre for Human Genetics, Oxford OX3 7BN, UK
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Alfred Cortés
- 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalonia, Spain
| | - Manuel Llinás
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| |
Collapse
|
111
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
112
|
Smith JD, Rowe JA, Higgins MK, Lavstsen T. Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 2013; 15:1976-83. [PMID: 23957661 PMCID: PMC3836831 DOI: 10.1111/cmi.12183] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody-mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. Inone extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure-function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria.
Collapse
Affiliation(s)
- Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America, 98109
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
113
|
Abstract
The currently available malaria control tools have allowed malaria elimination in many regions but there remain many regions where malaria control has made little progress. A safe and protective malaria vaccine would be a huge asset for malaria control. Despite the many challenges, efforts continue to design and evaluate malaria vaccine candidates. These candidates target different stages in the life cycle of Plasmodia. The most advanced vaccine candidates target the pre-erythrocytic stages in the life cycle of the parasite and include RTS,S/AS01, which has progressed through clinical development to the stage that it may be licensed in 2015. Attenuated whole-parasite vaccine candidates are highly protective, but there are challenges to manufacture and to administration. Cellular immunity is targeted by the prime-boost approach. Priming vectors trigger only modest responses but these are focused on the recombinant antigen. Boosting vectors trigger strong but broad non-specific responses. The heterologous sequence produces strong immunological responses to the recombinant antigen. Candidates that target the blood stages of the parasite have to result in an immune response that is more effective than the response to an infection to abort or control the infection of merozoites and hence disease. Finally, the sexual stages of the parasite offer another target for vaccine development, which would prevent the transmission of malaria. Today it seems unlikely that any candidate targeting a single antigen will provide complete protection against an organism of the complexity of Plasmodium. A systematic search for vaccine targets and combinations of antigens may be a more promising approach.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Department of Global health, Menzies School of Health Research, , Casuarina, Northern Territory, Australia
| | | |
Collapse
|
114
|
Kasuga T, Gijzen M. Epigenetics and the evolution of virulence. Trends Microbiol 2013; 21:575-82. [DOI: 10.1016/j.tim.2013.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
|
115
|
Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts. PLoS One 2013; 8:e78014. [PMID: 24205067 PMCID: PMC3799730 DOI: 10.1371/journal.pone.0078014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/16/2013] [Indexed: 02/04/2023] Open
Abstract
Background Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an invivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera. Principal Findings We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry. Significance SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the invivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying antigenic variation in the context of the host environment.
Collapse
|
116
|
Glover L, Hutchinson S, Alsford S, McCulloch R, Field MC, Horn D. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell Microbiol 2013; 15:1984-93. [PMID: 24047558 PMCID: PMC3963442 DOI: 10.1111/cmi.12215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
Abstract
African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub-telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol-I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol-I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub-nuclear context.
Collapse
Affiliation(s)
- Lucy Glover
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
117
|
Mira-Martínez S, Rovira-Graells N, Crowley VM, Altenhofen LM, Llinás M, Cortés A. Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites. Cell Microbiol 2013; 15:1913-23. [PMID: 23819786 DOI: 10.1111/cmi.12162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/22/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
Abstract
Malaria parasites induce changes in the permeability of the infected erythrocyte membrane to numerous solutes, including toxic compounds. In Plasmodium falciparum, this is mainly mediated by PSAC, a broad-selectivity channel that requires the product of parasite clag3 genes for its activity. The two paralogous clag3 genes, clag3.1 and clag3.2, can be silenced by epigenetic mechanisms and show mutually exclusive expression. Here we show that resistance to the antibiotic blasticidin S (BSD) is associated with switches in the expression of these genes that result in altered solute uptake. Low concentrations of the drug selected parasites that switched from clag3.2 to clag3.1 expression, implying that expression of one or the other clag3 gene confers different transport efficiency to PSAC for some solutes. Selection with higher BSD concentrations resulted in simultaneous silencing of both clag3 genes, which severely compromises PSAC formation as demonstrated by blocked uptake of other PSAC substrates. Changes in the expression of clag3 genes were not accompanied by large genetic rearrangements or mutations at the clag3 loci or elsewhere in the genome. These results demonstrate that malaria parasites can become resistant to toxic compounds such as drugs by epigenetic switches in the expression of genes necessary for the formation of solute channels.
Collapse
Affiliation(s)
- Sofía Mira-Martínez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|